
## **In 1 MIKRON TOOL**

# crazy about cool tools

ZERSPANUNGSWERKZEUGE



## crazy about cool tools

|    | WARUM MIKRON TOOL          |
|----|----------------------------|
| 01 | NEUHEITEN                  |
| 02 | TECHNISCHE BERATUNG        |
| 03 | TECHNOLOGY CENTER          |
| 04 | ZENTRIEREN                 |
| 05 | PILOTBOHREN UND KURZBOHREN |
| 06 | BOHREN                     |
| 07 | FRÄSEN                     |
| 08 | ENTGRATEN                  |
| 09 | DREHEN                     |
| 10 | REIBEN                     |
| 11 | MULTIFUNKTIONALE WERKZEUGE |
| 12 | NACHSCHÄRFEN               |
| 13 | ROSTFREI & CO.             |
| 14 | TECHNISCHE INFORMATIONEN   |
| 15 | ALLGEMEINE INFORMATIONEN   |
|    |                            |



### crazy about

### cool challenges

#### WIR LIEBEN HERAUSFORDERUNGEN

Werkzeuge sind unsere Leidenschaft, kleine Dimensionen unsere Spezialität und schwer zerspanbare Materialien unsere Herausforderung. Rund um diese Attribute dreht sich der Alltag von Mikron Tool.

Entstanden ist Mikron Tool aus der ehemaligen Werkzeugabteilung des Transfermaschinen-Herstellers Mikron SA Agno. Daraus resultiert eine jahrzehntelange Erfahrung in der Entwicklung und Herstellung von Zerspanungswerkzeugen.

Als eigenständige Firma tätig seit 1998, angefangen mit 25 Mitarbeitern, sind wir heute ein global agierender Werkzeuganbieter mit Hauptsitz in der Schweiz (Agno, Tessin), einer Zweigstelle mit Verkauf und Fabrikation in Deutschland (Rottweil) sowie Verkaufsniederlassungen in USA und China.

180 Mitarbeiter setzen sich täglich ein für die Bedürfnisse der Kunden, ein weltweites Vertriebsnetz mit Partnerfirmen sichert die Kundennähe rund um den Globus.



### crazy about

### small dimensions

#### SPITZENLEISTUNGEN IN KLEINEN DIMENSIONEN

Wichtig ist uns eine hohe Kompetenz in allem, was wir tun. Dies ist möglich, wenn wir uns auf ein Kerngebiet spezialisieren. Unsere Stärke ist die Zerspanung im kleinen Durchmesserbereich, mit Fokus auf schwer zerspanbare Materialien. Da bieten wir unseren Kunden immer neue maximale Lösungen.

Dass wir mit dieser Strategie auf dem richtigen Weg sind, beweist der Gewinn von diversen Innovationspreisen für unsere wegweisenden Neuentwicklungen im Bereich Bohren und Fräsen.

Standardisierte Werkzeuge heisst bei Mikron Tool höchste Performance, beste Qualität und Präzision ab Lager. Das Angebot umfasst Werkzeuge zum Zentrieren, Bohren, Fräsen und Entgraten im Durchmesserbereich von 0.1 bis 6.0 mm.

Im Bereich kundenspezifische Werkzeuge geht das Angebot vom Zentrieren und Anfasen über Bohren, Fräsen, Drehen, Reiben oder Entgraten bis zu komplexen, kombinierten Werkzeugen im Durchmesserbereich zwischen 0.1 mm und 32.0 mm.



### crazy about

### competence



### KOMPETENZ INBEGRIFFEN

Die Werkzeugspezialisten von Mikron Tool verfügen über ein umfassendes Wissen und langjährige Erfahrung im Einsatz der Werkzeuge auf unterschiedlichsten Werkzeugmaschinentypen wie CNC-Bearbeitungszentren, Drehautomaten oder Transfermaschinen. In Zusammenarbeit mit dem Kunden definieren sie das ideale Werkzeug für jede Anwendung. So kauft der Kunde mit einem Hochleistungswerkzeug von Mikron Tool, auch wenn es sich um ein standardisiertes Produkt handelt, nicht nur geschliffenes Hartmetall ab Lager, er erhält gleichzeitig ein komplettes Paket. Dazu gehören Bearbeitungsstrategie, Schnittparameter, Prozesse, Informationen zu Spannmittel, Kühlung usw.

Dies ermöglicht es dem Kunden, seine Teile mit höchster Leistung und Präzision prozesssicher zu fertigen.

#### **UNSERE STARKE KOMPETENZ:**

#### Umfassende Kenntnisse in der Zerspanung

Die Werkzeugingenieure von Mikron Tool sind Spezialisten in der Auslegung von Werkzeugen und der Definition von Einsatzparametern.

### Wiederholte Präzision im µ-Bereich

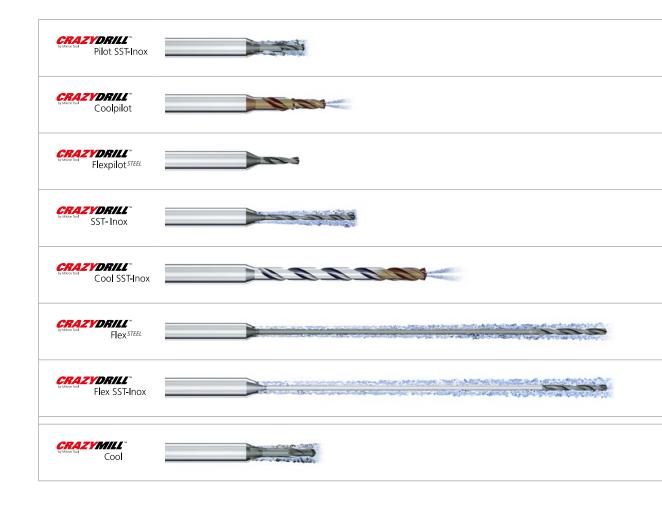
Modernste Produktionsmittel und Messinstrumente gewährleisten Werkzeuge mit einer Präzision bis zu +/- 0.0005 mm. Klar definierte und kontrollierte Fertigungsprozesse ermöglichen 100% Wiederholgenauigkeit.

#### Höchste Leistung

Hohe Bearbeitungsgeschwindigkeit und hohe Prozesssicherheit für hervorragende Resultate.

#### **Schwer zerspanbare Materialien**

Regelmässig neue und einzigartige Werkzeuge für die Bearbeitung von schwer zerspanbaren Materialien auf den Markt zu bringen, steht bei uns seit Jahren im Fokus.


# **crazy about** new things



| ÜBERSICHT WERKZEUGE                                                                                                                                                                   | 12 | 01 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| CRAZYDRILL PILOT SST-INOX  Neuer Pilot-/ Kurzbohrer 3 x d + 90° Fase mit degressiver  Spiralnut, integrierte Kühlung                                                                  | 14 |    |
| CRAZYDRILL COOLPILOT  Pilot-/ Kurzbohrer 3 x d + 90° Fase mit neuer Kühltechnologie, Geometrie, Beschichtung                                                                          | 16 |    |
| CRAZYDRILL SST-INOX IK / IN 12 X D Kleinstbohrer mit degressiver Spiralnut neu bis 12 x d mit integrierter Kühlung                                                                    | 18 |    |
| CRAZYDRILL COOL SST-INOX  Hochleistungsbohrer 6 x d, 10 x d mit neuer Kühltechnologie, Geometrie, Beschichtung                                                                        | 20 |    |
| CRAZYDRILL FLEX STEEL BESCHICHTET Kleinstbohrer 3, 20, 30, und 50 x d, neu in beschichteter Ausführung                                                                                | 22 |    |
| CRAZYDRILL FLEX SST-INOX Kleinstbohrer 30 x d und 50 x d mit integrierter Kühlung und neuer Geometrie                                                                                 | 24 |    |
| CRAZYMILL COOL VOLLRADIUS  Neuer Vollradius Fräser mit integrierter Kühlung                                                                                                           | 26 |    |
| INTERNETAUFTRITT  Neue, komplett überarbeitete Web Site. Integriert ist ein Tool Finder zum schnellen Ermitteln des passenden Werkzeuges  Mehr Informationen unter www.mikrontool.com | 28 |    |
| TECHNOLOGY CENTER  Neues Technologie Zentrum für Entwicklungen, Schulungen für Partner, Versuche von Kundenapplikationen                                                              | 30 |    |

## Übersicht Werkzeuge

### **8 NEUE PRODUKTE AUF EINEN STREICH**



|  | I                                                     |                             | 1       |                                     |                     |           |                        |                                |                                       |                      |                               |                               |
|--|-------------------------------------------------------|-----------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|
|  | ø - Bereich<br>[mm]<br>max.<br>Bearbeitungs-<br>tiefe | -sgu                        |         | P                                   | M                   | K         | N                      | S₁                             | S <sub>2</sub>                        | S₃                   | H <sub>1</sub>                | H <sub>2</sub>                |
|  |                                                       | max.<br>Bearbeituı<br>tiefe | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitze-<br>beständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC |
|  | 0.3 – 2.0                                             | 3 x d<br>+90°<br>Senkung    |         | ×                                   | •                   | ×         | 0                      | •                              | ×                                     | •                    | ×                             | ×                             |
|  | 1.0 – 6.0                                             | 3 x d<br>+90°<br>Senkung    |         | ×                                   | •                   | ×         | ×                      | •                              | ×                                     | •                    | ×                             | ×                             |
|  | 0.2 – 1.2                                             | 3 x d                       |         | •                                   | ×                   | •         | •                      | ×                              | ×                                     | ×                    | ×                             | ×                             |
|  | 0.3 – 2.0                                             | 12 x d                      |         | ×                                   | •                   | ×         | 0                      | •                              | ×                                     | •                    | ×                             | ×                             |
|  | 1.0 – 6.0                                             | 6 x d<br>10 x d             |         | ×                                   | •                   | ×         | ×                      | •                              | ×                                     | •                    | ×                             | ×                             |
|  | 0.2 – 1.2                                             | 20 x d<br>30 x d<br>50 x d  |         | •                                   | ×                   | •         | •                      | ×                              | ×                                     | ×                    | ×                             | ×                             |
|  | 0.3 – 1.2                                             | 30 x d<br>50 x d            |         | Ø                                   | •                   | Ø         | •                      | •                              | ×                                     | •                    | Ø                             | Ø                             |
|  | 0.3 – 8.0                                             | 2 x d<br>3 x d<br>5 x d     |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             |

## CrazyDrill Pilot SST-Inox





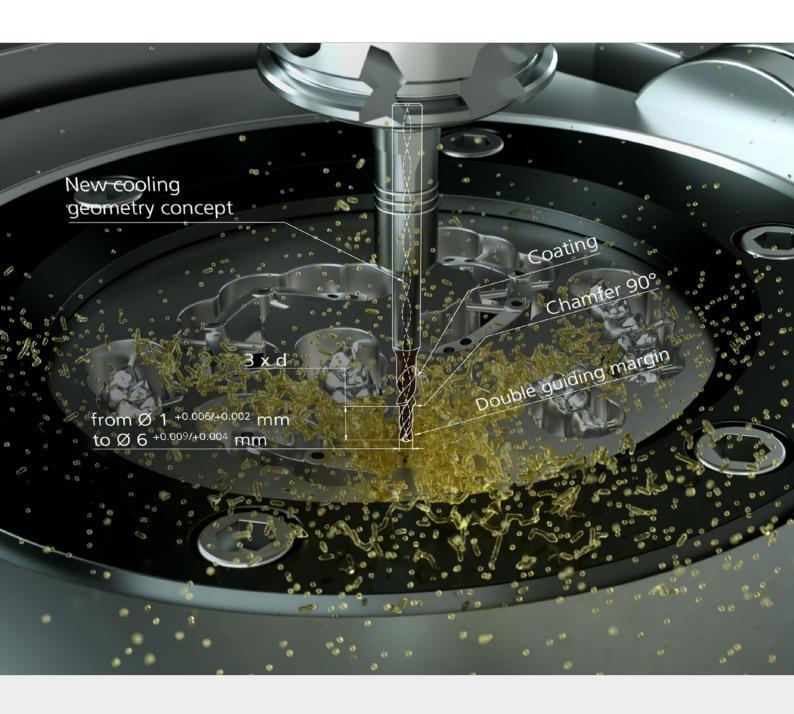


### DER MIKRO PILOT- UND KURZBOHRER FÜR INOX & CO.



Das ist neu: Der Pilot- und Kurzbohrer ist speziell entwickelt für rost-, säure- und hitzebeständige Stähle und CrCo-Legierungen. Er verfügt über eine integrierte Kühlung im Schaft sowie eine degressive Spannute und ist als Pilotbohrer die ideale Ergänzung von CrazyDrill SST-Inox und CrazyDrill Flex SST-Inox. Der Bohrer eignet sich ausserdem als Kurzbohrer für Bohrtiefen bis 3 x d.

Die Eigenschaften: CrazyDrill Pilot SST-Inox wurde entwickelt als Pilot- und Kurzbohrer mit integrierter Fasenschneide. Speziell sind bei diesem Bohrer die im Schaft integrierten Kühlkanäle, die schon ab 15 bar für einen effizienten Kühlmittelstrahl sorgen, die Späne vom Bohrer wegspülen und die Temperatur unter Kontrolle halten. Das Resultat ist eine deutlich erhöhte Standzeit des Werkzeuges.


Er eignet sich genauso für die Vorbereitung von tiefen Bohrungen wie für das Kurzbohren bis zu einer Bohrtiefe von 3 x d. Eine zusätzliche Fasenschneide ermöglicht ausserdem das Anbringen einer Senkung von 90° im selben Bohrschritt.

Durchmesserbereich: 0.3 mm bis 2.0 mm

Bohrtiefe: 3 x d Senkwinkel: 90°

Beschichtung: eXedur RIP

## NEW CrazyDrill Coolpilot







### EIN PILOT- UND KURZBOHRER MIT INNOVATIVER INNENKÜHLUNG



Das ist neu: CrazyDrill Coolpilot wurde entwickelt als Pilot- und Kurzbohrer mit integrierter Fasenschneide für rost-, säure- und hitzebeständige Stähle und CrCo-Legierungen. Damit ist er die ideale Ergänzung zu CrazyDrill Cool SST-Inox. Er ist versehen mit spiralisierten Kühlkanälen in Tropfenform bis an die Schneiden sowie einem Spanbrecher-Nutenprofil. Die neue, kupferrote Beschichtung vermeidet das Verkleben der Späne und unterstützt den effizienten Bohrprozess.

Die Eigenschaften: Die Pilotbohrung oder Kurzbohrung bis 3 x d wird in einem Bohrstoss ausgeführt. Durch die Pilotbohrung ist der Folgebohrer optimal geführt, was eine hohe Geradheit der Bohrung garantiert. Dank der integrierten Fasenschneide kann gleichzeitig eine Senkung von 90° angebracht werden. Durch das Einsparen eines Werkzeugwechsels verkürzen sich so die Bearbeitungszeiten.

Durchmesserbereich: 1 mm bis 6 mm

Bohrtiefe: 3 x d Senkwinkel: 90°

Beschichtung: eXedur SNP

## CrazyDrill SST-Inox IK / IN 12 x d





#### **ROSTFREIE MATERIALIEN BOHREN – IN KLEINEN DIMENSIONEN**



Das ist neu: CrazyDrill SST-Inox in seiner "langen" Ausführung eignet sich für Bohrungen in rostfreien Materialien, wenn es um Bohrtiefen bis zu 12 x d geht. Er ermöglicht höchste Schnittgeschwindigkeiten und Vorschübe, hohe Standzeiten und hohe Prozesssicherheit.

Die Eigenschaften: Die Geometrie des Hartmetallbohrers CrazyDrill SST-Inox unterscheidet sich wesentlich von heutigen Standards. Die speziell konzipierte Geometrie der Bohrspitze für Ni-legierte Materialien reduziert die Vorschubkraft und verleiht dem Bohrer gute Zentriereigenschaften. Zudem generiert sie in langspanigen Materialien kurze Späne und vermeidet Schneidenausbrüche. Verantwortlich für die gute Späneabfuhr ist eine degressive Spiralnute.

Wie bei der bereits im Markt eingeführten "kurzen" Ausführung gibt es auch beim neuen Werkzeug für Bohrtiefen bis 12 x d zwei Varianten: Eine für äussere Kühlmittelzufuhr, eine mit im Schaft integrierten Kühlkanälen.

Die Variante CrazyDrill SST-Inox Typ IK bis zu 12 x d verfügt über integrierte Kühlkanäle im Schaft, die schon ab 15 bar für einen effizienten Kühlmittelstrahl sorgen. So wird die Temperatur konstant unter Kontrolle gehalten und die Hitze abgeführt, die Späne aus der Spannute gespült und eine verbesserte Standzeit erreicht. Die Schnittparameter dieser Ausführung können um 20 – 30 % erhöht werden im Vergleich zur Version mit konventioneller Kühlmittelzufuhr von aussen.

Durchmesserbereich: 0.3 mm bis 2.0 mm

Bohrtiefe: 12 x d

Beschichtung: eXedur RIP

## CrazyDrill Cool SST-Inox

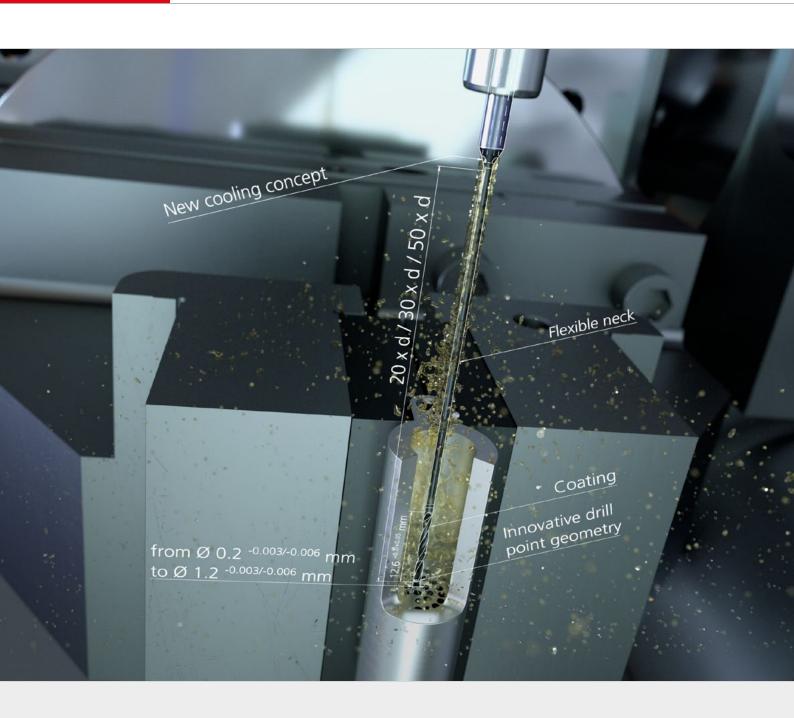




### **BOHREN IN EINEM EINZIGEN BOHRSTOSS INOX & CO.**



Das ist neu: Der Bohrer CrazyDrill Cool SST-Inox (6 x d und 10 x d) ist speziell für rost-, säure- und hitzebeständige Stähle und CrCo-Legierungen entwickelt worden. Bisher unerreichte Leistungen sind möglich dank einer neuen Schneidengeometrie und einer neuen Kühlkanalform, die eine massive Kühlung der Schneiden garantiert. Die neue, kupferrote Beschichtung vermeidet das Verkleben der Späne und unterstützt den sehr effizienten Bohrprozess.


Die Eigenschaften: Die Bohrung bis zu einer maximalen Bohrtiefe von 10 x d wird in einem einzigen Bohrstoss ausgeführt. Dabei garantiert das Werkzeug dank seiner neuen Schneidengeometrie und dem Nutenprofil einen optimalen Spanbruch und eine optimale Späneabfuhr.

Ausserdem sorgen die neu entwickelten Kühlkanäle in Tropfenform für höchste Effizienz. Höchste Schnittgeschwindigkeiten und Standzeiten werden Realität.

Durchmesserbereich: 1 mm bis 6 mm

Bohrtiefe: 6 x d und 10 x d Beschichtung: eXedur SNP

## NEW CrazyDrill Flex Steel beschichtet





#### **VERBESSERTE STANDZEIT DANK BESCHICHTUNG**



Das ist neu: Zusätzlich zur unbeschichteten Variante von CrazyDrill Flex Steel / Flexpilot Steel, die bereits seit 3 Jahren auf dem Markt ist, gibt es den Mikrotieflochbohrer für Stahl nun auch in einer Ausführung mit einer passenden Hochleistungsbeschichtung. Diese ist äusserst verschleissresistent und verleiht dem Bohrer eine sehr glatte Oberfläche.

Die Eigenschaften: CrazyDrill Flex Steel erlaubt dank seinem flexiblen Element zwischen Schneidkörper und Einspannschaft das Bohren auch unter erschwerten Bedingungen, zum Beispiel bei Mittenversatz. Der verlängerte Hals macht aus CrazyDrill Flex zudem einen idealen Tieflochbohrer für eine schnelle, präzise und kosteneffiziente Bearbeitung. Er gewährleistet gegenüber der Bearbeitung mit Einlippenbohrern, Mikroerosion oder Laserverfahren eine wesentlich kürzere Bearbeitungszeit.

In seiner beschichteten Variante garantiert er eine speziell gute Prozesssicherheit auch bei der Produktion von grossen Serien.

Verfügbar sind vier Varianten für unterschiedliche Bohrtiefen: Bei den Versionen Pilot (3 x d), 20 x d und 30 x d werden die Bohrer von aussen gekühlt. Die Variante 50 x d verfügt zusätzlich über im Schaft integrierte Kühlkanäle.

Durchmesserbereich: 0.2 mm bis 1.2 mm (3, 20 und 30 x d)

0.3 mm bis 1.2 mm (50 x d)

Bohrtiefe: 3 x d, 20 x d, 30 x d und 50 x d

Beschichtung: eXedur RIP

## CrazyDrill Flex SST-Inox

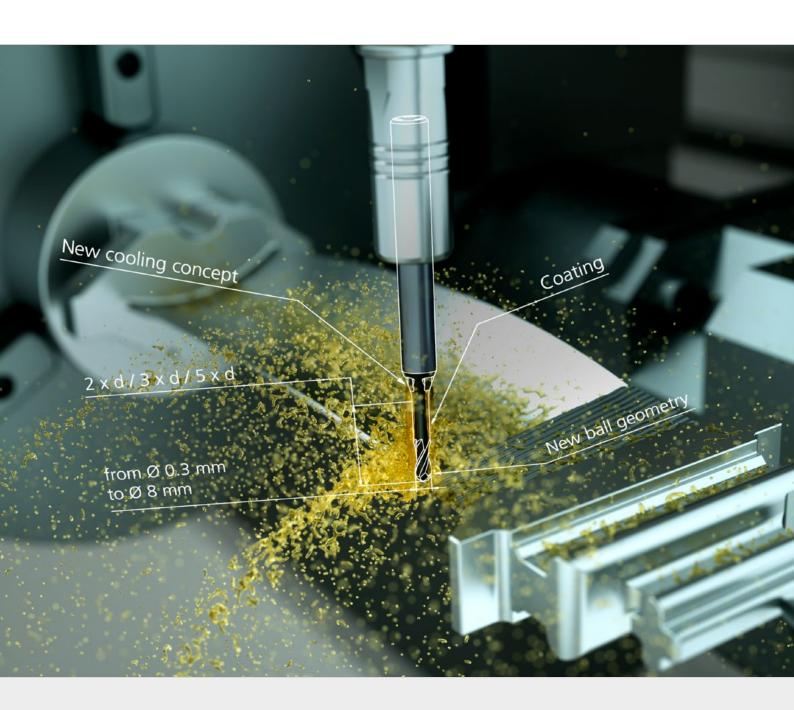




#### MIKRO-TIEFLOCHBOHREN IN ROSTFREIEN MATERIALIEN



Das ist neu: Der Mikro-Tieflochbohrer aus Hartmetall CrazyDrill Flex SST-Inox ist konzipiert für das Bohren von rost-, säure- und hitzebeständigen Materialien und CrCo-Legierungen. Speziell an ihm sind die degressive Spiralnutengeometrie, die im Schaft integrierten Kühlkanäle und die wirksame Hochleistungsbeschichtung.


Die Eigenschaften: CrazyDrill Flex SST-Inox eignet sich mit seinem verlängerten Hals und seinen degressiven Spiralnuten speziell für tiefe Bohrungen in rost-, säure-, und hitzebeständigen Stählen und CrCo-Legierungen. Er ist verfügbar bereits ab Bohrdurchmesser 0.3 mm und garantiert eine wesentlich kürzere Bearbeitungszeit gegenüber Einlippenbohrern, Laserverfahren oder Mikroerosion.

CrazyDrill Flex SST-Inox verfügt über integrierte Kühlkanäle im Schaft, die schon ab 15 bar für eine konstante, massive Kühlung der Schneiden sorgen. Die Temperatur wird konstant unter Kontrolle gehalten, ein wichtiger Faktor bei Materialien mit schlechter Wärmeleitfähigkeit. Die Späne werden so aus der Spannute gespült und insgesamt wird eine verbesserte Standzeit erreicht. Die Hochleistungsbeschichtung sorgt zusätzlich für eine hohe Standzeit.

Durchmesserbereich: 0.3 mm bis 1.2 mm

Bohrtiefen: 30 x d und 50 x d Beschichtung: eXedur RIP

## CrazyMill Cool Vollradius





#### EIN HSPC-FRÄSER FÜR SCHWER ZERSPANBARE MATERIALIEN



Das ist neu: CrazyMill Cool Vollradius ist ein neuartiger Fräser, von Mikron Tool entwickelt für das Schruppen und Schlichten von rostfreien Stählen, Reintitan und Titanlegierungen, CrCo- und Superlegierungen. Mit einer im Schaft integrierten, sehr effizienten Kühlung erreicht er höchste Schnittgeschwindigkeiten und garantiert eine hohe Abtragsrate.

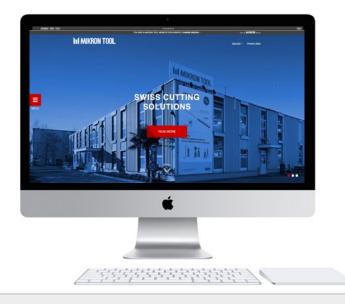
Die Eigenschaften: Die neue Schneidengeometrie ist speziell schwingungs- bzw. vibrationsarm und darauf ausgerichtet, sowohl die Geschwindigkeit als auch die Oberflächenqualität zu verbessern. Die verlängerten Schnittlängen ermöglichen eine Bearbeitung sowohl am Radius als auch am zylindrischen Teil und machen den Fräser zu einem vielseitig einsetzbaren Werkzeug.

CrazyMill Cool Vollradius ist eine Kombination aus HSC (High Speed Cutting) und HPC (High Performance Cutting), und wird damit zu einem HSPC-Fräser (High Speed Performance Cutting).

Durchmesserbereich: 0.3 mm bis 8.0 mm

Frästiefe: Typ A - 2 x d; Typ B - 3 x d; Typ C - 5 x d

Beschichtung: eXedur RIP


### Internetauftritt

### MIKRON TOOL ONLINE MIT NEUEM INTERNETAUFTRITT

Seit dem 1. Oktober 2015 ist Mikron Tool mit einer neuen, komplett überarbeiteten Homepage online: www.mikrontool.com.

Im Zentrum der neuen Internetseite stehen die Anliegen des Kunden. Dabei geht es um viele nützliche Informationen zur Firma, zu ihrer Geschichte, ihren Dienstleistungen und den weltweiten Kontaktmöglichkeiten. Jedes einzelne Produkt ist im Detail beschrieben, mit seinen Eigenschaften und Vorteilen und einer Vielzahl von konkreten Anwendungsbeispielen. Auch die technischen Angaben dazu fehlen natürlich nicht. Das Bedürfnis des Besuchers, aus der breiten Palette der verfügbaren Produkte so schnell wie möglich das für ihn passende Werkzeug zu finden, wird mit dem neuen Tool Finder (Suchinstrument für Werkzeuge) hervorragend abgedeckt.

Als Spezialist für rostfreie Stähle und andere schwer zerspanbare Materialien (Titan, Chrom-Kobalt-Legierungen oder Superlegierungen) widmet Mikron Tool zudem ein ganzes Kapitel den rost-, säure- und hitzebeständigen Materialien, die in vielen Industriebereichen eine immer wichtigere Rolle spielen.



01

#### **TOOL FINDER**

Der neue, einfach zu bedienende Tool Finder hilft, das passende Werkzeug schnell zu finden.

#### So gehen Sie vor:

- Wählen Sie die gewünschte Bearbeitung (z.B. Bohren).
- Geben Sie nacheinander den passenden Durchmesser, die Nutzlänge und den Werkstoff ein.
- Jetzt schlägt der Tool Finder die für die auszuführende Bearbeitung geeigneten Werkzeuge vor. Gleichzeitig liefert er die wichtigen Daten für den korrekten Einsatz des Werkzeuges wie Anwendungsparameter, Angaben zum Bearbeitungsprozess und zum idealen Umfeld (Maschinen, Spannmittel und Kühlschmierung). Alle Daten sind wahlweise metrisch oder in Zoll verfügbar.

Sollte trotz des grossen Produktangebotes kein passendes Werkzeug zur Verfügung stehen, kann Mikron Tool jederzeit direkt vom Tool Finder aus kontaktiert werden für ein Angebot zu einem kundenspezifischen Werkzeug.



# Technology Center



### WO DIE ZUKUNFT SCHON HEUTE STATTFINDET

### **Technology Center**

Mikron Tool hat seit kurzem ein Technologie Zentrum in Agno. Hier finden neue Entwicklungen, Schulungen für Partner, Versuche von Kundenapplikationen und sogar komplette Projektausarbeitungen statt.

Mehr Informationen in Kapitel 03

# crazy about competence



02

### IM PREIS INBEGRIFFEN: DIE BERATUNG

34

Zum Verkauf von Werkzeugen gehört bei Mikron Tool auch eine umfassende technische Beratung

### **UMFASSENDES ENGINEERING**

36

Von der Bearbeitungsstrategie eines Bauteiles bis hin zum perfekten Einsatz der Werkzeuge. Mikron Tool erarbeitet die beste Lösung für den Kunden

## Im Preis inbegriffen: Die Beratung





### VIELE FRAGEN... UND DIE RICHTIGE KOMPETENZ

### Mehr als ein Werkzeugkatalog im Angebot

Die Erfahrung hat uns eines gelehrt: der Kunde ist erst zufrieden, wenn er nicht nur ein gutes Werkzeug gekauft hat, sondern wenn unter dem Strich alles stimmt. Dazu gehört ein gutes Preis-Leistungsverhältnis genauso wie die fachlich kompetente Beratung beim Werkzeugkauf und die Unterstützung vor Ort beim Einrichten der Maschine.

Eine gute Beratung beginnt mit Fragen. Zum Beispiel:

- Welches Material bearbeiten Sie?
- Mit welchem Kühlmittel arbeiten Sie?
- Welches ist die maximale Drehzahl Ihrer Maschine?

Dann sind da noch die Fragen zu den gewünschten oder geforderten Resultaten:

- In welchem Toleranzbereich muss die Bohrung liegen?
- Welche Losgrösse ist zu bearbeiten?

Kompetenz in der Beratung ist gefragt und genau hier liegt die Stärke der Werkzeugspezialisten von Mikron Tool. Sie verfügen über ein umfassendes Zerspanungswissen und eine fundierte Ausbildung zum Einsatz ihrer "crazy" Werkzeuge auf unterschiedlichsten Werkzeugmaschinentypen wie CNC-Bearbeitungszentren, Mono- oder Mehrspindel-Drehautomaten oder Transfermaschinen. Sie kennen die notwendigen Anforderungen an Kühlmittelart und -druck, Spannmittel, Spindel und sind so in der Lage, die besten Rahmenbedingungen für ein optimales Ergebnis zu schaffen.

## **Umfassendes Engineering**





#### DER PARTNER FÜR GROSSE PROJEKTE

#### Vom Projekt zum fertigen Werkzeug

Der erste Kontakt mit dem Kunden entsteht oft, wenn dieser sich mit einem Werkstück meldet, das er auf seiner Maschine wirtschaftlich herstellen möchte. An diesem Punkt beginnt die Herausforderung für Mikron Tool. Jetzt heisst es, das Know-How der Spezialisten zu nutzen.

Jeder Verkaufsingenieur versteht die Anforderungen der Kunden. Er ist in der Lage, Prozesse und die dazu passenden Werkzeuge zu definieren, diese auf der Maschine einzusetzen und die optimalen Schnittparameter festzulegen. Er kennt sich mit Hartmetallen und Beschichtungen aus, mit Werkzeuggeometrien und Spänen, er hat Erfahrungen mit unterschiedlichsten zu bearbeitenden Materialien.

#### Kompetenz im Dienste des Maschinenherstellers

Seit Jahrzehnten arbeitet Mikron Tool eng mit Werkzeugmaschinenherstellern zusammen, wo hohe Kompetenz in allen Zerspanungsbereichen gefragt ist.

Voraussetzung für eine hohe Fertigungsqualität und Profitabilität bei der Herstellung von Präzisionsteilen sind optimal konzipierte Werkzeuge, die perfekt auf das eingesetzte Bearbeitungssystem abgestimmt sind. Hier spielen Faktoren wie Taktzeit, maximale Anzahl einzusetzender Werkzeuge, Toleranzvorgaben, gewünschte Ausbringung pro Tag bzw. Woche eine wichtige Rolle. Das Angebot von Mikron Tool für Maschinenhersteller geht von Machbarkeitsversuchen verschiedener Zerspanungsoperationen bis hin zu einer kompletten Werkzeugauslegung für eine Teilefertigung.

Der Vorteil: Sie profitieren von einer jahrelangen Erfahrung im Bereich Maschinenausrüstungen sowie von einer Vielzahl innovativer Zerspanungslösungen.

# crazy about new technology



**AUSBILDUNG** 

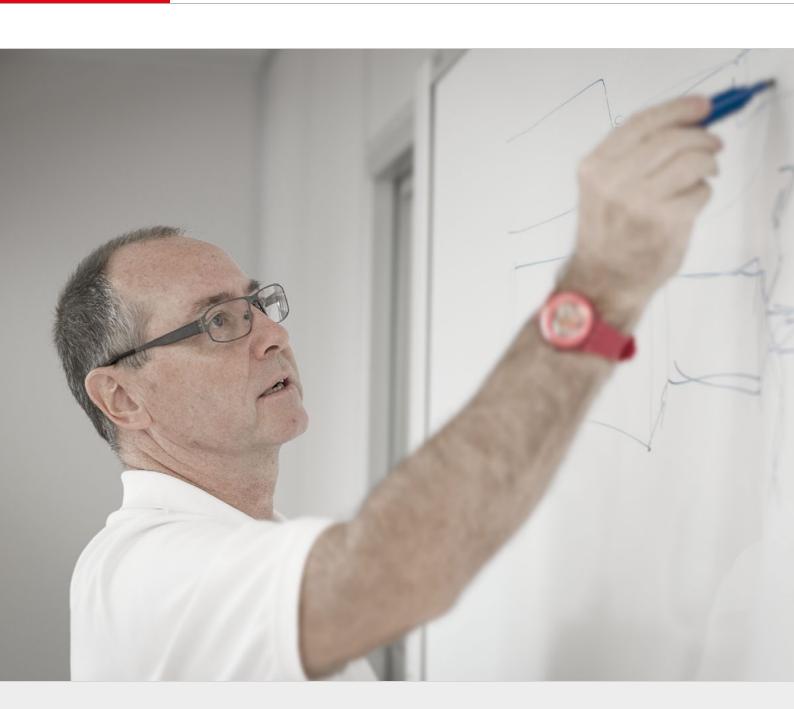
Investition in die Zukunft

46

### Wo die Zukunft schon heute stattfindet



#### **VOM INTERNEN TEST ZUM KUNDENPROJEKT**


Was vor mehr als 10 Jahren mit einer Testmaschine für Neuentwicklungen begann, ist heute eine stolze Abteilung innerhalb des Betriebes von Mikron Tool und auch wesentlich beteiligt am Erfolg von CrazyDrill, dem "verrücktesten Kleinbohrer der Welt".

Ein Team von 7 Personen, vier Ingenieure und drei spezialisierte Präzisionsmechaniker, widmen sich ausschliesslich technologisch anspruchsvollen Projekten.

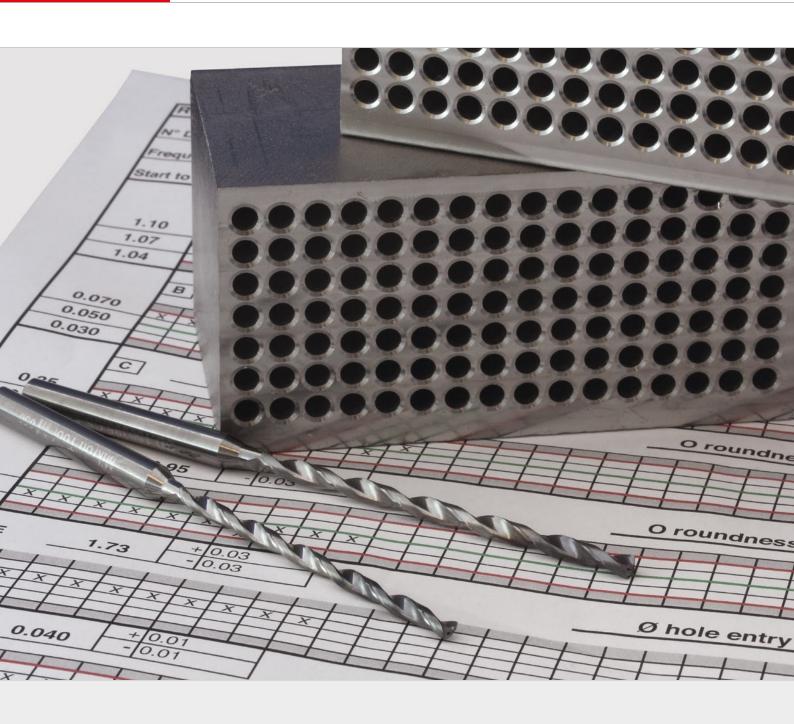
- Hier entstehen neue Produkte, hier werden neue Materialien getestet, hier werden optimale Schnittparameter ermittelt.
- Hier erhält der Kunde wichtige Informationen zum besten Einsatz seiner Werkzeuge.
- Im Auftrag der Kunden können hier Machbarkeitsstudien durchgeführt oder ganze Projekte abgewickelt werden.

Ausserdem dient das Zentrum als Plattform für interne und externe Ausbildungen. Mitarbeiter, Vertriebspartner und Kunden erhalten hier das notwendige technische Konw-how, um unsere Produkte optimal einsetzen zu können.

# Entwicklungen



#### WO DIE ZUKUNFT ENTSTEHT


Alle neuen Produkte von Mikron Tool entstehen im Technology Center in Agno / CH. Dass hier auch mal verrückte Ideen auf den Tisch kommen, versteht sich von selbst.

Dem Zufall wird aber nichts überlassen, bevor ein neues Werkzeug auf den Markt kommt. Neue Geometrien, neue Werkstoffe, neue Beschichtungen werden im konkreten Einsatz getestet und erst, wenn die Werkzeuge von den Entwicklungsingenieuren für gut und einzigartig befunden sind, dürfen sie den Namen "CrazyTool" für sich beanspruchen.

Alle in den Schnittdatentabellen angegebenen Parameter entstehen in praktischen Tests. Basierend auf konkreten Versuchen mit den effektiven Abmessungen der Werkzeuge, garantieren die Daten einen optimalen Einsatz in den entsprechenden Materialien.

Auch eine kontinuierliche Optimierung der bestehenden Produktpalette gehört zu den Aufgaben des Entwicklungsteams. Neue Erkenntnisse in der Zerspanung, neue Beschichtungen, neue Hartmetalle fliessen so in die Produktverbesserung mit ein, damit ein Produkt von Mikron Tool auch Jahre nach der Markteinführung noch aktuell ist.

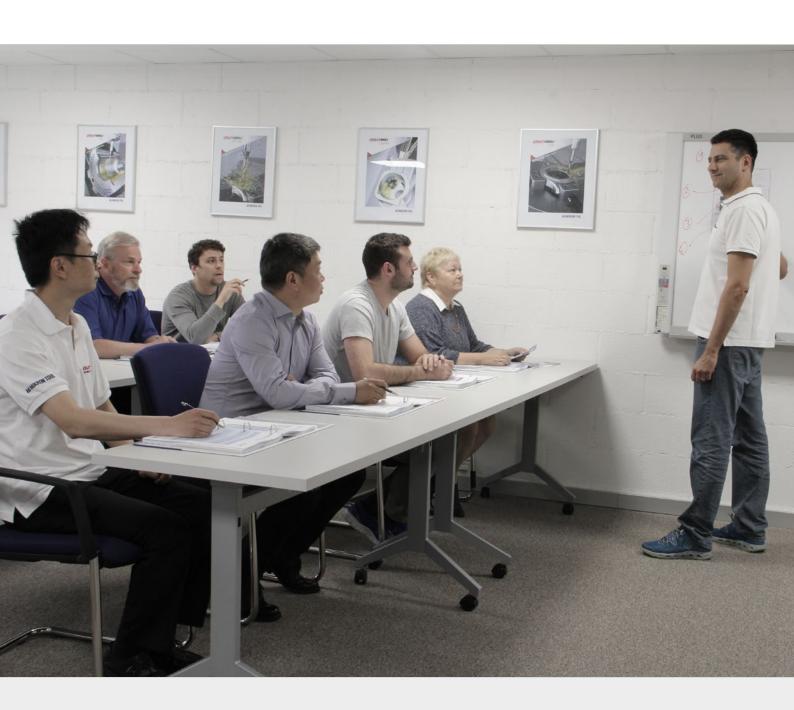
## Werkzeugversuche und Projekte



#### MEHR ALS NUR WERKZEUGE FÜR DEN KUNDEN

Neue Hartmetallbohrer testen, bevor sie in der Serienproduktion eingesetzt werden, oder die Parameter neu bestimmen, um die Taktzeiten zu reduzieren, die Standzeit zu erhöhen oder das geeignete Werkzeug für neue Materialien finden? Selten hat ein Produktionsbetrieb freie Kapazitäten auf seinen Maschinen, um Werkzeugtests durchzuführen.

Um die Kunden aktiv bei der Verbesserung ihrer Fertigung zu unterstützen, bietet Mikron Tool auf Anfrage Versuche und Ergebnisanalysen mit kundenspezifischen Werkzeugen an. Dabei geht es immer um die beste Lösung für die Serienproduktion, angepasst an die Produktionsverhältnisse beim Kunden. Ebenfalls auf Anfrage erhalten die Kunden Testprotokolle und Videos als Entscheidungshilfe für den Einsatz dieser Werkzeuge.


#### Pilotprojekte "schlüsselfertig"

Der moderne Maschinenpark ermöglicht es Mikron Tool heute, mit dem Kunden zukunftsweisende Pilotprojekte durchzuführen.

Dabei kann es sich um eine Pilotproduktion handeln für ein neu zu produzierendes Werkstück, bevor es beim Kunden in die Serienfertigung geht. Mikron Tool liefert eine erste Serie fertiger Teile in einer limitierten Anzahl und dazu eine entsprechende Qualitätsanalyse.

Mikron Tool steht dem Kunden auch bei besonders aufwändigen Neuprojekten mit schlüsselfertigen Lösungen zur Seite und liefert ein Komplettpaket: von der Machbarkeitsstudie über die geeigneten Prozesse mit den passenden Werkzeugen und optimalen Schnittparametern bis zu den Bearbeitungszeiten und -kosten mit einer abschliessenden Qualitätsanalyse.

# Ausbildung



#### **INVESTITION IN DIE ZUKUNFT**

Eine wichtige Aufgabe des Technology Centers ist die Ausbildung von Mitarbeitern, Verkaufspartnern und Kunden. Hier finden in speziell eingerichteten Räumlichkeiten interne und externe Kurse zu unterschiedlichsten Themen statt.

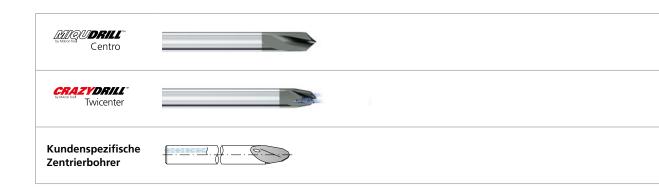
Dabei geht es einerseits um die technische Ausbildung von Verkaufspartnern. Diese werden bzgl. technischer Lösungen von Mikron Tool geschult, um anschliessend unsere Kunden bestmöglich beraten zu können.

Ein anderes wichtiges Thema ist die regelmässige Weiterbildung von eigenen Mitarbeitern. Diese müssen selbstverständlich jederzeit die Kunden technisch beraten können, und nicht nur zum Thema Werkzeuge. Sie müssen sämtliche Faktoren für ein erfolgreiches Bearbeiten beherrschen: Kühlschmiermittel, Werkzeughalter, Werkstoffe, usw.

Dieser Austausch von neuen technischen Möglichkeiten und neuem Wissen ist ein enormer Gewinn für alle Beteiligten.

Demonstrationen von Werkzeugen im praktischen Einsatz auf den CNC-Bearbeitungszentren sind ein integraler Teil jeder Ausbildung. So wird die gelernte Theorie umgehend in der Praxis umgesetzt. Was ist wirksamer, als ein Werkzeug im praktischen Einsatz mit den idealen Schnittparametern zu sehen? Was ist eindrücklicher, als die Grenzen des Machbaren direkt zu erleben und dabei auch einmal neben den Spänen die abgebrochene Spitze eines Bohrers fliegen zu sehen?

# crazy about centering




ZENTRIEREN

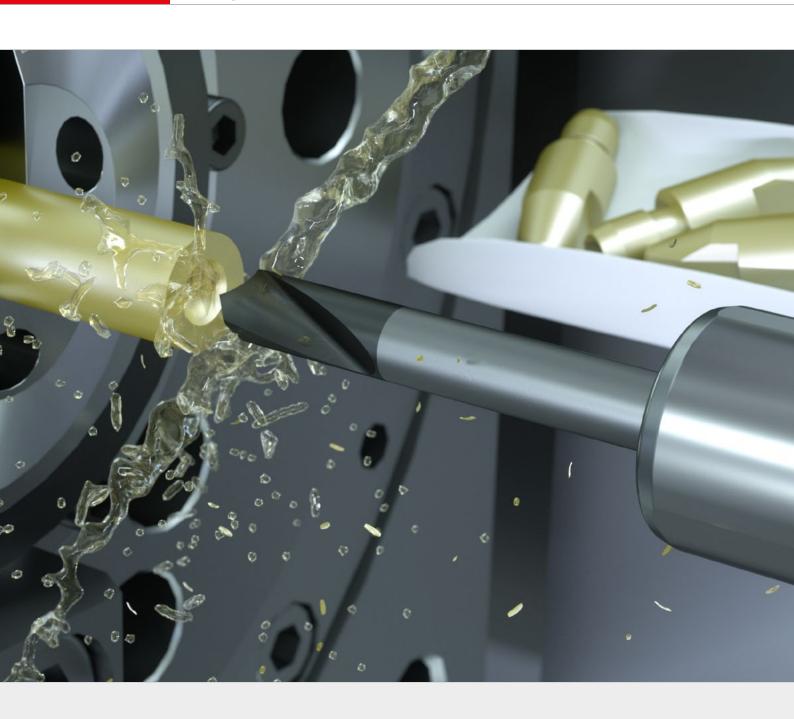
| ÜBERSICHT                        | 50 |    |
|----------------------------------|----|----|
| MIQUDRILL CENTRO                 | 52 |    |
| CRAZYDRILL TWICENTER             | 76 | 04 |
| KUNDENSPEZIFISCHE ZENTRIERBOHRER | 98 |    |

## Übersicht

### ZERSPANUNGSLÖSUNGEN



04


ANWENDUNGSEMPFEHLUNG

● Sehr gut geeignet | ● Gut geeignet | ○ bedingt geeignet | ☒ Nicht empfohlen

| _                   | ngs-                           |         | Р                                   | M                   | K         | N                      | S <sub>1</sub>                 | S <sub>2</sub>                        | S₃                   | H <sub>1</sub>                | H <sub>2</sub>                |       |  |
|---------------------|--------------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|-------|--|
| ø - Bereich<br>[mm] | max.<br>Bearbeitungs-<br>tiefe | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitze-<br>beständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC | Seite |  |
| 0.5 – 6.0           | -                              |         | •                                   | 0                   | •         | •                      | ×                              | •                                     | ×                    | 0                             | ×                             | 52    |  |
| 0.3 – 10.0          | -                              |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 76    |  |
| 0.1 – 32.0          | -                              |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | •                             | 98    |  |



# MiquDrill Centro



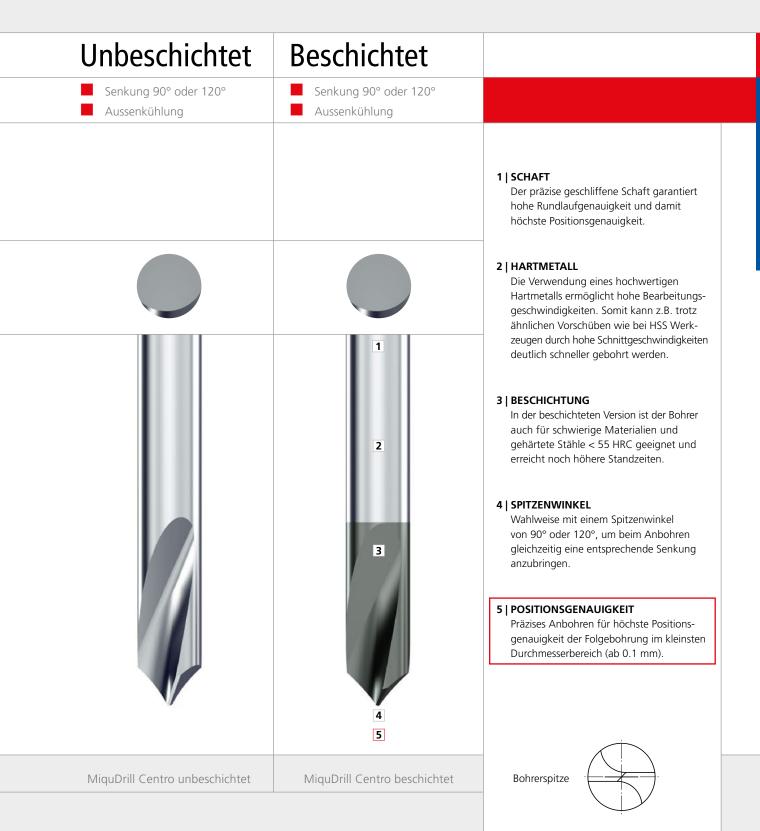




Anbohren und gleichzeitig eine Senkung von 90° oder 120° anbringen, das ist die Aufgabe des MiquDrill Centro. In Durchmessern von 0.5 mm bis 6.0 mm (für Bohrungsdurchmesser ab 0.1 mm) ist er wahlweise beschichtet und unbeschichtet verfügbar.

Dieser Zentrierbohrer ist die optimale Lösung, wenn kleine und mittlere Teileserien prozesssicher in erstklassiger Qualität gefertigt werden sollen. Das Werkzeug zentriert optimal bereits in kleinsten Durchmessern ab 0.1 mm und garantiert somit dem Folgebohrer z.B. MiquDrill 200 / 210 höchste Positionsgenauigkeit. MiquDrill Centro ist universell einsetzbar für Stähle (legiert und unlegiert), Gusseisen, Nichteisenmetalle und mit der beschichteten Version auch für gehärteten Stahl < 55 HRC.




### Präzises und schnelles Zentrieren

#### **DAMIT DIE BOHRUNG PASST**

Anbohren und gleichzeitig eine Senkung von 90° oder 120° anbringen, das ist die Aufgabe des MiquDrill Centro. In Durchmessern von 0.5 mm bis 6.0 mm (für Bohrungsdurchmesser ab 0.1 mm) ist er wahlweise beschichtet und unbeschichtet verfügbar.

- MiquDrill Centro mit Spitzenwinkel und Senkung von 90°, beschichtet und unbeschichtet
- MiquDrill Centro mit Spitzenwinkel und Senkung von 120°, beschichtet und unbeschichtet



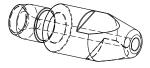




## Vorteile und Anwendungen

#### PASST FÜR JEDE ANWENDUNG

HOHE PROZESSSICHERHEIT


Dank hoher Qualität

**HOHE PRÄZISION** 

Dank enger Toleranzen

TIEFE PRODUKTIONSKOSTEN

Dank geringer Werkzeugkosten



### TEIL

Schweissdüse

#### WERKSTOFF

CuZn39Pb3 / 2.0401 / UNS 38500

#### **BEARBEITUNG**

- Zentrierung und Senkung 120°
- d = 2.5 mm

#### WERKZEUG

Mikron Tool - MiquDrill Centro - beschichtet

| DATEN         | MIKRON TOOL                                                 |
|---------------|-------------------------------------------------------------|
| Werkzeugtyp   | MiquDrill Centro - Hartmetall - Beschichtet - Aussenkühlung |
| Artikelnummer | 2.MC.120300.1                                               |
| Schnittdaten  | $v_c = 50 \text{ m/min}$ $f = 0.08 \text{ mm/U}$            |









| ANWENDUNGSBEREICHE | KOMPONENTEN<br>BEISPIELE       |
|--------------------|--------------------------------|
| Automobilbau       | Bauteil für Direkteinspritzung |
| Maschinenbau       | Motorenkomponente<br>Zylinder  |

| MATERIALGRUPPE                       |         | BEISPIELE      |                   |
|--------------------------------------|---------|----------------|-------------------|
|                                      | Wr. Nr. | DIN            | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.            | 1.0401  | C15            | 1015              |
| legierte Stähle                      | 1.3505  | 100Cr6         | 52100             |
|                                      | 1.2436  | X210CrW12      | D4 / D6           |
| <b>Gruppe K</b><br>Gusseisen         | 0.7040  | GGG40          | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle | 3.2315  | AlMgSi1        | 6351              |
|                                      | 3.2163  | GD-AlSi9Cu3    | A380              |
|                                      | 2.004   | Cu-OF / CW008A | C10100            |
|                                      | 2.0321  | CuZn37 CW508L  | C27400            |
|                                      | 2.102   | CuSn6          | C51900            |
|                                      | 2.096   | CuAl9Mn2       | C63200            |
| Gruppe S2<br>Titan rein u.           | 3.7035  | Gr.2           | B348 / F67        |
| Titan Legierungen                    | 3.7165  | TiAl6V4        | B348 / F136       |
| Gruppe H1<br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4    | 01                |



### MiquDrill Centro 90° - beschichtet

#### ZENTRIEREN MIT AUSSENKÜHLUNG



Die beschichtete Variante von MiquDrill Centro ist universell einsetzbar für Stähle (legiert, unlegiert, gehärtet < 55 HRC), Gusseisen und Nichteisenmetalle (z.B. Alu mit hohem Siliziumanteil). Sein Durchmesserbereich mit maximalem Senkdurchmesser von 0.5 mm bis 6.0 mm ist einsetzbar für Folgebohrer ab 0.1 mm. Gleichzeitig bringt er eine Senkung von 90° an.

Seine Stärken: Zentrieren / Senken 90° in einem Arbeitsgang fertig ausführen. Im Vergleich zum "MiquDrill Centro unbeschichtet" ist er die Lösung für höhere Anforderungen in Bezug auf Standzeiten. Als Zentrierbohrer für MiquDrill 200 / 210 garantiert er eine hohe Positionsgenauigkeit.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

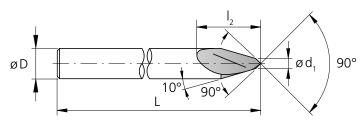
#### **Hinweis**

Sie haben nicht die passende Variante von MiquDrill Centro 90° - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

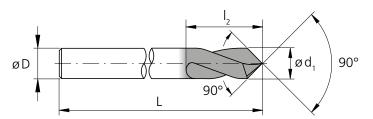
Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall







**Z**2







Ausführung d₁: 0.5 und 1.0 mm

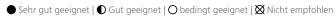


Ausführung d₁: 2.0 bis 6.0 mm

| ■ ab Lager | Artikelnummer | d <sub>1</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | Fase |
|------------|---------------|----------------|------------------------------|--------------------------|-----------|------|
| •          | 2.MC.090050.1 | 0.5            | 4.5                          | 2                        | 30        | 90°  |
| -          | 2.MC.090100.1 | 1.0            | 4.5                          | 2                        | 30        | 90°  |
| •          | 2.MC.090200.1 | 2.0            | 6.0                          | 2                        | 30        | 90°  |
| •          | 2.MC.090300.1 | 3.0            | 8.0                          | 3                        | 40        | 90°  |
| •          | 2.MC.090400.1 | 4.0            | 10.0                         | 4                        | 45        | 90°  |
| -          | 2.MC.090500.1 | 5.0            | 12.0                         | 5                        | 50        | 90°  |
| -          | 2.MC.090600.1 | 6.0            | 15.0                         | 6                        | 60        | 90°  |

lacktriangle Ab Lager verfügbar, Verpackungseinheit 3 Stk.




## MiquDrill Centro 90° - beschichtet

### ZENTRIEREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe  | Werkstoff                         | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |  |
|-----------------------|-----------------------------------|--------|--------------------|-------------------------|----------------------------------|--|
|                       |                                   | 1.0301 | C10                | AISI 1010               |                                  |  |
| D                     |                                   | 1.0401 | C15                | AISI 1015               |                                  |  |
| P                     | Stähle unlegiert                  | 1.1191 | C45E/CK45          | AISI 1045               | 20 – 80                          |  |
|                       | Rm < 800 N/mm <sup>2</sup>        | 1.0044 | S275JR             | AISI 1020               | 20 – 00                          |  |
| \/( <b>//</b>         |                                   | 1.0715 | 11SMn30            | AISI 1215               |                                  |  |
| ()///                 |                                   | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |  |
| <b>YD</b>             |                                   | 1.7131 | 16MnCr5            | AISI 5115               |                                  |  |
|                       | Stähle niedriglegiert             | 1.3505 | 100Cr6             | AISI 52100              | 20 – 80                          |  |
|                       | Rm > 900 N/mm <sup>2</sup>        | 1.7225 | 42CrMo4            | AISI 4140               | 20 - 80                          |  |
|                       |                                   | 1.7223 | 90MnCrV8           | AISI O2                 |                                  |  |
| d <sub>1</sub>        |                                   |        |                    | AISI D2                 |                                  |  |
|                       | Werkzeugstähle                    | 1.2379 | X153CrMoV12        |                         |                                  |  |
|                       | hochlegiert                       | 1.2436 | X210CrW12          | AISI D4/D6              | 20 – 60                          |  |
|                       | Rm < 1200 N/mm <sup>2</sup>       | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |  |
|                       |                                   | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |  |
|                       | Rostfreie Stähle-                 | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 20 – 80                          |  |
| M                     | ferritisch                        | 1.4105 | X6CrMoS17          | AISI 430F               | 20 – 30                          |  |
| IVI                   | Rostfreie Stähle-                 | 1.4034 | X46Cr13            | AISI 420C               | 20 – 60                          |  |
|                       | martensitisch                     | 1.4112 | X90CrMoV18         | AISI 440B               | 20 - 00                          |  |
|                       | Rostfreie Stähle-                 | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |  |
|                       | martensitisch – PH                | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |  |
|                       |                                   | 1.4301 | X5CrNi 18-10       | AISI 304                | 20 – 50                          |  |
|                       | Rostfreie Stähle-                 | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |  |
|                       | austenitisch                      | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |  |
|                       |                                   | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |  |
|                       |                                   | 0.6020 | GG20               | ASTM 30                 |                                  |  |
| 1/                    |                                   | 0.6030 | GG30               | ASTM 40B                |                                  |  |
| K                     | Gusseisen                         | 0.7040 | GGG40              | ASTM 60-40-18           | 20 – 80                          |  |
|                       |                                   | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |  |
|                       |                                   |        |                    |                         |                                  |  |
|                       | Aluminium                         | 3.2315 | AlMgSi1            | ASTM 6351               | 50 – 100                         |  |
| N                     | Knetlegierungen                   | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |  |
|                       | Aluminium<br>Druckgusslegierungen | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 50 – 100                         |  |
|                       | Druckgussiegierungen              |        | GD-AlSi10Mg        | UNS A03590              |                                  |  |
|                       | Kupfer                            | 2.004  | Cu-OF / CW008A     | UNS C10100              | 50 – 100                         |  |
|                       |                                   | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |  |
|                       | Messing bleifrei                  | 2.0321 | CuZn37 CW508L      | UNS C27400              | 50 – 100                         |  |
|                       |                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |  |
|                       | Messing, Bronze                   | 2.0401 | CuZn39Pb3 / CW614N |                         | 50 – 100                         |  |
|                       | Rm < 400 N/mm <sup>2</sup>        | 2.102  | CuSn6              | UNS C51900              |                                  |  |
|                       | Bronze                            | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 50 – 100                         |  |
|                       | Rm < 600 N/mm <sup>2</sup>        | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |  |
|                       |                                   | 2.4856 |                    | Inconel 625             |                                  |  |
| $S_1$                 | Hitzebeständige                   | 2.4668 |                    | Inconel 718             |                                  |  |
| 21                    | Stähle                            | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |  |
|                       |                                   | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |  |
|                       | Titan rein                        | 3.7035 | Gr.2               | ASTM B348 / F67         | 20 – 50                          |  |
| <b>S</b> <sub>2</sub> | TRAITICIII                        | 3.7065 | Gr.4               | ASTM B348 / F68         | 20 – 30                          |  |
| 2                     | Titan Legierungen                 | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 20 – 50                          |  |
|                       |                                   | 9.9367 | TiAl6Nb7           | ASTM F1295              | 20 – 30                          |  |
| C                     | CrCo Logica                       | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |  |
| $S_3$                 | CrCo-Legierungen                  |        | CrCoMo28           | ASTM F1537              |                                  |  |
| H₁                    | Stähle gehärtet<br>< 55 HRC       | 1.2510 | 100MnCrMoW4        | AISI O1                 | 20 – 50                          |  |
| $H_2$                 | Stähle gehärtet<br>≥ 55 HRC       | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |  |



ANWENDUNGSEMPFEHLUNG





|                           |                           |                           | <b>f</b> [mm/U]           |                           |                           |                    |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|
| Ød1<br>0.5 mm<br><b>f</b> | Ød1<br>1.0 mm<br><b>f</b> | Ød1<br>2.0 mm<br><b>f</b> | Ød1<br>3.0 mm<br><b>f</b> | Ød1<br>4.0 mm<br><b>f</b> | Ød1<br>5.0 mm<br><b>f</b> | Ød1<br>6.0 mm<br>f |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.020                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.120                     | 0.130              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.020                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.120                     | 0.130              |
| 0.020                     | 0.030                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.080              |
|                           |                           |                           |                           |                           |                           |                    |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060                     | 0.080                     | 0.100                     | 0.150                     | 0.150              |
|                           |                           |                           |                           |                           |                           |                    |
| 0.020                     | 0.030                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.080              |
| 0.020                     | 0.030                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.080              |
|                           |                           |                           |                           |                           |                           |                    |
| 0.020                     | 0.030                     | 0.040                     | 0.060                     | 0.080                     | 0.100                     | 0.120              |
|                           |                           |                           |                           |                           |                           |                    |
|                           |                           |                           |                           |                           |                           |                    |



### MiquDrill Centro 90° - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die unbeschichtete Variante von MiquDrill Centro ist universell einsetzbar für Stähle (legiert, unlegiert), Gusseisen und Nichteisenmetalle (z.B. Kupfer, Messing). Sein Durchmesserbereich mit maximalem Senkdurchmesser von 0.5 mm bis 6.0 mm ist einsetzbar für Folgebohrer ab 0.1 mm. Gleichzeitig bringt er eine Senkung von 90° an.

Seine Stärken: Kostengünstig Zentrieren / Senken 90° in einem Arbeitsgang fertig ausführen. Als Zentrierbohrer für MiquDrill 200 / 210 garantiert er eine hohe Positionsgenauigkeit.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

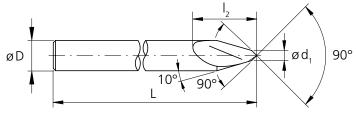
#### Hinweis

Sie haben nicht die passende Variante von MiquDrill Centro 90° - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

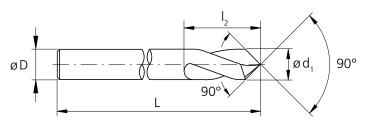
Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall







**Z**2



Nicht beschichtet



Ausführung d₁: 0.5 und 1.0 mm



Ausführung d₁: 2.0 bis 6.0 mm

| Artikelnummer | <b>d</b> <sub>1</sub>                                                                              | <b>l<sub>2</sub></b><br>[mm]                                                                                                         | <b>D</b> (h6) [mm]                                                                                                                                                  | L<br>[mm]                                                                                                                                                                                 | Fase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.MC.090050.0 | 0.5                                                                                                | 4.5                                                                                                                                  | 2                                                                                                                                                                   | 30                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090100.0 | 1.0                                                                                                | 4.5                                                                                                                                  | 2                                                                                                                                                                   | 30                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090200.0 | 2.0                                                                                                | 6.0                                                                                                                                  | 2                                                                                                                                                                   | 30                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090300.0 | 3.0                                                                                                | 8.0                                                                                                                                  | 3                                                                                                                                                                   | 40                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090400.0 | 4.0                                                                                                | 10.0                                                                                                                                 | 4                                                                                                                                                                   | 45                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090500.0 | 5.0                                                                                                | 12.0                                                                                                                                 | 5                                                                                                                                                                   | 50                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.MC.090600.0 | 6.0                                                                                                | 15.0                                                                                                                                 | 6                                                                                                                                                                   | 60                                                                                                                                                                                        | 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | 2.MC.090050.0<br>2.MC.090100.0<br>2.MC.090200.0<br>2.MC.090300.0<br>2.MC.090400.0<br>2.MC.090500.0 | Artikelnummer [mm]  2.MC.090050.0 0.5  2.MC.090100.0 1.0  2.MC.090200.0 2.0  2.MC.090300.0 3.0  2.MC.090400.0 4.0  2.MC.090500.0 5.0 | Artikelnummer [mm] [mm]  2.MC.090050.0 0.5 4.5  2.MC.090100.0 1.0 4.5  2.MC.090200.0 2.0 6.0  2.MC.090300.0 3.0 8.0  2.MC.090400.0 4.0 10.0  2.MC.090500.0 5.0 12.0 | Artikelnummer [mm] [mm] [mm] [mm]  2.MC.090050.0 0.5 4.5 2  2.MC.090100.0 1.0 4.5 2  2.MC.090200.0 2.0 6.0 2  2.MC.090300.0 3.0 8.0 3  2.MC.090400.0 4.0 10.0 4  2.MC.090500.0 5.0 12.0 5 | Artikelnummer         [mm]         [mm]         (h6)           2.MC.090050.0         0.5         4.5         2         30           2.MC.090100.0         1.0         4.5         2         30           2.MC.090200.0         2.0         6.0         2         30           2.MC.090300.0         3.0         8.0         3         40           2.MC.090400.0         4.0         10.0         4         45           2.MC.090500.0         5.0         12.0         5         50 |

■ Ab Lager verfügbar, Verpackungseinheit 3 Stk.



## MiquDrill Centro 90° - unbeschichtet

### ZENTRIEREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe                   | Werkstoff                          | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |          |
|----------------------------------------|------------------------------------|--------|--------------------|-------------------------|----------------------------------|----------|
| grappe                                 |                                    |        |                    |                         |                                  |          |
|                                        |                                    | 1.0301 | C10                | AISI 1010               |                                  |          |
|                                        |                                    | 1.0401 | C15                | AISI 1015               |                                  |          |
| P                                      | Stähle unlegiert                   | 1.1191 | C45E/CK45          | AISI 1045               | 20 – 50                          |          |
|                                        | Rm < 800 N/mm <sup>2</sup>         |        |                    |                         | 20 – 50                          |          |
| \/\{\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                    | 1.0044 | S275JR             | AISI 1020               |                                  |          |
| <i>γλ//</i> /                          |                                    | 1.0715 | 11SMn30            | AISI 1215               |                                  |          |
| Y67                                    |                                    | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |          |
|                                        | Stähle niedriglegiert              | 1.7131 | 16MnCr5            | AISI 5115               |                                  |          |
|                                        | Rm > 900 N/mm <sup>2</sup>         | 1.3505 | 100Cr6             | AISI 52100              | 20 – 50                          |          |
|                                        |                                    | 1.7225 | 42CrMo4            | AISI 4140               |                                  |          |
| d <sub>1</sub>                         |                                    | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |          |
|                                        | NA                                 | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |          |
|                                        | Werkzeugstähle<br>hochlegiert      | 1.2436 | X210CrW12          | AISI D4/D6              | 20 – 40                          |          |
|                                        | Rm < 1200 N/mm <sup>2</sup>        | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 20 – 40                          |          |
|                                        | 1411 4 1200 14111111               | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |          |
|                                        | Rostfreie Stähle-                  | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |          |
|                                        | ferritisch                         | 1.4105 | X6CrMoS17          | AISI 430F               | 20 – 50                          |          |
| 90°                                    |                                    | 1.4034 | X46Cr13            | AISI 420C               | 20 30                            |          |
|                                        | Rostfreie Stähle-<br>martensitisch | 1.4112 | X90CrMoV18         | AISI 440B               | 20 – 40                          |          |
|                                        |                                    |        |                    |                         |                                  |          |
|                                        | Rostfreie Stähle-                  | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |          |
|                                        | martensitisch – PH                 | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |          |
|                                        | Rostfreie Stähle-<br>austenitisch  | 1.4301 | X5CrNi 18-10       | AISI 304                | 15 – 25                          |          |
|                                        |                                    | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |          |
|                                        |                                    | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |          |
|                                        |                                    | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |          |
|                                        |                                    | 0.6020 | GG20               | ASTM 30                 | 20. 50                           |          |
| V                                      |                                    | 0.6030 | GG30               | ASTM 40B                |                                  |          |
| K                                      | Gusseisen                          | 0.7040 | GGG40              | ASTM 60-40-18           | 20 – 50                          |          |
|                                        |                                    | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |          |
|                                        |                                    |        |                    |                         |                                  |          |
|                                        | Aluminium                          | 3.2315 | AlMgSi1            | ASTM 6351               | 40 – 80                          |          |
| N I                                    | Knetlegierungen                    | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |          |
|                                        | Aluminium                          | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 40 – 80                          |          |
|                                        | Druckgusslegierungen               |        | GD-AlSi10Mg        | UNS A03590              |                                  |          |
|                                        | Kupfer                             | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40 – 80                          |          |
|                                        | - la : 20:                         | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | · · · · · · ·                    |          |
|                                        | Messing bleifrei                   | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40 – 80                          |          |
|                                        | TVICSSITING DICTITICS              | 2.036  | CuZn40 CW509L      | UNS C28000              | 40 00                            |          |
|                                        | Messing, Bronze                    | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 40 – 80                          |          |
|                                        | Rm < 400 N/mm <sup>2</sup>         | 2.102  | CuSn6              | UNS C51900              | 40 – 00                          |          |
|                                        | Bronze                             | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 4002                             |          |
|                                        | Rm < 600 N/mm <sup>2</sup>         | 2.096  | CuAl9Mn2           | UNS C63200              | 40 – 80                          |          |
|                                        |                                    | 2.4856 |                    | Inconel 625             |                                  |          |
| C                                      | Hitzebeständige                    | 2.4668 |                    | Inconel 718             |                                  |          |
| $ S_1 $                                | Stähle                             | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |          |
| '                                      | Starine                            | 2.4665 | NiCr22Fe18Mo       |                         |                                  |          |
|                                        |                                    |        |                    | Hastelloy X             |                                  | -        |
|                                        | Titan rein                         | 3.7035 | Gr.2               | ASTM B348 / F67         | 15 – 25                          |          |
| S <sub>2</sub>                         |                                    | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  | -        |
| - 2                                    | Titan Legierungen                  | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 15 – 25                          |          |
|                                        |                                    | 9.9367 | TiAl6Nb7           | ASTM F1295              | ·                                |          |
| S <sub>3</sub>                         | CrCo-Legierungen                   | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |          |
| 3                                      | c. co Legicrangen                  |        | CrCoMo28           | ASTM F1537              |                                  | <u> </u> |
| H <sub>1</sub>                         | Stähle gehärtet<br>< 55 HRC        | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |          |
| ш                                      | Stähle gehärtet<br>≥ 55 HRC        | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |          |



ANWENDUNGSEMPFEHLUNG





|                      |                      |                      | <b>f</b> [mm/U]       |                      |                      |                      |
|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|
| <b>Ød1</b><br>0.5 mm | <b>Ød1</b><br>1.0 mm | <b>Ød1</b><br>2.0 mm | <b>Ød1</b><br>3.0 mm  | <b>Ød1</b><br>4.0 mm | <b>Ød1</b><br>5.0 mm | <b>Ød1</b><br>6.0 mm |
| f                    | f                    | f                    | f                     | f                    | f                    | f                    |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.020                | 0.030                | 0.040                | 0.060                 | 0.080                | 0.120                | 0.130                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.020                | 0.030                | 0.040                | 0.060                 | 0.080                | 0.120                | 0.130                |
| 0.020                | 0.030                | 0.030                | 0.040                 | 0.060                | 0.080                | 0.080                |
|                      |                      |                      |                       |                      |                      |                      |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
| 0.030                | 0.050                | 0.060                | 0.080                 | 0.100                | 0.150                | 0.150                |
|                      |                      |                      |                       |                      |                      |                      |
| 0.020                | 0.030                | 0.030                | 0.040                 | 0.060                | 0.080                | 0.080                |
| 0.020                | 0.030                | 0.030                | 0.040                 | 0.060                | 0.080                | 0.080                |
|                      |                      |                      |                       |                      |                      |                      |
|                      | ,                    | Empfohlen: N         | /liquDrill Centro 90° | - beschichtet        |                      |                      |
|                      |                      |                      |                       |                      |                      |                      |
|                      |                      |                      |                       |                      |                      |                      |



### MiquDrill Centro 120° - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die beschichtete Variante von MiquDrill Centro ist universell einsetzbar für Stähle (legiert, unlegiert, gehärtet < 55 HRC), Gusseisen und Nichteisenmetalle (z.B. Alu mit hohem Siliziumanteil). Sein Durchmesserbereich mit maximalem Senkdurchmesser von 0.5 mm bis 6.0 mm ist einsetzbar für Folgebohrer ab 0.1 mm. Gleichzeitig bringt er eine Senkung von 120° an.

Seine Stärken: Zentrieren / Senken 120° in einem Arbeitsgang fertig ausführen. Im Vergleich zum "MiquDrill Centro unbeschichtet" ist er die Lösung für höhere Anforderungen in Bezug auf Standzeiten. Als Zentrierbohrer für MiquDrill 200 / 210 garantiert er eine hohe Positionsgenauigkeit.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

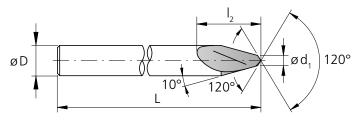
#### **Hinweis**

Sie haben nicht die passende Variante von MiquDrill Centro 120° - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

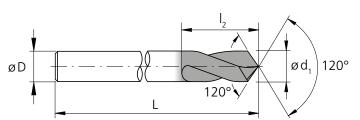
Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall







**Z**2







Ausführung d₁: 0.5 und 1.0 mm



Ausführung d₁: 2.0 bis 6.0 mm

| ab Lager | Artikelnummer | d <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    | Fase |
|----------|---------------|----------------|----------------|-----------|------|------|
| 9        |               | [mm]           | [mm]           | [mm]      | [mm] |      |
|          | 2.MC.120050.1 | 0.5            | 4.5            | 2         | 30   | 120° |
| -        | 2.MC.120100.1 | 1.0            | 4.5            | 2         | 30   | 120° |
| -        | 2.MC.120200.1 | 2.0            | 6.0            | 2         | 30   | 120° |
| -        | 2.MC.120300.1 | 3.0            | 8.0            | 3         | 40   | 120° |
| -        | 2.MC.120400.1 | 4.0            | 10.0           | 4         | 45   | 120° |
| -        | 2.MC.120500.1 | 5.0            | 12.0           | 5         | 50   | 120° |
|          | 2.MC.120600.1 | 6.0            | 15.0           | 6         | 60   | 120° |

lacktriangle Ab Lager verfügbar, Verpackungseinheit 3 Stk.



## MiquDrill Centro 120° - beschichtet

### ZENTRIEREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkst<br>gruppe  |                             | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |
|-------------------|-----------------------------|--------|--------------------|-------------------------|----------------------------------|
|                   |                             | 1.0301 | C10                | AISI 1010               |                                  |
| D                 |                             | 1.0401 | C15                | AISI 1015               |                                  |
| $\neg \nearrow$ P | Stähle unlegiert            | 1.1191 | C45E/CK45          | AISI 1045               | 20 – 80                          |
|                   | Rm < 800 N/mm <sup>2</sup>  | 1.0044 | S275JR             | AISI 1020               | 20 - 80                          |
| //                |                             | 1.0044 | 11SMn30            | AISI 1020<br>AISI 1215  |                                  |
|                   |                             |        |                    |                         |                                  |
|                   |                             | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |
|                   | Stähle niedriglegiert       | 1.7131 | 16MnCr5            | AISI 5115               |                                  |
|                   | Rm > 900 N/mm <sup>2</sup>  | 1.3505 | 100Cr6             | AISI 52100              | 20 – 80                          |
|                   |                             | 1.7225 | 42CrMo4            | AISI 4140               |                                  |
|                   |                             | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |
| 71                | Werkzeugstähle              | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |
|                   | hochlegiert                 | 1.2436 | X210CrW12          | AISI D4/D6              | 20 – 60                          |
|                   | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |
| 1                 |                             | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |
| 1                 | Rostfreie Stähle-           | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 20.00                            |
| M                 | ferritisch                  | 1.4105 | X6CrMoS17          | AISI 430F               | 20 – 80                          |
| IVI               | Rostfreie Stähle-           | 1.4034 | X46Cr13            | AISI 420C               | 20. 50                           |
|                   | martensitisch               | 1.4112 | X90CrMoV18         | AISI 440B               | 20 – 60                          |
|                   | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |
|                   | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |
|                   |                             | 1.4301 | X5CrNi 18-10       | AISI 304                | 20 – 50                          |
|                   | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 20 50                            |
|                   | austenitisch                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |
|                   |                             | 1.4539 | X1NiCrMoCu 25-20-5 |                         |                                  |
|                   |                             |        |                    |                         |                                  |
| 1.7               |                             | 0.6020 | GG20               | ASTM 400                |                                  |
| K                 | Gusseisen                   | 0.6030 | GG30               | ASTM 40B                | 20 – 80                          |
|                   |                             | 0.7040 | GGG40              | ASTM 60-40-18           |                                  |
|                   |                             | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |
|                   | Aluminium                   | 3.2315 | AlMgSi1            | ASTM 6351               | 50 – 100                         |
| N                 | Knetlegierungen             | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 30 100                           |
|                   | Aluminium                   | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 50 – 100                         |
|                   | Druckgusslegierungen        | 3.2381 | GD-AlSi10Mg        | UNS A03590              | 30 100                           |
|                   | Kupfer                      | 2.004  | Cu-OF / CW008A     | UNS C10100              | 50 – 100                         |
|                   | Киргег                      | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 30 - 100                         |
|                   | Messing bleifrei            | 2.0321 | CuZn37 CW508L      | UNS C27400              | 50 – 100                         |
|                   | iviessing bienner           | 2.036  | CuZn40 CW509L      | UNS C28000              | 30 - 100                         |
|                   | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 50 100                           |
|                   | Rm < 400 N/mm²              | 2.102  | CuSn6              | UNS C51900              | 50 – 100                         |
|                   | Bronze                      | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | FO. 100                          |
|                   | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2           | UNS C63200              | 50 – 100                         |
|                   |                             | 2.4856 |                    | Inconel 625             |                                  |
| C                 | Hitzebeständige             | 2.4668 |                    | Inconel 718             |                                  |
| $S_1$             | Stähle                      | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |
|                   | Starile                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |
| C                 | Titan rein                  | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |
|                   |                             | 3.7065 | Gr.4               | ASTM B348 / F68         | 20 – 50                          |
| S <sub>2</sub>    |                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |
| _                 | Titan Legierungen           | 9.9367 | TiAl6Nb7           | ASTM F1295              | 20 – 50                          |
|                   |                             |        |                    |                         |                                  |
| $S_3$             | CrCo-Legierungen            | 2.4964 | CrCoMo28           | Haynes 25               |                                  |
| - 3               |                             |        | CrCoMo28           | ASTM F1537              |                                  |
| H <sub>1</sub>    | Stähle gehärtet<br>< 55 HRC | 1.2510 | 100MnCrMoW4        | AISI O1                 | 20 – 50                          |
| H <sub>2</sub>    | Stähle gehärtet<br>≥ 55 HRC | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U]           |                           |                    |                    |                           |                           |                    |
|---------------------------|---------------------------|--------------------|--------------------|---------------------------|---------------------------|--------------------|
| Ød1<br>0.5 mm<br><b>f</b> | Ød1<br>1.0 mm<br><b>f</b> | Ød1<br>2.0 mm<br>f | Ød1<br>3.0 mm<br>f | Ød1<br>4.0 mm<br><b>f</b> | Ød1<br>5.0 mm<br><b>f</b> | Ød1<br>6.0 mm<br>f |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.020                     | 0.030                     | 0.040              | 0.060              | 0.080                     | 0.120                     | 0.130              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.020                     | 0.030                     | 0.040              | 0.060              | 0.080                     | 0.120                     | 0.130              |
| 0.020                     | 0.030                     | 0.030              | 0.040              | 0.060                     | 0.080                     | 0.080              |
|                           |                           |                    |                    |                           |                           |                    |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
| 0.030                     | 0.050                     | 0.060              | 0.080              | 0.100                     | 0.150                     | 0.150              |
|                           |                           |                    |                    |                           |                           |                    |
| 0.020                     | 0.030                     | 0.030              | 0.040              | 0.060                     | 0.080                     | 0.080              |
| 0.020                     | 0.030                     | 0.030              | 0.040              | 0.060                     | 0.080                     | 0.080              |
|                           |                           |                    |                    |                           |                           |                    |
| <br>0.020                 | 0.030                     | 0.040              | 0.060              | 0.080                     | 0.100                     | 0.120              |
|                           |                           |                    |                    |                           |                           |                    |
|                           |                           |                    |                    |                           |                           |                    |



### MiquDrill Centro 120° - unbeschichtet

#### ZENTRIEREN MIT AUSSENKÜHLUNG



Die unbeschichtete Variante von MiquDrill Centro ist universell einsetzbar für Stähle (legiert, unlegiert), Gusseisen und Nichteisenmetalle (z.B. Kupfer, Messing). Sein Durchmesserbereich mit maximalem Senkdurchmesser von 0.5 mm bis 6.0 mm ist einsetzbar für Folgebohrer ab 0.1 mm. Gleichzeitig bringt er eine Senkung von 120° an.

Seine Stärken: Kostengünstig Zentrieren / Senken 120° in einem Arbeitsgang fertig ausführen. Als Zentrierbohrer für MiquDrill 200 / 210 garantiert er eine hohe Positionsgenauigkeit.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

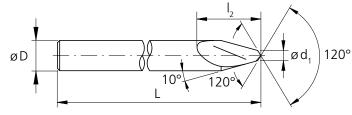
#### Hinweis

Sie haben nicht die passende Variante von MiquDrill Centro 120° - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

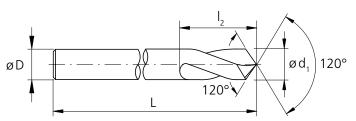
Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall







**Z**2



Nicht beschichtet



Ausführung d₁: 0.5 und 1.0 mm

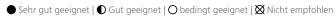


Ausführung d₁: 2.0 bis 6.0 mm

| ■ ab Lager | Artikelnummer | d <sub>1</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | Fase |
|------------|---------------|----------------|------------------------------|--------------------------|-----------|------|
| •          | 2.MC.120050.0 | 0.5            | 4.5                          | 2                        | 30        | 120° |
| -          | 2.MC.120100.0 | 1.0            | 4.5                          | 2                        | 30        | 120° |
| •          | 2.MC.120200.0 | 2.0            | 6.0                          | 2                        | 30        | 120° |
| -          | 2.MC.120300.0 | 3.0            | 8.0                          | 3                        | 40        | 120° |
| •          | 2.MC.120400.0 | 4.0            | 10.0                         | 4                        | 45        | 120° |
| -          | 2.MC.120500.0 | 5.0            | 12.0                         | 5                        | 50        | 120° |
| -          | 2.MC.120600.0 | 6.0            | 15.0                         | 6                        | 60        | 120° |

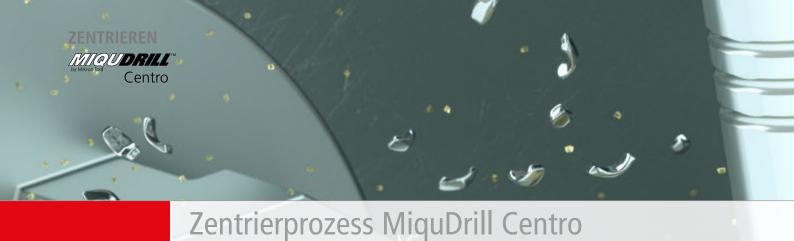
lacktriangle Ab Lager verfügbar, Verpackungseinheit 3 Stk.




# MiquDrill Centro 120° - unbeschichtet

### ZENTRIEREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                | Werkstoff-<br>gruppe  | Werkstoff                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |  |
|----------------|-----------------------|-----------------------------|--------|--------------------|-------------------------|----------------------------------|--|
|                | Р                     |                             | 1.0301 | C10                | AISI 1010               |                                  |  |
|                |                       |                             | 1.0401 | C15                | AISI 1015               |                                  |  |
| \ / /          |                       | Stähle unlegiert            | 1.1191 | C45E/CK45          | AISI 1045               | 20 – 50                          |  |
| \              |                       | Rm < 800 N/mm <sup>2</sup>  | 1.0044 | S275JR             | AISI 1020               |                                  |  |
|                |                       |                             | 1.0715 | 11SMn30            | AISI 1215               |                                  |  |
|                |                       |                             | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |  |
| Ψ"             |                       |                             | 1.7131 | 16MnCr5            | AISI 5115               |                                  |  |
|                |                       | Stähle niedriglegiert       | 1.3505 | 100Cr6             | AISI 52100              | 20 – 50                          |  |
|                |                       | Rm > 900 N/mm <sup>2</sup>  | 1.7225 | 42CrMo4            | AISI 4140               |                                  |  |
| d.             |                       |                             | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |  |
|                |                       |                             | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |  |
|                |                       | Werkzeugstähle              | 1.2436 | X210CrW12          | AISI D4/D6              |                                  |  |
|                |                       | hochlegiert                 | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 20 – 40                          |  |
|                |                       | Rm < 1200 N/mm <sup>2</sup> | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |  |
|                |                       |                             |        |                    |                         |                                  |  |
|                |                       | Rostfreie Stähle-           | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 20 – 50                          |  |
| 120°           | M                     | ferritisch                  | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |  |
|                |                       | Rostfreie Stähle-           | 1.4034 | X46Cr13            | AISI 420C               | 20 – 40                          |  |
|                |                       | martensitisch               | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |  |
|                |                       | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |  |
|                |                       | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |  |
|                |                       |                             | 1.4301 | X5CrNi 18-10       | AISI 304                | 15 – 25                          |  |
|                |                       | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 15 – 25<br>20 – 50               |  |
|                |                       | austenitisch                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |  |
|                |                       |                             | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |  |
|                | K                     |                             | 0.6020 | GG20               | ASTM 30                 |                                  |  |
|                |                       | Cussisan                    | 0.6030 | GG30               | ASTM 40B                | 20 50                            |  |
|                |                       | Gusseisen                   | 0.7040 | GGG40              | ASTM 60-40-18           | 20 – 50                          |  |
|                |                       |                             | 0.7060 | GGG60              | ASTM 80-60-03           | 20 – 50                          |  |
|                | N                     | Aluminium                   | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |  |
|                |                       | Knetlegierungen             | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 40 – 80                          |  |
|                |                       | Aluminium                   | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |  |
|                |                       | Druckgusslegierungen        |        | GD-AlSi10Mg        | UNS A03590              | 40 – 80                          |  |
|                |                       |                             | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40                               |  |
|                |                       | Kupfer                      | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 40 – 80                          |  |
|                |                       | A4 1 11 25 1                | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40                               |  |
|                |                       | Messing bleifrei            | 2.036  | CuZn40 CW509L      | UNS C28000              | 40 – 80                          |  |
|                |                       | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N |                         |                                  |  |
|                |                       | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6              | UNS C51900              | 40 – 80                          |  |
|                |                       | Bronze                      | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 20 – 50                          |  |
|                |                       | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2           | UNS C63200              | 40 – 80                          |  |
| _              |                       |                             | 2.4856 |                    | Inconel 625             |                                  |  |
|                | C                     | Hitzebeständige             | 2.4668 |                    | Inconel 718             |                                  |  |
|                | $S_1$                 | Stähle                      | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |  |
| S <sub>2</sub> |                       |                             | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |  |
|                |                       |                             | ,      | ASTM B348 / F67    |                         |                                  |  |
|                | C                     | Titan rein                  | 3.7065 | Gr.4               | ASTM B348 / F68         | 15 – 25                          |  |
|                | <b>S</b> <sub>2</sub> |                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |  |
|                |                       | Titan Legierungen           | 9.9367 | TiAl6Nb7           | ASTM F1295              | 15 – 25                          |  |
|                |                       |                             | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |  |
|                |                       | CrCo-Legierungen            | 2.4304 | CrCoMo28           | ASTM F1537              |                                  |  |
|                | L                     | Stähle gehärtet             | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |  |
|                | $\Pi_1$               | < 55 HRC                    | 1.2310 | TOOIVITICTIVIOVV4  | ADIOI                   |                                  |  |
|                | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |  |
|                |                       |                             |        |                    |                         |                                  |  |




ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U]           |                           |                           |                      |                           |                           |                    |  |  |  |  |
|---------------------------|---------------------------|---------------------------|----------------------|---------------------------|---------------------------|--------------------|--|--|--|--|
| Ød1<br>0.5 mm<br><b>f</b> | Ød1<br>1.0 mm<br><b>f</b> | Ød1<br>2.0 mm<br><b>f</b> | Ød1<br>3.0 mm        | Ød1<br>4.0 mm<br><b>f</b> | Ød1<br>5.0 mm<br><b>f</b> | Ød1<br>6.0 mm<br>f |  |  |  |  |
| Т                         | Т                         | Т                         | f                    | Т                         | Т                         | T                  |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.020                     | 0.030                     | 0.040                     | 0.060                | 0.080                     | 0.120                     | 0.130              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.020                     | 0.030                     | 0.040                     | 0.060                | 0.080                     | 0.120                     | 0.130              |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
| 0.020                     | 0.030                     | 0.030                     | 0.040                | 0.060                     | 0.080                     | 0.080              |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
| 0.030                     | 0.050                     | 0.060                     | 0.080                | 0.100                     | 0.150                     | 0.150              |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
| 0.020                     | 0.030                     | 0.030                     | 0.040                | 0.060                     | 0.080                     | 0.080              |  |  |  |  |
| 0.020                     | 0.030                     | 0.030                     | 0.040                | 0.060                     | 0.080                     | 0.080              |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
|                           |                           | Empfohlen: M              | liquDrill Centro 120 | ° - beschichtet           |                           |                    |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |
|                           |                           |                           |                      |                           |                           |                    |  |  |  |  |



#### PRÄZISE UND SCHNELL ZENTRIEREN / SENKEN

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### Zentrieren als Basis für Bohren

Die Zentrierbohrung mit MiquDrill Centro bietet die Grundlage für eine hochpräzise Bohrung. Die robuste Bauweise des Werkzeuges sowie seine Präzision ermöglichen höchste Positionsgenauigkeit für den Folgebohrer z.B. MiquDrill 200 / 210. Beim Zentrieren und anschliessenden Folgebohren mit MiquDrill 200 / 210 wird empfohlen, gleiche Spitzenwinkel (120°) zu verwenden. Somit wird eine höhere Prozesssicherheit und Standzeit gewährleistet.



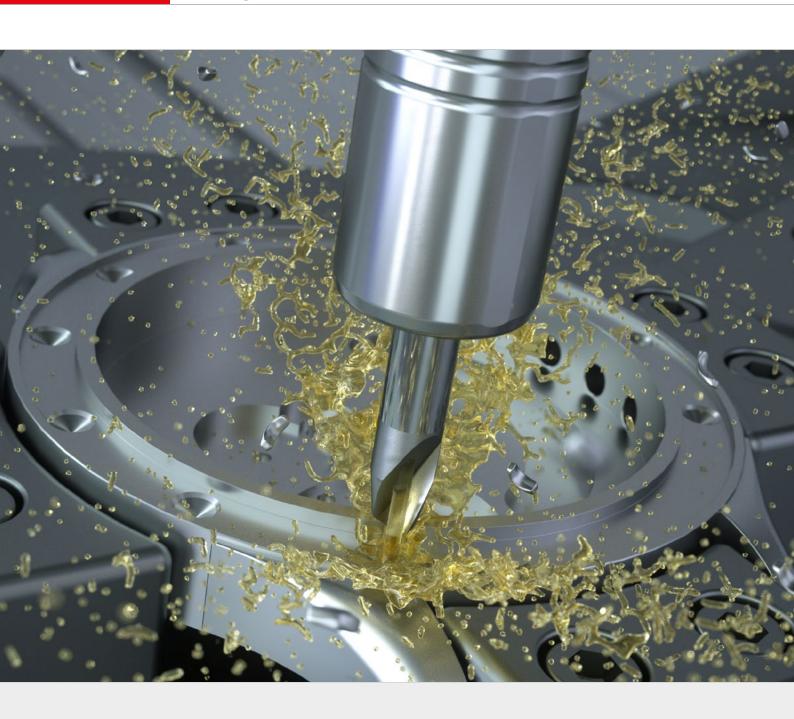
### $\equiv$

04

#### ZENTRIERPROZESS

### Zentrieren und Senken in einem Arbeitsgang

### 1 | ZENTRIERBOHRUNG


Mit MiquDrill Centro in einem Bohrstoss.







# CrazyDrill Twicenter







Speziell ausgelegt für schwer zerspanbare Materialien, bietet Mikron Tool mit CrazyDrill Twicenter einen Zentrierbohrer für höchste Ansprüche im Durchmesserbereich von 0.3 bis 6 mm (für das Zentrum) bzw. 1 mm bis 10 mm (für die Fasen).

CrazyDrill Twicenter ist die optimale Lösung für grosse Teileserien in erstklassiger Qualität oder generell, wenn es sich um schwierige Materialien wie Titan, rostfreie Materialien handelt. Er garantiert dem Folgebohrer, z.B. CrazyDrill SST-Inox, höchste Positionsgenauigkeit.

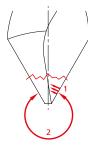
Dieser Zentrierbohrer verfügt gleich über zwei einzigartige Merkmale:

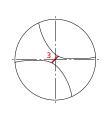
- Zwei gerade verlaufende Kühlkanäle führen das Kühlmittel an die Spitze und garantieren eine konstante Kühlung und Schmierung. Dies garantiert eine hohe Standzeit. Ein Vorteil vor allem bei Werkstoffen mit schlechtem Wärmeleitwert wie rostfreie Stähle oder Titan.
- Für guten Spanfluss und Stabilität sorgt die "doppelte Spitze" bei Fasen von 60° und 90° mit einem zusätzlichen Spitzenwinkel von 130° und einer extrem kurzen Querschneide.

Auch ohne innere Kühlmittelzufuhr (mit äusserer Kühlmittelzufuhr) ist CrazyDrill Twicenter ein hervorragender Zentrierbohrer.

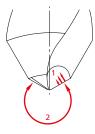


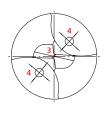
### "Cooles" Zentrieren


#### DER ZENTRIERBOHRER MIT DEM DOPPELTEN PLUS


Speziell ausgelegt für schwer zerspanbare Materialien, bietet Mikron Tool mit CrazyDrill Twicenter einen Zentrierbohrer für höchste Ansprüche im Durchmesserbereich von 0.3 bis 6 mm (für das Zentrum) bzw. 1 mm bis 10 mm (für die Fasen).

- CrazyDrill Twicenter für Senkwinkel 60° mit Spitzenwinkel 130°, mit Innenkühl gerade im Schaft
- CrazyDrill Twicenter für Senkwinkel 90° mit Spitzenwinkel 130°, mit Innenkühl gerade im Schaft
- CrazyDrill Twicenter für Senkwinkel 120° (Spitzenwinkel 120°), mit Innenkühl gerade im Schaft


#### Der Vergleich:


Konventionelles Zentrieren





■ Zentrieren mit CrazyDrill Twicenter





- 1 | Mangelnder Raum für Späne und ungeeignete Richtung für Spänefluss führt zu Spänestau und erhöhtem Druck: Bruchgefahr.
- 2 | 60° / 90° Spitzenwinkel ergibt ungenügende Schnittgeschwindigkeit und hohen Druck auf Spitze: Bruchgefahr.
- 3 | Breite Querschneide fordert hohe Eindringungskraft und verursacht hohen Druck auf die Spitze: Bruchgefahr.
- 1 | 130° Spitzenwinkel erlaubt freien Spänefluss direkt in die Spannute hinein.
- 2 | 130° Spitzenwinkel reduziert den Druck auf die Spitze.
- 3 | Kurze Querschneide reduziert Eindringungskraft und Druck auf die Spitze.
- 4 | Innere Kühlmittelzufuhr sorgt für optimale Kühl- und Schmierleistung.

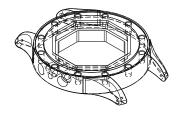








# Vorteile und Anwendungen


#### **AUCH ZENTRIEREN KANN "COOL" SEIN**

KÜRZERE BEARBEITUNGSZEIT Zentrieren + Anfasen in einem Bohrstoss

**ERHÖHTE STANDZEIT** Durch effiziente Kühlung

**HOHE PROZESSSICHERHEIT** Dank integrierter Kühlung

**HOHE PRÄZISION** Dank enger Toleranzen



#### KOMPONENTE

Uhrengehäuse

#### WERKSTOFF

X2CrNiMo 18-14-3 / 1.4435 / AISI 316L

#### **BEARBEITUNG**

- Zentrieren und anfasen 90°
- $\blacksquare$  d1 = 0.5 mm

#### WERKZEUG

Mikron Tool - CrazyDrill Twicenter 90°

| DATEN         | MIKRON TOOL                                                    |
|---------------|----------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Twicenter - Hartmetall - Beschichtet - Innenkühlung |
| Artikelnummer | 2.CC.05014.90                                                  |
| Schnittdaten  | $v_c = 50 \text{ m/min}$<br>f = 0.09 mm/U                      |
| Standzeit     | 4'180 Bohrungen                                                |

















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE                    |
|-----------------------|---------------------------------------------|
| Luft- und Raumfahrt   | Motorenteil                                 |
| Medizintechnik        | Implantat, Knochenplatte<br>Operationszange |
| Formenbau             | Gesenkschmiedeform                          |
| Automobilbau          | Bauteil für Direkteinspritzung              |
| Uhren                 | Uhrengehäuse<br>Uhrenkrone                  |
| Lebensmittelindustrie | Formplatte für Getränke                     |
| Hydraulik / Pneumatik | Ventilgehäuse                               |

| MATERIALGRUPPE                              |         | BEISPIELE        |                   |
|---------------------------------------------|---------|------------------|-------------------|
|                                             | Wr. Nr. | DIN              | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.                   | 1.0401  | C15              | 1015              |
| legierte Stähle                             | 1.3505  | 100Cr6           | 52100             |
|                                             | 1.2436  | X210CrW12        | D4 / D6           |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4016  | X6Cr17           | 430 / S43000      |
|                                             | 1.4034  | X46Cr13          | 420C              |
|                                             | 1.4545  | X5CrNiCuNb 15-5  | 15-5 PH           |
|                                             | 1.4435  | X2CrNiMo 18-14-3 | 316L              |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040  | GGG40            | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315  | AlMgSi1          | 6351              |
|                                             | 3.2163  | GD-AlSi9Cu3      | A380              |
|                                             | 2.004   | Cu-OF / CW008A   | C10100            |
|                                             | 2.0321  | CuZn37 CW508L    | C27400            |
|                                             | 2.102   | CuSn6            | C51900            |
|                                             | 2.096   | CuAl9Mn2         | C63200            |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle  | 2.4665  | NiCr22Fe18Mo     | Hastelloy X       |
| Gruppe S2<br>Titan rein u.                  | 3.7035  | Gr.2             | B348 / F67        |
| Titan Legierungen                           | 3.7165  | TiAl6V4          | B348 / F136       |
| <b>Gruppe S3</b><br>CrCo-Legierungen        | 2.4964  | CoCr20W15Ni      | Haynes 25         |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4      | 01                |



### CrazyDrill Twicenter 60°

#### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG



Im Schaft integrierte Kühlkanäle und ein Doppelwinkel an der Spitze machen den Zentrierbohrer CrazyDrill Twicenter einzigartig: Dank der optimalen Kühlung eignet er sich generell perfekt für die Serienfertigung und schwer zerspanbare Materialien wie rostfreie Stähle oder Titan. Die Innenkühlung ist speziell ein grosser Vorteil auch bei schwer zugänglichen Stellen.



Spitzenwinkel 130°

Der zusätzliche Spitzenwinkel von 130° und die kleine Querschneide geben dem Zentrierbohrer eine gute Stabilität und sorgen ausserdem für einen guten Spänefluss. Der zweite Winkel dient zum Anbringen einer Fase von 60°.

Auch ohne innere Kühlmittelzufuhr (mit äusserer Kühlmittelzufuhr) ist CrazyDrill Twicenter ein hervorragender Zentrierbohrer.

Er ist die perfekte Lösung für das Zentrieren und Anfasen einer tiefen Bohrung z.B. mit CrazyDrill SST-Inox.

#### Kühlschmierstoff, Filter und Druck

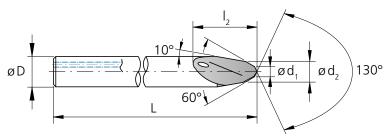
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

Sie haben nicht die passende Variante von CrazyDrill Twicenter 60° (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

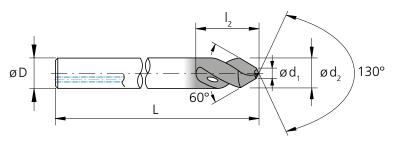
**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.0 mm.



| Hart-  |
|--------|
| metall |







**Z**2







Ausführung d₁: 0.3 bis 1.0 mm



Ausführung d₁: 1.5 bis 6.0 mm

| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> | <b>d</b> <sub>2</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | Fase |
|------------|---------------|-----------------------|-----------------------|------------------------------|--------------------------|-----------|------|
|            | 2.CC.03010.60 | 0.3                   | 1.0                   | 6.4                          | 3                        | 40        | 60°  |
|            | 2.CC.05014.60 | 0.5                   | 1.4                   | 6.3                          | 3                        | 40        | 60°  |
| •          | 2.CC.10020.60 | 1.0                   | 2.0                   | 6.3                          | 3                        | 40        | 60°  |
| •          | 2.CC.15030.60 | 1.5                   | 3.0                   | 6.3                          | 3                        | 40        | 60°  |
|            | 2.CC.20040.60 | 2.0                   | 4.0                   | 8.0                          | 4                        | 50        | 60°  |
|            | 2.CC.30060.60 | 3.0                   | 6.0                   | 12.0                         | 6                        | 60        | 60°  |
|            | 2.CC.40080.60 | 4.0                   | 8.0                   | 16.0                         | 8                        | 70        | 60°  |
|            | 2.CC.60100.60 | 6.0                   | 10.0                  | 20.0                         | 10                       | 80        | 60°  |



# CrazyDrill Twicenter 60°

### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                | Werkstoff-<br>gruppe  | Werkstoff                                     | Wr.Nr.           | DIN                            | AISI/ASTM/UNS            | <b>V</b> <sub>c</sub><br>[m/min]      |  |
|----------------|-----------------------|-----------------------------------------------|------------------|--------------------------------|--------------------------|---------------------------------------|--|
|                |                       |                                               | 1.0301           | C10                            | AISI 1010                |                                       |  |
|                | D                     |                                               | 1.0301           | C10                            | AISI 1010                |                                       |  |
|                | P                     | Stähle unlegiert                              | 1.1191           | C45E/CK45                      |                          | 120                                   |  |
|                |                       | Rm < 800 N/mm <sup>2</sup>                    |                  |                                | AISI 1045                | 120                                   |  |
| (K V           |                       |                                               | 1.0044           | S275JR                         | AISI 1020                |                                       |  |
| \/             |                       |                                               | 1.0715           | 11SMn30                        | AISI 1215                |                                       |  |
| M              |                       |                                               | 1.5752           | 15NiCr13                       | ASTM 3415 / AISI 3310    |                                       |  |
|                |                       | Stähle niedriglegiert                         | 1.7131           | 16MnCr5                        | AISI 5115                |                                       |  |
|                |                       | Rm > 900 N/mm <sup>2</sup>                    | 1.3505           | 100Cr6                         | AISI 52100               | 80                                    |  |
|                |                       |                                               | 1.7225           | 42CrMo4                        | AISI 4140                |                                       |  |
|                |                       |                                               | 1.2842           | 90MnCrV8                       | AISI O2                  |                                       |  |
| <i>77</i> 7    |                       | Werkzeugstähle                                | 1.2379           | X153CrMoV12                    | AISI D2                  |                                       |  |
|                |                       | hochlegiert                                   | 1.2436           | X210CrW12                      | AISI D4/D6               | 60                                    |  |
|                |                       | Rm < 1200 N/mm <sup>2</sup>                   | 1.3343           | HS6-5-2C                       | AISI M2 / UNS T11302     |                                       |  |
|                |                       |                                               | 1.3355           | HS18-0-1                       | AISI T1 / UNS T12001     |                                       |  |
|                |                       | Rostfreie Stähle-                             | 1.4016           | X6Cr17                         | AISI 430 / UNS S43000    | 50                                    |  |
| 0              | M                     | ferritisch                                    | 1.4105           | X6CrMoS17                      | AISI 430F                | 50                                    |  |
|                | IVI                   | Rostfreie Stähle-                             | 1.4034           | X46Cr13                        | AISI 420C                | 60                                    |  |
|                |                       | martensitisch                                 | 1.4112           | X90CrMoV18                     | AISI 440B                | 60                                    |  |
|                |                       | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4                | AISI 630 / ASTM 17-4 PH  | 50                                    |  |
|                | -                     | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5                | ASTM 15-5 PH             | 50                                    |  |
| $\sim$         |                       | Rostfreie Stähle-                             | 1.4301           | X5CrNi 18-10                   | AISI 304                 |                                       |  |
| $\mathcal{L}$  |                       |                                               | 1.4435           | X2CrNiMo 18-14-3               | AISI 316L                |                                       |  |
| //             |                       | austenitisch                                  | 1.4441           | X2CrNiMo 18-15-3               | AISI 316LM               | 50                                    |  |
| ( <i>)</i> /// |                       |                                               | 1.4539           | X1NiCrMoCu 25-20-5             | AISI 904L                |                                       |  |
| KQ.            |                       |                                               | 0.6020           | GG20                           | ASTM 30                  |                                       |  |
|                | 1/                    | Gusseisen                                     | 0.6030           | GG30                           | ASTM 40B                 |                                       |  |
| ng:            | K                     |                                               | 0.7040           | GGG40                          | ASTM 60-40-18            | 100                                   |  |
| nkühlung       |                       |                                               | 0.7060           | GGG60                          | ASTM 80-60-03            |                                       |  |
| n 20%          |                       |                                               |                  |                                |                          |                                       |  |
| l              | -   10.11             | Aluminium                                     | 3.2315<br>3.4365 | AlMgSi1<br>AlZnMgCu1.5         | ASTM 6351<br>ASTM 7075   | 150                                   |  |
|                | N                     | Knetlegierungen                               | 3.2163           | GD-AlSi9Cu3                    | ASTM A380                |                                       |  |
|                |                       | Aluminium<br>Druckgusslegierungen             |                  | GD-AlSi10Mg                    | UNS A03590               | 100                                   |  |
|                |                       | Drackgassiegierangen                          | 2.004            | Cu-OF / CW008A                 | UNS C10100               |                                       |  |
|                |                       | Kupfer                                        | 2.004            | Cu-ETP / CW004A                | UNS C11000               | 100                                   |  |
|                |                       |                                               | 2.0065           | CuZn37 CW508L                  | UNS C27400               |                                       |  |
|                |                       | Messing bleifrei                              | 2.0321           | CuZn37 CW508L<br>CuZn40 CW509L | UNS C27400<br>UNS C28000 | 80                                    |  |
|                |                       | Massing Decem                                 |                  |                                |                          |                                       |  |
|                |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N<br>CuSn6    | UNS C51900               | 100                                   |  |
|                |                       |                                               | 2.102            | CuAl10Ni5Fe4                   | UNS C63000               |                                       |  |
|                |                       | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966           | CuAl9Mn2                       | UNS C63200               | 80                                    |  |
|                |                       | 1371 < 000 14/111111                          |                  | CUAISIVIIIZ                    |                          |                                       |  |
|                |                       |                                               | 2.4856           |                                | Inconel 625              |                                       |  |
|                | $S_1$                 | Hitzebeständige                               | 2.4668           | N:M - 20                       | Inconel 718              | 10 – 30                               |  |
|                |                       | Stähle                                        | 2.4617           | NiMo28                         | Hastelloy B-2            |                                       |  |
|                |                       |                                               | 2.4665           | NiCr22Fe18Mo                   | Hastelloy X              |                                       |  |
|                |                       | Titan rein                                    | 3.7035           | Gr.2                           | ASTM B348 / F67          | 25                                    |  |
|                | S <sub>2</sub>        |                                               | 3.7065           | Gr.4                           | ASTM B348 / F68          |                                       |  |
|                |                       | Titan Legierungen                             | 3.7165           | TiAl6V4                        | ASTM B348 / F136         | 25                                    |  |
|                |                       |                                               | 9.9367           | TiAl6Nb7                       | ASTM F1295               | · · · · · · · · · · · · · · · · · · · |  |
|                | <b>S</b> <sub>3</sub> | CrCo-Legierungen                              | 2.4964           | CoCr20W15Ni                    | Haynes 25                | 40 – 50                               |  |
|                | 3                     |                                               |                  | CrCoMo28                       | ASTM F1537               | ***                                   |  |
|                | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                   | 1.2510           | 100MnCrMoW4                    | AISI O1                  | 40                                    |  |
|                | H.                    | Stähle gehärtet<br>≥ 55 HRC                   | 1.2379           | X153CrMoV12                    | AISI D2                  |                                       |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U] |                      |                      |                      |                      |                      |                      |                      |                      |  |  |
|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
|                 | <b>Ød1</b><br>0.3 mm | <b>Ød1</b><br>0.5 mm | <b>Ød1</b><br>1.0 mm | <b>Ød1</b><br>1.5 mm | <b>Ød1</b><br>2.0 mm | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0 mm | <b>Ød1</b><br>6.0 mm |  |  |
|                 | f                    | f                    | f                    | f                    | f                    | f                    | f                    | f                    |  |  |
|                 | 0.030                | 0.050                | 0.080                | 0.100                | 0.120                | 0.150                | 0.200                | 0.250                |  |  |
|                 | 0.030                | 0.050                | 0.080                | 0.100                | 0.120                | 0.150                | 0.200                | 0.250                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.120                | 0.180                | 0.230                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.120                | 0.150                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.120                | 0.180                | 0.230                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.030                | 0.040                | 0.050                | 0.070                | 0.090                | 0.110                | 0.150                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.100                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.015                | 0.025                | 0.030                | 0.040                | 0.050                | 0.070                | 0.090                | 0.110                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.030                | 0.040                | 0.070                | 0.090                | 0.110                | 0.140                | 0.180                | 0.220                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.110                | 0.130                |  |  |
|                 | 0.010                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                | 0.070                | 0.080                |  |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |  |  |
|                 |                      |                      |                      |                      |                      | J.                   |                      |                      |  |  |



### CrazyDrill Twicenter 90°

#### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG



Im Schaft integrierte Kühlkanäle und ein Doppelwinkel an der Spitze machen den Zentrierbohrer CrazyDrill Twicenter einzigartig: Dank der optimalen Kühlung eignet er sich generell perfekt für die Serienfertigung und schwer zerspanbare Materialien wie rostfreie Stähle oder Titan. Die Innenkühlung ist speziell ein grosser Vorteil auch bei schwer zugänglichen Stellen.



Senkwinkel 90°

Spitzenwinkel 130°

Der zusätzliche Spitzenwinkel von 130° und die kleine Querschneide geben dem Zentrierbohrer eine gute Stabilität und sorgen ausserdem für einen guten Spänefluss. Der zweite Winkel dient zum Anbringen einer Fase von 90°.

Auch ohne innere Kühlmittelzufuhr (mit äusserer Kühlmittelzufuhr) ist CrazyDrill Twicenter ein hervorragender Zentrierbohrer.

Er ist die perfekte Lösung für das Zentrieren und Anfasen einer tiefen Bohrung z.B. mit CrazyDrill SST-Inox.

#### Kühlschmierstoff, Filter und Druck

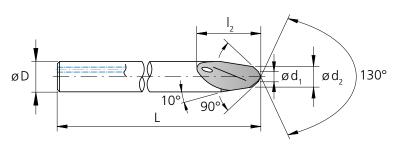
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

Sie haben nicht die passende Variante von CrazyDrill Twicenter 90° (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

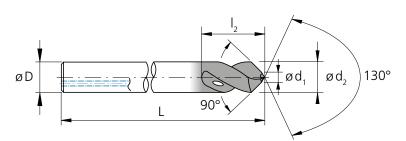
**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.0 mm.



| Hart-  |
|--------|
| metall |







**Z**2







Ausführung d₁: 0.3 bis 1.0 mm



Ausführung d₁: 1.5 bis 6.0 mm

| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> | <b>d</b> <sub>2</sub> | <b>l</b> <sub>2</sub><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] | Fase |
|------------|---------------|-----------------------|-----------------------|-------------------------------|--------------------------|------------------|------|
| -          | 2.CC.03010.90 | 0.3                   | 1.0                   | 6.4                           | 3                        | 40               | 90°  |
|            | 2.CC.05014.90 | 0.5                   | 1.4                   | 6.0                           | 3                        | 40               | 90°  |
|            | 2.CC.10020.90 | 1.0                   | 2.0                   | 6.2                           | 3                        | 40               | 90°  |
|            | 2.CC.15030.90 | 1.5                   | 3.0                   | 6.3                           | 3                        | 40               | 90°  |
| -          | 2.CC.20040.90 | 2.0                   | 4.0                   | 8.0                           | 4                        | 50               | 90°  |
|            | 2.CC.30060.90 | 3.0                   | 6.0                   | 12.0                          | 6                        | 60               | 90°  |
|            | 2.CC.40080.90 | 4.0                   | 8.0                   | 16.0                          | 8                        | 70               | 90°  |
|            | 2.CC.60100.90 | 6.0                   | 10.0                  | 20.0                          | 10                       | 80               | 90°  |



# CrazyDrill Twicenter 90°

### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                   | Werkstoff-<br>gruppe  | Werkstoff                                                         | Wr.Nr.           | DIN                    | AISI/ASTM/UNS                      | <b>V</b> <sub>ε</sub><br>[m/min] |  |
|-------------------|-----------------------|-------------------------------------------------------------------|------------------|------------------------|------------------------------------|----------------------------------|--|
|                   |                       |                                                                   | 1.0301           | C10                    | AISI 1010                          |                                  |  |
|                   | P                     |                                                                   | 1.0401           | C15                    | AISI 1015                          |                                  |  |
|                   |                       | Stähle unlegiert                                                  | 1.1191           | C45E/CK45              | AISI 1045                          | 120                              |  |
|                   |                       | Rm < 800 N/mm <sup>2</sup>                                        | 1.0044           | \$275JR                | AISI 1020                          | 120                              |  |
| (                 |                       |                                                                   | 1.0715           | 11SMn30                | AISI 1020                          |                                  |  |
| \/ /              |                       |                                                                   | 1.5752           | 15NiCr13               | ASTM 3415 / AISI 3310              |                                  |  |
| М                 |                       |                                                                   | 1.7131           | 16MnCr5                | AISI 5115                          |                                  |  |
|                   |                       | Stähle niedriglegiert                                             | 1.3505           | 100Cr6                 | AISI 52100                         | 80                               |  |
|                   |                       | Rm > 900 N/mm <sup>2</sup>                                        | 1.7225           | 42CrMo4                | AISI 4140                          | 33                               |  |
| da                |                       |                                                                   | 1.2842           | 90MnCrV8               | AISI O2                            |                                  |  |
|                   |                       |                                                                   | 1.2379           | X153CrMoV12            | AISI D2                            |                                  |  |
|                   |                       | Werkzeugstähle                                                    | 1.2436           | X210CrW12              | AISI D4/D6                         |                                  |  |
|                   |                       | hochlegiert                                                       | 1.3343           | HS6-5-2C               | AISI M2 / UNS T11302               | 60                               |  |
|                   |                       | Rm < 1200 N/mm <sup>2</sup>                                       | 1.3355           | HS18-0-1               | AISI T1 / UNS T12001               |                                  |  |
|                   |                       | D of t could                                                      |                  |                        |                                    |                                  |  |
|                   | B 4                   | Rostfreie Stähle-<br>ferritisch                                   | 1.4016<br>1.4105 | X6Cr17<br>X6CrMoS17    | AISI 430 / UNS S43000<br>AISI 430F | 50                               |  |
| 90°               | M                     | Rostfreie Stähle-                                                 | 1.4034           | X46Cr13                | AISI 420C                          |                                  |  |
|                   |                       | martensitisch                                                     | 1.4112           | X90CrMoV18             | AISI 440B                          | 60                               |  |
|                   |                       | Rostfreie Stähle-                                                 | 1.4542           | X5CrNiCuNb 16-4        | AISI 630 / ASTM 17-4 PH            |                                  |  |
|                   |                       | martensitisch – PH                                                | 1.4545           | X5CrNiCuNb 15-5        | ASTM 15-5 PH                       | 50                               |  |
| $\longrightarrow$ |                       | martensitisch – FT                                                | 1.4343           | X5CrNi 18-10           | AISI 304                           |                                  |  |
|                   |                       | Rostfreie Stähle-<br>austenitisch                                 | 1.4435           | X2CrNiMo 18-14-3       | AISI 316L                          | 50                               |  |
| \/{ //            |                       |                                                                   | 1.4441           | X2CrNiMo 18-15-3       | AISI 316LM                         |                                  |  |
| ()///             |                       |                                                                   | 1.4539           | X1NiCrMoCu 25-20-5     | AISI 904L                          |                                  |  |
| KV.               |                       |                                                                   |                  |                        |                                    |                                  |  |
|                   | K                     | Gusseisen                                                         | 0.6020<br>0.6030 | GG20<br>GG30           | ASTM 30<br>ASTM 40B                |                                  |  |
| emerkung:         |                       |                                                                   | 0.7040           | GGG40                  | ASTM 60-40-18                      | 100                              |  |
| ei Aussenkühlung  |                       |                                                                   | 0.7040           | GGG60                  | ASTM 80-60-03                      |                                  |  |
| und f um 20%      |                       |                                                                   |                  |                        |                                    |                                  |  |
| duzieren          |                       | Aluminium<br>Knetlegierungen<br>Aluminium<br>Druckgusslegierungen | 3.2315<br>3.4365 | AlMgSi1<br>AlZnMgCu1.5 | ASTM 6351<br>ASTM 7075             | 150                              |  |
|                   | N                     |                                                                   | 3.2163           | GD-AlSi9Cu3            | ASTM A380                          |                                  |  |
|                   |                       |                                                                   |                  | GD-AlSi10Mg            | UNS A03590                         |                                  |  |
|                   |                       | Kupfer                                                            | 2.004            | Cu-OF / CW008A         | UNS C10100                         |                                  |  |
|                   |                       |                                                                   | 2.0065           | Cu-ETP / CW000/1       | UNS C11000                         | 100                              |  |
|                   |                       |                                                                   | 2.0321           | CuZn37 CW508L          | UNS C27400                         |                                  |  |
|                   |                       | Messing bleifrei                                                  | 2.036            | CuZn40 CW509L          | UNS C28000                         | 80                               |  |
|                   |                       | Messing, Bronze                                                   | 2.0401           | CuZn39Pb3 / CW614N     |                                    |                                  |  |
|                   |                       | Rm < 400 N/mm <sup>2</sup>                                        | 2.102            | CuSn6                  | UNS C51900                         | 100                              |  |
|                   |                       | Bronze                                                            | 2.0966           | CuAl10Ni5Fe4           | UNS C63000                         |                                  |  |
|                   |                       | Rm < 600 N/mm <sup>2</sup>                                        | 2.096            | CuAl9Mn2               | UNS C63200                         | 80                               |  |
|                   |                       |                                                                   | 2.4856           |                        | Inconel 625                        |                                  |  |
|                   | C                     | Hitzebeständige                                                   | 2.4668           |                        | Inconel 718                        |                                  |  |
|                   | S <sub>1</sub>        | Stähle                                                            | 2.4617           | NiMo28                 | Hastelloy B-2                      | 10 – 30                          |  |
|                   | _                     |                                                                   | 2.4665           | NiCr22Fe18Mo           | Hastelloy X                        |                                  |  |
|                   |                       |                                                                   | 3.7035           | Gr.2                   | ASTM B348 / F67                    |                                  |  |
|                   | C                     | Titan rein                                                        | 3.7065           | Gr.4                   | ASTM B348 / F68                    | 25                               |  |
|                   | <b>S</b> <sub>2</sub> | T'                                                                | 3.7165           | TiAl6V4                | ASTM B348 / F136                   | 25                               |  |
|                   |                       | Titan Legierungen                                                 | 9.9367           | TiAl6Nb7               | ASTM F1295                         | 25                               |  |
|                   | C                     | 6-6-1                                                             | 2.4964           | CoCr20W15Ni            | Haynes 25                          | 40 50                            |  |
|                   | <b>S</b> <sub>3</sub> | CrCo-Legierungen                                                  |                  | CrCoMo28               | ASTM F1537                         | 40 – 50                          |  |
|                   | H₁                    | Stähle gehärtet<br>< 55 HRC                                       | 1.2510           | 100MnCrMoW4            | AISI O1                            | 40                               |  |
|                   | H                     | Stähle gehärtet<br>≥ 55 HRC                                       | 1.2379           | X153CrMoV12            | AISI D2                            |                                  |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U] |                      |                      |                      |                      |                      |                      |                      |                      |  |  |
|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
|                 | <b>Ød1</b><br>0.3 mm | <b>Ød1</b><br>0.5 mm | <b>Ød1</b><br>1.0 mm | <b>Ød1</b><br>1.5 mm | <b>Ød1</b><br>2.0 mm | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0 mm | <b>Ød1</b><br>6.0 mm |  |  |
|                 | f                    | f                    | f                    | f                    | f                    | f                    | f                    | f                    |  |  |
|                 | 0.030                | 0.050                | 0.080                | 0.100                | 0.120                | 0.150                | 0.200                | 0.250                |  |  |
|                 | 0.030                | 0.050                | 0.080                | 0.100                | 0.120                | 0.150                | 0.200                | 0.250                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.120                | 0.180                | 0.230                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.120                | 0.150                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.120                | 0.180                | 0.230                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.030                | 0.040                | 0.050                | 0.070                | 0.090                | 0.110                | 0.150                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.180                | 0.230                | 0.300                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.110                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.040                | 0.060                | 0.090                | 0.100                | 0.130                | 0.160                | 0.180                | 0.200                |  |  |
|                 | 0.015                | 0.025                | 0.030                | 0.040                | 0.050                | 0.070                | 0.090                | 0.110                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.070                | 0.090                | 0.110                | 0.130                |  |  |
|                 | 0.030                | 0.040                | 0.070                | 0.090                | 0.110                | 0.140                | 0.180                | 0.220                |  |  |
|                 | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.110                | 0.130                |  |  |
|                 | 0.010                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                | 0.070                | 0.080                |  |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |  |  |
|                 |                      |                      |                      |                      |                      | J.                   |                      |                      |  |  |



### CrazyDrill Twicenter 120°

#### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG



Im Schaft integrierte Kühlkanäle machen den Zentrierbohrer CrazyDrill Twicenter einzigartig: Dank der optimalen Kühlung eignet er sich generell perfekt für die Serienfertigung und schwer zerspanbare Materialien wie rostfreie Stähle oder Titan. Die Innenkühlung ist speziell ein grosser Vorteil auch bei schwer zugänglichen Stellen.



Senkwinkel 120°
 Spitzenwinkel 120°

Der Spitzenwinkel von 120° und die kleine Querschneide geben dem Zentrierbohrer eine gute Stabilität und sorgen ausserdem für einen guten Spänefluss. Gleichzeitig dient er zum Anbringen einer Fase von 120°.

Auch ohne innere Kühlmittelzufuhr (mit äusserer Kühlmittelzufuhr) ist CrazyDrill Twicenter ein hervorragender Zentrierbohrer.

Er ist die perfekte Lösung für das Zentrieren und Anfasen einer tiefen Bohrung.

#### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Zentrierprozess.

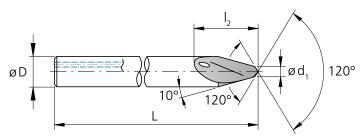
#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Twicenter 120° (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

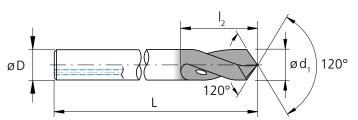
**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 2.0 mm.



Hartmetall







**Z**2







Ausführung d₁: 0.5 bis 2.0 mm



Ausführung d₁: 3.0 bis 10.0 mm

| ■ ab Lager | Artikelnummer  | d <sub>1</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b> (h6) [mm] | <b>L</b><br>[mm] | Fase |
|------------|----------------|----------------|------------------------------|--------------------|------------------|------|
| •          | 2.CC.00050.120 | 0.5            | 7.0                          | 3                  | 40               | 120° |
| -          | 2.CC.00100.120 | 1.0            | 6.15                         | 3                  | 40               | 120° |
| •          | 2.CC.00200.120 | 2.0            | 6.0                          | 3                  | 40               | 120° |
| •          | 2.CC.00300.120 | 3.0            | 8.0                          | 3                  | 40               | 120° |
| •          | 2.CC.00400.120 | 4.0            | 10.0                         | 4                  | 50               | 120° |
| •          | 2.CC.00600.120 | 6.0            | 15.0                         | 6                  | 60               | 120° |
|            | 2.CC.00800.120 | 8.0            | 17.0                         | 8                  | 70               | 120° |
|            | 2.CC.01000.120 | 10.0           | 21.0                         | 10                 | 80               | 120° |



# CrazyDrill Twicenter 120°

### ZENTRIEREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

| Werksto<br>gruppe | ff-<br>Werkstoff            | Wr.Nr. | DIN                 | AISI/ASTM/UNS                      | <b>V</b> <sub>c</sub><br>[m/min] |  |
|-------------------|-----------------------------|--------|---------------------|------------------------------------|----------------------------------|--|
|                   |                             | 1.0301 | C10                 | AISI 1010                          |                                  |  |
| D D               |                             | 1.0401 | C15                 | AISI 1015                          |                                  |  |
| P P               | Stähle unlegiert            | 1.1191 | C45E/CK45           | AISI 1045                          | 120                              |  |
|                   | Rm < 800 N/mm <sup>2</sup>  | 1.0044 | S275JR              | AISI 1020                          | 120                              |  |
| ( X )             |                             | 1.0044 | 11SMn30             | AISI 1020                          |                                  |  |
| \ /  /            |                             | 1.5752 |                     |                                    |                                  |  |
| M                 |                             | 1.7131 | 15NiCr13<br>16MnCr5 | ASTM 3415 / AISI 3310<br>AISI 5115 |                                  |  |
|                   | Stähle niedriglegiert       | 1.3505 | 100Cr6              | AISI 52100                         | 80                               |  |
|                   | Rm > 900 N/mm <sup>2</sup>  | 1.7225 | 42CrMo4             | AISI 4140                          | 80                               |  |
|                   |                             | 1.7223 | 90MnCrV8            | AISI O2                            |                                  |  |
| d <sub>1</sub>    |                             | 1.2379 | X153CrMoV12         |                                    |                                  |  |
|                   | Werkzeugstähle              |        |                     | AISI D2                            |                                  |  |
|                   | hochlegiert                 | 1.2436 | X210CrW12           | AISI D4/D6                         | 60                               |  |
|                   | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C            | AISI M2 / UNS T11302               |                                  |  |
|                   |                             | 1.3355 | HS18-0-1            | AISI T1 / UNS T12001               |                                  |  |
|                   | Rostfreie Stähle-           | 1.4016 | X6Cr17              | AISI 430 / UNS S43000              | 50                               |  |
| 120°              | ferritisch                  | 1.4105 | X6CrMoS17           | AISI 430F                          |                                  |  |
|                   | Rostfreie Stähle-           | 1.4034 | X46Cr13             | AISI 420C                          | 60                               |  |
|                   | martensitisch               | 1.4112 | X90CrMoV18          | AISI 440B                          |                                  |  |
|                   | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4     | AISI 630 / ASTM 17-4 PH            | 50                               |  |
| $\overline{\Box}$ | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5     | ASTM 15-5 PH                       |                                  |  |
| \ / / / /         |                             | 1.4301 | X5CrNi 18-10        | AISI 304                           |                                  |  |
| \./ //            | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3    | AISI 316L                          | 50                               |  |
| <i>Vλ//</i> /     | austenitisch                | 1.4441 | X2CrNiMo 18-15-3    | AISI 316LM                         |                                  |  |
|                   |                             | 1.4539 | X1NiCrMoCu 25-20-5  | AISI 904L                          |                                  |  |
|                   |                             | 0.6020 | GG20                | ASTM 30                            |                                  |  |
| merkung:          | Gusseisen                   | 0.6030 | GG30                | ASTM 40B                           | 100                              |  |
| i Aussenkühlung   | Gusselsen                   | 0.7040 | GGG40               | ASTM 60-40-18                      |                                  |  |
| und f um 20%      |                             | 0.7060 | GGG60               | ASTM 80-60-03                      |                                  |  |
| uzieren           | Aluminium                   | 3.2315 | AlMgSi1             | ASTM 6351                          | 150                              |  |
| N                 | Knetlegierungen             | 3.4365 | AlZnMgCu1.5         | ASTM 7075                          |                                  |  |
| -                 | Aluminium                   | 3.2163 | GD-AlSi9Cu3         | ASTM A380                          | 100                              |  |
|                   | Druckgusslegierungen        |        | GD-AlSi10Mg         | UNS A03590                         |                                  |  |
|                   | Kupfer                      | 2.004  | Cu-OF / CW008A      | UNS C10100                         | 100                              |  |
|                   |                             | 2.0065 | Cu-ETP / CW004A     | UNS C11000                         |                                  |  |
|                   | Messing bleifrei            | 2.0321 | CuZn37 CW508L       | UNS C27400                         | 80                               |  |
|                   |                             | 2.036  | CuZn40 CW509L       | UNS C28000                         |                                  |  |
|                   | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N  |                                    | 100                              |  |
|                   | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6               | UNS C51900                         |                                  |  |
|                   | Bronze                      | 2.0966 | CuAl10Ni5Fe4        | UNS C63000                         | 80                               |  |
|                   | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2            | UNS C63200                         |                                  |  |
|                   |                             | 2.4856 |                     | Inconel 625                        |                                  |  |
| $S_1$             | Hitzebeständige             | 2.4668 |                     | Inconel 718                        | 10 – 30                          |  |
| <b>3</b> 1        | Stähle                      | 2.4617 | NiMo28              | Hastelloy B-2                      | 10 – 30                          |  |
|                   |                             | 2.4665 | NiCr22Fe18Mo        | Hastelloy X                        |                                  |  |
|                   | Titan rein                  | 3.7035 | Gr.2                | ASTM B348 / F67                    | 25                               |  |
| $ S_2 $           | Titali Telli                | 3.7065 | Gr.4                | ASTM B348 / F68                    |                                  |  |
| 2                 | Titan Legierungen           | 3.7165 | TiAl6V4             | ASTM B348 / F136                   | 25                               |  |
|                   |                             | 9.9367 | TiAl6Nb7            | ASTM F1295                         |                                  |  |
| S <sub>3</sub>    | CrCo-Legierungen            | 2.4964 | CoCr20W15Ni         | Haynes 25                          | 40 – 50                          |  |
| 3                 |                             |        | CrCoMo28            | ASTM F1537                         |                                  |  |
|                   | Stähle gehärtet             | 1.2510 | 100MnCrMoW4         | AISI O1                            | 40                               |  |
| H₁                | < 55 HRC                    | 1.25.0 |                     |                                    |                                  |  |



ANWENDUNGSEMPFEHLUNG





|           |        |        | <b>f</b> [m | m/U]   |        |        |         |
|-----------|--------|--------|-------------|--------|--------|--------|---------|
| Ød1       | Ød1    | Ød1    | Ød1         | Ød1    | Ød1    | Ød1    | Ød1     |
| 0.5 mm    | 1.0 mm | 2.0 mm | 3.0 mm      | 4.0 mm | 6.0 mm | 8.0 mm | 10.0 mm |
| f         | f      | f      | f           | f      | f      | f      | f       |
| 0.030     | 0.050  | 0.080  | 0.100       | 0.120  | 0.150  | 0.200  | 0.250   |
| 0.030     | 0.050  | 0.080  | 0.100       | 0.120  | 0.150  | 0.200  | 0.250   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.080  | 0.120  | 0.180  | 0.230   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.080  | 0.100  | 0.120  | 0.150   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.080  | 0.120  | 0.180  | 0.230   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.070  | 0.090  | 0.110  | 0.130   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.070  | 0.090  | 0.110  | 0.130   |
| 0.030     | 0.040  | 0.050  | 0.070       | 0.090  | 0.110  | 0.150  | 0.200   |
| 0.040     | 0.060  | 0.090  | 0.110       | 0.130  | 0.180  | 0.230  | 0.300   |
| 0.040     | 0.060  | 0.090  | 0.110       | 0.130  | 0.180  | 0.230  | 0.300   |
| 0.040     | 0.060  | 0.090  | 0.110       | 0.130  | 0.180  | 0.230  | 0.300   |
| 0.040     | 0.060  | 0.090  | 0.110       | 0.130  | 0.160  | 0.180  | 0.200   |
| 0.040     | 0.060  | 0.090  | 0.110       | 0.130  | 0.160  | 0.180  | 0.200   |
| 0.040     | 0.060  | 0.090  | 0.100       | 0.130  | 0.160  | 0.180  | 0.200   |
| 0.015     | 0.025  | 0.030  | 0.040       | 0.050  | 0.070  | 0.090  | 0.110   |
| <br>0.020 | 0.030  | 0.040  | 0.060       | 0.070  | 0.090  | 0.110  | 0.130   |
| 0.030     | 0.040  | 0.070  | 0.090       | 0.110  | 0.140  | 0.180  | 0.220   |
| 0.020     | 0.030  | 0.040  | 0.060       | 0.080  | 0.100  | 0.110  | 0.130   |
| 0.010     | 0.020  | 0.030  | 0.040       | 0.050  | 0.060  | 0.070  | 0.080   |
|           |        |        |             |        |        |        |         |
|           |        |        |             |        |        |        |         |



#### PRÄZISE UND SCHNELL ZENTRIEREN UND ANFASEN

#### Kühlschmierstoff, Filter und Druck

#### Kühlen mit innerer Kühlmittelzufuhr

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Filter: Die grossen Kühlkanäle erlauben einen Standardfilter. Filterqualität ≤ 0.050 mm.

Kühlmitteldruck: Für CrazyDrill Twicenter wird mindestens 15 bar Kühlmitteldruck benötigt, um prozesssicher zu bohren. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

| Drehzahl                     | [U/min] | ≤ 10′000 | > 10′000 |  |
|------------------------------|---------|----------|----------|--|
| Minimaler<br>Kühlmitteldruck | [bar]   | 15       | 30       |  |

#### Kühlen mit äusserer Kühlmittelzufuhr

Bei der externen Kühlung ist darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### Zentrieren als Basis für Bohren

Der Zentrierbohrer CrazyDrill Twicenter bietet die Grundlage für eine hochpräzise Bohrung. Die robuste Bauweise des Werkzeuges sowie seine Leistung ermöglichen höchste Präzision sowie höchste Positionsgenauigkeit für den Folgebohrer.

Selbst bei Werkzeugen mit hoher Selbstzentrierung wie CrazyDrill SST-Inox ist der Einsatz eines Zentrierwerkzeuges bei rauen oder unregelmässigen Oberflächen nützlich.

Der Einsatz des innengekühlten Zentrierbohrers mit Hochleistungsbeschichtung kann die Standzeit des Folgebohrers deutlich erhöhen. Im gleichen Arbeitsgang kann eine Fase von 60°, 90° oder 120° realisiert werden.

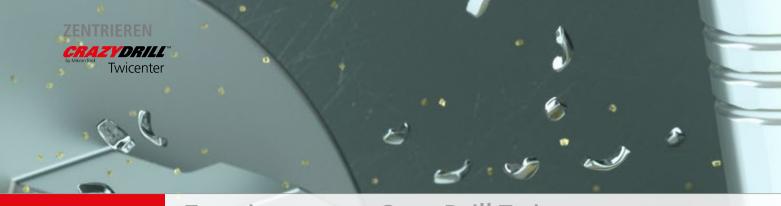




04

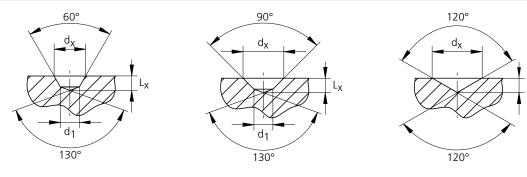
#### ZENTRIERPROZESS

#### Zentrieren und Anfasen in einem Bohrstoss


#### 1 | ZENTRIERBOHRUNG

- Gewünschte Schnitttiefe gemäss Bohrdurchmesser und Fasenwinkel bzw. -breite bestimmen.
- Interne oder externe Kühlung einschalten.
- Mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit in einem Bohrstoss zentrieren (siehe Schnittdatentabelle).










## Zentrierprozess CrazyDrill Twicenter

#### PRÄZISE UND SCHNELL ZENTRIEREN UND ANFASEN



#### Tabelle für Schnitttiefen

Für Senkwinkel 60° / Spitzenwinkel 130°

| Ø d <sub>x</sub> |                                |                                               |                                | L                              | -x                             |                                |                                               |                                |
|------------------|--------------------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------------|--------------------------------|
|                  | 2.CC.03010.60<br>Ød1<br>0.3 mm | <b>2.CC.05014.60</b><br>Ø <b>d1</b><br>0.5 mm | 2.CC.10020.60<br>Ød1<br>1.0 mm | 2.CC.15030.60<br>Ød1<br>1.5 mm | 2.CC.20040.60<br>Ød1<br>2.0 mm | 2.CC.30060.60<br>Ød1<br>3.0 mm | <b>2.CC.40080.60</b><br>Ø <b>d1</b><br>4.0 mm | 2.CC.60100.60<br>Ød1<br>6.0 mm |
| [mm]             | [mm]                           | [mm]                                          | [mm]                           | [mm]                           | [mm]                           | [mm]                           | [mm]                                          | [mm]                           |
| 0.4              | 0.16                           |                                               |                                |                                |                                |                                |                                               |                                |
| 8.0              | 0.50                           | 0.38                                          |                                |                                |                                |                                |                                               |                                |
| 1.0              |                                | 0.55                                          |                                |                                |                                |                                |                                               |                                |
| 1.5              |                                |                                               | 0.67                           |                                |                                |                                |                                               |                                |
| 2.0              |                                |                                               |                                | 0.78                           |                                |                                |                                               |                                |
| 2.5              |                                |                                               |                                | 1.22                           | 0.90                           |                                |                                               |                                |
| 3.0              |                                |                                               |                                |                                | 1.33                           |                                |                                               |                                |
| 3.5              |                                |                                               |                                |                                | 1.77                           | 1.13                           |                                               |                                |
| 4.0              |                                |                                               |                                |                                |                                | 1.57                           |                                               |                                |
| 5.0              |                                |                                               |                                |                                |                                | 2.43                           | 1.80                                          |                                |
| 6.0              |                                |                                               |                                |                                |                                |                                | 2.66                                          |                                |
| 7.0              |                                |                                               |                                |                                |                                |                                | 3.53                                          | 2.26                           |
| 8.0              |                                |                                               |                                |                                |                                |                                |                                               | 3.13                           |
| 9.0              |                                |                                               |                                |                                |                                |                                |                                               | 4.00                           |

#### Für Senkwinkel 90° / Spitzenwinkel 130°

| Ø d <sub>x</sub> |                                |                                               |                                | L                              | -x                             |                                |                                               |                                 |
|------------------|--------------------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------------|---------------------------------|
|                  | 2.CC.03010.90<br>Ød1<br>0.3 mm | <b>2.CC.05014.90</b><br>Ø <b>d1</b><br>0.5 mm | 2.CC.10020.90<br>Ød1<br>1.0 mm | 2.CC.15030.90<br>Ød1<br>1.5 mm | 2.CC.20040.90<br>Ød1<br>2.0 mm | 2.CC.30060.90<br>Ød1<br>3.0 mm | <b>2.CC.40080.90</b><br>Ø <b>d1</b><br>4.0 mm | <b>2.CC.60100.90 Ød1</b> 6.0 mm |
| [mm]             | [mm]                           | [mm]                                          | [mm]                           | [mm]                           | [mm]                           | [mm]                           | [mm]                                          | [mm]                            |
| 0.4              | 0.12                           |                                               |                                |                                |                                |                                |                                               |                                 |
| 0.8              | 0.32                           | 0.27                                          |                                |                                |                                |                                |                                               |                                 |
| 1.0              |                                | 0.37                                          |                                |                                |                                |                                |                                               |                                 |
| 1.5              |                                |                                               | 0.48                           |                                |                                |                                |                                               |                                 |
| 2.0              |                                |                                               |                                | 0.60                           |                                |                                |                                               |                                 |
| 2.5              |                                |                                               |                                | 0.85                           | 0.72                           |                                |                                               |                                 |
| 3.0              |                                |                                               |                                |                                | 0.97                           |                                |                                               |                                 |
| 3.5              |                                |                                               |                                |                                | 1.22                           | 0.95                           |                                               |                                 |
| 4.0              |                                |                                               |                                |                                |                                | 1.20                           |                                               |                                 |
| 5.0              |                                |                                               |                                |                                |                                | 1.70                           | 1.43                                          |                                 |
| 6.0              |                                |                                               |                                |                                |                                |                                | 1.93                                          |                                 |
| 7.0              |                                |                                               |                                |                                |                                |                                | 2.43                                          | 1.90                            |
| 8.0              |                                |                                               |                                |                                |                                |                                |                                               | 2.40                            |
| 9.0              |                                |                                               |                                |                                |                                |                                |                                               | 2.90                            |

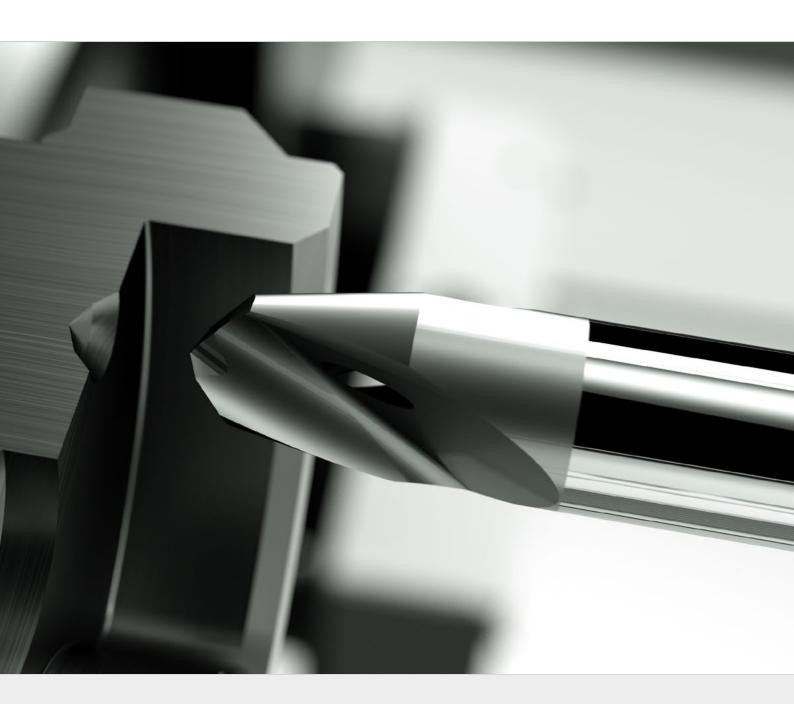
#### Für Senkwinkel 120° / Spitzenwinkel 120°

| Ø d <sub>x</sub> |                       |                       |                       | L                     | -x                    |                       |                       |                       |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                  | 2.CC.00050.120<br>Ød1 | 2.CC.00100.120<br>Ød1 | 2.CC.00200.120<br>Ød1 | 2.CC.00300.120<br>Ød1 | 2.CC.00400.120<br>Ød1 | 2.CC.00600.120<br>Ød1 | 2.CC.00800.120<br>Ød1 | 2.CC.01000.120<br>Ød1 |
|                  | 0.5 mm                | 1.0 mm                | 2.0 mm                | 3.0 mm                | 4.0 mm                | 6.0 mm                | 8.0 mm                | 10.0 mm               |
| [mm]             | [mm]                  | [mm]                  | [mm]                  | [mm]                  | [mm]                  | [mm]                  | [mm]                  | [mm]                  |
| 0.4              | 0.12                  |                       |                       |                       |                       |                       |                       |                       |
| 0.5              | 0.14                  |                       |                       |                       |                       |                       |                       |                       |
| 0.8              |                       | 0.23                  |                       |                       |                       |                       |                       |                       |
| 1.0              |                       | 0.29                  |                       |                       |                       |                       |                       |                       |
| 1.5              |                       |                       | 0.43                  |                       |                       |                       |                       |                       |
| 2.0              |                       |                       | 0.58                  |                       |                       |                       |                       |                       |
| 2.5              |                       |                       |                       | 0.72                  |                       |                       |                       |                       |
| 3.0              |                       |                       |                       | 0.87                  |                       |                       |                       |                       |
| 3.5              |                       |                       |                       |                       | 1.01                  |                       |                       |                       |
| 4.0              |                       |                       |                       |                       | 1.15                  |                       |                       |                       |
| 5.0              |                       |                       |                       |                       |                       | 1.44                  |                       |                       |
| 6.0              |                       |                       |                       |                       |                       | 1.73                  |                       |                       |
| 7.0              |                       |                       |                       |                       |                       |                       | 2.02                  |                       |
| 8.0              |                       |                       |                       |                       |                       |                       | 2.31                  |                       |
| 9.0              |                       |                       |                       |                       |                       |                       |                       | 2.60                  |
| 10.0             |                       |                       |                       |                       |                       |                       |                       | 2.89                  |

#### Formeln

■ Für CrazyDrill Twicenter 60°

$$L_{x} = \frac{1}{2} \cdot \left[ \frac{d_{1}}{\tan(65^{\circ})} + \frac{(d_{x} - d_{1})}{\tan(30^{\circ})} \right]$$


■ Für CrazyDrill Twicenter 90°

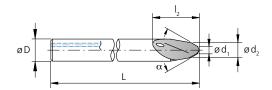
$$L_{x} = \frac{1}{2} \cdot \left[ \frac{d_{1}}{\tan(65^{\circ})} + \frac{(d_{x} - d_{1})}{\tan(45^{\circ})} \right]$$

■ Für CrazyDrill Twicenter 120°

$$L_x = \frac{1}{2} \cdot \left[ \frac{d_x}{\tan(60^\circ)} \right]$$

# Kundenspezifische Zentrierbohrer




#### Mikron Tool produziert Hartmetall - Zentrierbohrwerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

#### **MERKMALE**

- Durchmesser max: 32.0 mm, grösser nach Abklärung
- Maximale Werkzeuglänge: 330 mm
- Schneiden Anzahl: 1, 2 oder 3
- Fase und Spitzenwinkel: nach Bedarf
- Schneidenrichtung: Zentrierbohrwerkzeug rechtsschneidend oder linksschneidend
- Material Werkzeug: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung

#### **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung



#### KÜHLUNG

- Zentrierbohrwerkzeug mit Innenkühlung spiralisiert bis an Werkzeugspitze
- Zentrierbohrwerkzeug mit Innenkühlung gerade im Schaft
- Zentrierbohrwerkzeug für äussere Kühlmittelzufuhr

#### **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HE (Whistle Notch)
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch

#### **MATERIAL ANWENDUNG**

Zentrierbohrwerkzeug für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe usw.

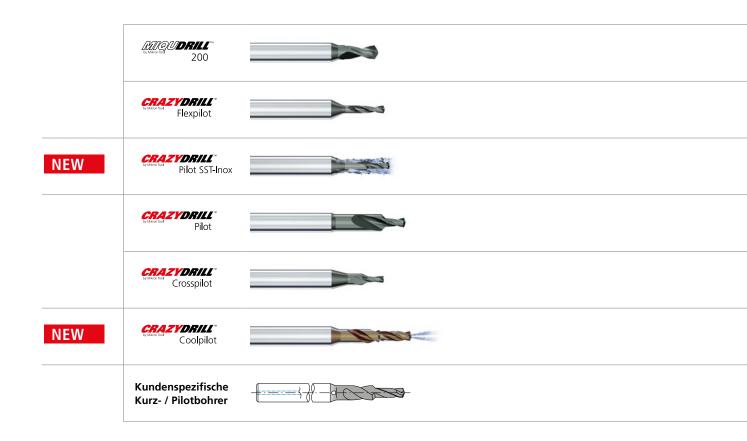
#### **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten

# crazy about pilot drilling



PILOTBOHREN UND KURZBOHREN


 $\equiv$ 

05

| ÜBERSICHT                             | 102 |    |
|---------------------------------------|-----|----|
| MIQUDRILL 200                         | 104 |    |
| CRAZYDRILL FLEXPILOT                  | 126 |    |
| CRAZYDRILL PILOT SST-INOX             | 152 | 05 |
| CRAZYDRILL PILOT                      | 164 |    |
| CRAZYDRILL CROSSPILOT                 | 178 |    |
| CRAZYDRILL COOLPILOT                  | 192 |    |
| KUNDENSPEZIFISCHE KURZ- / PILOTBOHRER | 206 |    |

### Übersicht

#### ZERSPANUNGSLÖSUNGEN



|                     | , v                            |         | Р                                   | M                   | K         | N                      | <b>S</b> <sub>1</sub>          | S <sub>2</sub>                        | S₃                   | H <sub>1</sub>                | H <sub>2</sub>                |       |
|---------------------|--------------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|-------|
| ø - Bereich<br>[mm] | max.<br>Bearbeitungs-<br>tiefe | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitzebe-<br>ständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC | Seite |
| 0.1 – 1.5           | bis zu<br>2.4 x d              |         | •                                   | Ø                   | •         | •                      | Ø                              | ×                                     | ×                    | •                             | Ø                             | 104   |
| 0.1 – 1.2           | 3 x d                          |         | •                                   | Ø                   | •         | •                      | Ø                              | •                                     | ×                    | Ø                             | Ø                             | 126   |
| 0.3 – 2.0           | 3 x d<br>+90°<br>Senkung       |         | ×                                   | •                   | ×         | 0                      | •                              | ×                                     | •                    | ×                             | ×                             | 152   |
| 0.4 – 6.0           | 2 x d<br>+90°<br>Senkung       |         | •                                   | •                   | •         | •                      | ×                              | •                                     | ×                    | •                             | ×                             | 164   |
| 0.4 – 6.0           | 2 x d                          |         | •                                   | 0                   | •         | •                      | ×                              | •                                     | ×                    | •                             | ×                             | 178   |
| 1.0 – 6.0           | 3 x d<br>+90°<br>Senkung       |         | ×                                   | •                   | ×         | ×                      | •                              | ×                                     | •                    | ×                             | ×                             | 192   |
| 0.1 – 32.0          | nach<br>Bedarf                 |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | •                             | 206   |

# MiquDrill 200





Pilotbohrer für MiquDrill 210 die präzise Ausführung der tieferen Nachfolgebohrung. Verfügbar ist der Kurzbohrer unbeschichtet in Durchmessern von 0.1 mm bis 1.5 mm, beschichtet von 0.3 mm bis 1.5 mm. Beide Versionen sind in kleinsten Abstufungen von 0.01 mm ab Lager erhältlich. Seine Nutzlängen liegen je nach Durchmesser zwischen 1.4 und 2.4 x d.

Dieser Präzisionsbohrer für die Mikrobearbeitung ist die optimale Lösung, wenn es um die Fertigung von kleinen und mittleren Losgrössen oder grosse Variantenvielfalt geht. Erstklassige Qualität und Prozesssicherheit wird garantiert. Er ist universell einsetzbar für Stähle (legiert und unlegiert), Gusseisen, Nichteisenmetalle und mit der beschichteten Version auch für gehärteten Stahl < 55 HRC.

## Präzise kurze Bohrungen

#### FÜR KLEINE SERIEN UND VARIANTENVIELFALT

MiquDrill 200 ist ideal für die perfekte Ausführung einer kurzen Bohrung und er garantiert auch als Pilotbohrer für MiquDrill 210 die präzise Ausführung der tieferen Nachfolgebohrung. Verfügbar ist der Kurzbohrer unbeschichtet in Durchmessern von 0.1 mm bis 1.5 mm, beschichtet von 0.3 mm bis 1.5 mm. Beide Versionen sind in kleinsten Abstufungen von 0.01 mm ab Lager erhältlich. Seine Nutzlängen liegen je nach Durchmesser zwischen 1.4 und 2.4 x d.

MiguDrill 200, Nutzlänge 1.4 - 2.4 x d, beschichtet und unbeschichtet

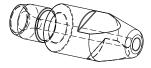
| Unbeschichtet                 | Beschichtet                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bohren mit Aussenkühlung      | Bohren mit Aussenkühlung    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                               | 1<br>2<br>3<br>4            | 1   SCHAFT Der präzise geschliffene Schaft garantiert hohe Rundlaufgenauigkeit und damit höchste Positionsgenauigkeit.  2   HARTMETALL Die Verwendung eines hochwertigen Hartmetalls ermöglicht hohe Bearbeitungsgeschwindigkeiten. Somit kann z.B. trotz ähnlichen Vorschüben wie bei HSS Werkzeugen durch hohe Schnittgeschwindigkeiten deutlich schneller gebohrt werden.  3   BESCHICHTUNG In der beschichteten Version ist der Bohrer auch für schwierige Materialien und gehärtete Stähle < 55 HRC geeignet und erreicht noch höhere Standzeiten.  4   SPIRALNUT Die Geometrie der Spiralnut sorgt für optimalen Spänefluss.  5   SPITZENGEOMETRIE Die Geometrie des Universalbohrers ist speziell für die Mikrobearbeitung ausgelegt. Hohe Prozesssicherheit und Produktivität sind gewährleistet.  6   DURCHMESSERBEREICH UND ABSTUFUNGEN In Durchmessern ab 0.1 mm und in kleinsten Durchmesserabstufungen von 0.01 mm ab Lager erhältlich. |
| MiquDrill 200 - unbeschichtet | MiquDrill 200 - beschichtet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# Vorteile und Anwendungen

#### PASST FÜR JEDE ANWENDUNG

HOHE PROZESSSICHERHEIT


Dank hoher Qualität

HOHE PRÄZISION

Dank enger Toleranzen

■ TIEFE PRODUKTIONSKOSTEN

Dank geringer Werkzeugkosten



#### TEIL

Schweissdüse

#### WERKSTOFF

CuZn39Pb3 / 2.0401 / UNS 38500

#### **BEARBEITUNG**

- Kurzbohren
- d = 0.5 mm
- Bohrtiefe 0.9 mm

#### WERKZEUG

Mikron Tool - MiquDrill 200 - beschichtet

| DATEN         | MIKRON TOOL                                              |
|---------------|----------------------------------------------------------|
| Werkzeugtyp   | MiquDrill 200 - Hartmetall - Beschichtet - Aussenkühlung |
| Artikelnummer | 2.MD.200050.1                                            |
| Schnittdaten  | $v_c = 45 \text{ m/min}$<br>f = 0.008 mm/U               |

05







| ANWENDUNGSBEREICHE | KOMPONENTEN<br>BEISPIELE       |
|--------------------|--------------------------------|
| Automobilbau       | Bauteil für Direkteinspritzung |
| Maschinenbau       | Motorenkomponente<br>Zylinder  |

| MATERIALGRUPPE                              |         | BEISPIELE      |                   |
|---------------------------------------------|---------|----------------|-------------------|
|                                             | Wr. Nr. | DIN            | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.                   | 1.0401  | C15            | 1015              |
| legierte Stähle                             | 1.3505  | 100Cr6         | 52100             |
|                                             | 1.2436  | X210CrW12      | D4 / D6           |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040  | GGG40          | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315  | AlMgSi1        | 6351              |
|                                             | 3.2163  | GD-AlSi9Cu3    | A380              |
|                                             | 2.004   | Cu-OF / CW008A | C10100            |
|                                             | 2.0321  | CuZn37 CW508L  | C27400            |
|                                             | 2.102   | CuSn6          | C51900            |
|                                             | 2.096   | CuAl9Mn2       | C63200            |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4    | 01                |



## MiquDrill 200 - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die beschichtete Variante von MiquDrill 200 ist universell einsetzbar für Stähle (legiert, unlegiert, gehärtet < 55 HRC), Gusseisen und Nichteisenmetalle (z.B. Alu mit hohem Siliziumanteil). Sein Durchmesserbereich geht von 0.3 mm bis 1.5 mm. Durchmesserabstufungen von 0.01 mm sind ab Lager erhältlich.

Seine Stärken: Kurze Bohrungen von 1.4 bis 2.4 x d in einem Bohrstoss fertig ausführen. Im Vergleich zum "MiquDrill 200 unbeschichtet" ist er die Lösung für höhere Anforderungen in Bezug auf Standzeiten. Als Pilotbohrer für MiquDrill 210 garantiert er eine hohe Positionsgenauigkeit sowie eine präzise zylindrische Führung.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von MiquDrill 200 - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

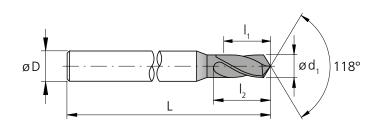
05

### PILOTBOHREN UND KURZBOHREN



Hartmetall





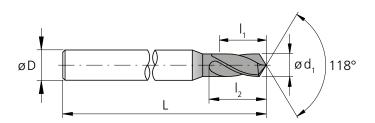

**Z**2










|   | Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|---|-------|---------------|----------|----------------|----------------|-----------|------|
|   | ■ ab  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| ĺ | •     | 2.MD.200030.1 | 0.30     | 0.45           | 0.8            | 1.0       | 30   |
|   | -     | 2.MD.200031.1 | 0.31     | 0.59           | 0.9            | 1.0       | 30   |
|   | -     | 2.MD.200032.1 | 0.32     | 0.58           | 0.9            | 1.0       | 30   |
|   | -     | 2.MD.200033.1 | 0.33     | 0.57           | 0.9            | 1.0       | 30   |
|   | •     | 2.MD.200034.1 | 0.34     | 0.56           | 0.9            | 1.0       | 30   |
|   | -     | 2.MD.200035.1 | 0.35     | 0.55           | 0.9            | 1.0       | 30   |
|   | -     | 2.MD.200036.1 | 0.36     | 0.64           | 1.0            | 1.0       | 30   |
|   | -     | 2.MD.200037.1 | 0.37     | 0.63           | 1.0            | 1.0       | 30   |
|   | •     | 2.MD.200038.1 | 0.38     | 0.62           | 1.0            | 1.0       | 30   |
|   | -     | 2.MD.200039.1 | 0.39     | 0.61           | 1.0            | 1.0       | 30   |
|   | -     | 2.MD.200040.1 | 0.40     | 0.60           | 1.0            | 1.0       | 30   |
|   | -     | 2.MD.200041.1 | 0.41     | 0.74           | 1.2            | 1.0       | 30   |
|   | •     | 2.MD.200042.1 | 0.42     | 0.73           | 1.2            | 1.0       | 30   |
|   | -     | 2.MD.200043.1 | 0.43     | 0.72           | 1.2            | 1.0       | 30   |
|   | -     | 2.MD.200044.1 | 0.44     | 0.71           | 1.2            | 1.0       | 30   |
|   | -     | 2.MD.200045.1 | 0.45     | 0.70           | 1.2            | 1.0       | 30   |
|   | •     | 2.MD.200046.1 | 0.46     | 0.84           | 1.3            | 1.0       | 30   |
|   | -     | 2.MD.200047.1 | 0.47     | 0.83           | 1.3            | 1.0       | 30   |
|   | -     | 2.MD.200048.1 | 0.48     | 0.82           | 1.3            | 1.0       | 30   |
|   | -     | 2.MD.200049.1 | 0.49     | 0.81           | 1.3            | 1.0       | 30   |
|   | -     | 2.MD.200050.1 | 0.50     | 0.90           | 1.4            | 1.0       | 30   |
|   | -     | 2.MD.200051.1 | 0.51     | 0.89           | 1.4            | 1.0       | 30   |
|   | -     | 2.MD.200052.1 | 0.52     | 0.88           | 1.4            | 1.0       | 30   |
|   | -     | 2.MD.200053.1 | 0.53     | 0.87           | 1.4            | 1.0       | 30   |
|   | -     | 2.MD.200054.1 | 0.54     | 0.86           | 1.4            | 1.0       | 30   |
|   |       | 2.MD.200055.1 | 0.55     | 0.85           | 1.4            | 1.0       | 30   |
|   | •     | 2.MD.200056.1 | 0.56     | 0.94           | 1.5            | 1.0       | 30   |
|   |       | 2.MD.200057.1 | 0.57     | 0.93           | 1.5            | 1.0       | 30   |
|   |       | 2.MD.200058.1 | 0.58     | 0.92           | 1.5            | 1.0       | 30   |
| Ì |       | 2.MD.200059.1 | 0.59     | 0.91           | 1.5            | 1.0       | 30   |

| Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •     | 2.MD.200060.1 | 0.60     | 0.90           | 1.5            | 1.0       | 30   |
| -     | 2.MD.200061.1 | 0.61     | 0.99           | 1.6            | 1.0       | 30   |
| -     | 2.MD.200062.1 | 0.62     | 0.98           | 1.6            | 1.0       | 30   |
| -     | 2.MD.200063.1 | 0.63     | 0.97           | 1.6            | 1.0       | 30   |
| -     | 2.MD.200064.1 | 0.64     | 0.96           | 1.6            | 1.0       | 30   |
| -     | 2.MD.200065.1 | 0.65     | 0.95           | 1.6            | 1.0       | 30   |
| -     | 2.MD.200066.1 | 0.66     | 1.14           | 1.8            | 1.0       | 30   |
| -     | 2.MD.200067.1 | 0.67     | 1.13           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200068.1 | 0.68     | 1.12           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200069.1 | 0.69     | 1.11           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200070.1 | 0.70     | 1.10           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200071.1 | 0.71     | 1.19           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200072.1 | 0.72     | 1.18           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200073.1 | 0.73     | 1.17           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200074.1 | 0.74     | 1.16           | 1.9            | 1.0       | 30   |
|       | 2.MD.200075.1 | 0.75     | 1.15           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200076.1 | 0.76     | 1.24           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200077.1 | 0.77     | 1.23           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200078.1 | 0.78     | 1.22           | 2.0            | 1.0       | 30   |
|       | 2.MD.200079.1 | 0.79     | 1.21           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200080.1 | 0.80     | 1.20           | 2.0            | 1.5       | 30   |
|       | 2.MD.200081.1 | 0.81     | 1.29           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200082.1 | 0.82     | 1.28           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200083.1 | 0.83     | 1.27           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200084.1 | 0.84     | 1.26           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200085.1 | 0.85     | 1.25           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200086.1 | 0.86     | 1.44           | 2.3            | 1.5       | 30   |
|       | 2.MD.200087.1 | 0.87     | 1.43           | 2.3            | 1.5       | 30   |
| •     | 2.MD.200088.1 | 0.88     | 1.42           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200089.1 | 0.89     | 1.41           | 2.3            | 1.5       | 30   |



# MiquDrill 200 - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ■ ab Lager | Artikelnummer | <b>d₁</b><br><b>h5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|---------------|--------------------------------|----------------------------|----------------------------|--------------------------|-----------|
| •          | 2.MD.200090.1 | 0.90                           | 1.40                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200091.1 | 0.91                           | 1.39                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200092.1 | 0.92                           | 1.38                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200093.1 | 0.93                           | 1.37                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200094.1 | 0.94                           | 1.36                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200095.1 | 0.95                           | 1.35                       | 2.3                        | 1.5                      | 30        |
| •          | 2.MD.200096.1 | 0.96                           | 1.54                       | 2.5                        | 1.5                      | 30        |
| •          | 2.MD.200097.1 | 0.97                           | 1.53                       | 2.5                        | 1.5                      | 30        |
| •          | 2.MD.200098.1 | 0.98                           | 1.52                       | 2.5                        | 1.5                      | 30        |
| •          | 2.MD.200099.1 | 0.99                           | 1.51                       | 2.5                        | 1.5                      | 30        |
| •          | 2.MD.200100.1 | 1.00                           | 1.50                       | 2.5                        | 1.5                      | 30        |
| •          | 2.MD.200101.1 | 1.01                           | 1.59                       | 2.6                        | 1.5                      | 30        |
| •          | 2.MD.200102.1 | 1.02                           | 1.58                       | 2.6                        | 1.5                      | 30        |
| -          | 2.MD.200103.1 | 1.03                           | 1.57                       | 2.6                        | 1.5                      | 30        |
| •          | 2.MD.200104.1 | 1.04                           | 1.56                       | 2.6                        | 1.5                      | 30        |
| -          | 2.MD.200105.1 | 1.05                           | 1.55                       | 2.6                        | 1.5                      | 30        |
| •          | 2.MD.200106.1 | 1.06                           | 1.74                       | 2.8                        | 1.5                      | 30        |
| •          | 2.MD.200107.1 | 1.07                           | 1.73                       | 2.8                        | 1.5                      | 30        |
| •          | 2.MD.200108.1 | 1.08                           | 1.72                       | 2.8                        | 1.5                      | 30        |
| -          | 2.MD.200109.1 | 1.09                           | 1.71                       | 2.8                        | 1.5                      | 30        |
| •          | 2.MD.200110.1 | 1.10                           | 1.70                       | 2.8                        | 1.5                      | 30        |
| -          | 2.MD.200111.1 | 1.11                           | 1.89                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200112.1 | 1.12                           | 1.88                       | 3.0                        | 1.5                      | 30        |
| -          | 2.MD.200113.1 | 1.13                           | 1.87                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200114.1 | 1.14                           | 1.86                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200115.1 | 1.15                           | 1.85                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200116.1 | 1.16                           | 1.84                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200117.1 | 1.17                           | 1.83                       | 3.0                        | 1.5                      | 30        |
| •          | 2.MD.200118.1 | 1.18                           | 1.82                       | 3.0                        | 1.5                      | 30        |
|            | 2.MD.200119.1 | 1.19                           | 1.81                       | 3.0                        | 1.5                      | 30        |
|            | 2.MD.200120.1 | 1.20                           | 1.80                       | 3.0                        | 1.5                      | 30        |

by Mikron Tool 200

Hartmetall





**Z**2





| ab Lager | Artikelnummer     | <b>d₁</b><br><b>h5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|----------|-------------------|--------------------------------|----------------------------|----------------------------|--------------------------|-----------|
|          |                   |                                |                            |                            |                          |           |
| •        | 2.MD.200121.1     | 1.21                           | 1.79                       | 3.0                        | 1.5                      | 30        |
| •        | 2.MD.200122.1     | 1.22                           | 1.78                       | 3.0                        | 1.5                      | 30        |
| •        | 2.MD.200123.1     | 1.23                           | 1.77                       | 3.0                        | 1.5                      | 30        |
| •        | 2.MD.200124.1     | 1.24                           | 1.76                       | 3.0                        | 1.5                      | 30        |
| •        | 2.MD.200125.1     | 1.25                           | 1.75                       | 3.0                        | 1.5                      | 30        |
| •        | 2.MD.200126.1     | 1.26                           | 2.04                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200127.1     | 1.27                           | 2.03                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200128.1     | 1.28                           | 2.02                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200129.1     | 1.29                           | 2.01                       | 3.3                        | 1.5                      | 30        |
| -        | 2.MD.200130.1     | 1.30                           | 2.00                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200131.1     | 1.31                           | 1.99                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200132.1     | 1.32                           | 1.98                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200133.1     | 1.33                           | 1.97                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200134.1     | 1.34                           | 1.96                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200135.1     | 1.35                           | 1.95                       | 3.3                        | 1.5                      | 30        |
| •        | 2.MD.200136.1     | 1.36                           | 2.14                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200137.1     | 1.37                           | 2.13                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200138.1     | 1.38                           | 2.12                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200139.1     | 1.39                           | 2.11                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200140.1     | 1.40                           | 2.10                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200141.1     | 1.41                           | 2.09                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200142.1     | 1.42                           | 2.08                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200143.1     | 1.43                           | 2.07                       | 3.5                        | 1.5                      | 30        |
| •        | 2.MD.200144.1     | 1.44                           | 2.06                       | 3.5                        | 1.5                      | 30        |
|          | 2.MD.200145.1     | 1.45                           | 2.05                       | 3.5                        | 1.5                      | 30        |
|          | 2.MD.200146.1     | 1.46                           | 2.34                       | 3.8                        | 1.5                      | 30        |
|          | 2.MD.200147.1     | 1.47                           | 2.33                       | 3.8                        | 1.5                      | 30        |
|          | 2.MD.200148.1     | 1.48                           | 2.32                       | 3.8                        | 1.5                      | 30        |
|          | 2.MD.200149.1     | 1.49                           | 2.31                       | 3.8                        | 1.5                      | 30        |
|          | 2.MD.200150.1     | 1.50                           | 2.30                       | 3.8                        | 2.0                      | 38        |
|          | h Lagar varfüghar |                                |                            |                            |                          |           |



### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                | Werkstoff-<br>gruppe | Werkstoff                                           | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$                | $Q_x$  |   |
|----------------|----------------------|-----------------------------------------------------|--------|--------------------|-------------------------|----------------------------------|----------------------|--------|---|
|                |                      |                                                     | 1.0301 | C10                | AISI 1010               |                                  |                      |        |   |
|                | P                    |                                                     | 1.0401 | C15                | AISI 1015               |                                  |                      |        |   |
|                |                      | Stähle unlegiert                                    | 1.1191 | C45E/CK45          | AISI 1045               | 40-70                            | siehe I₁             | -      |   |
| \              |                      | Rm < 800 N/mm <sup>2</sup>                          | 1.0044 | S275JR             | AISI 1020               |                                  |                      |        |   |
| VI //          |                      |                                                     | 1.0715 | 11SMn30            | AISI 1215               |                                  |                      |        |   |
| /              |                      |                                                     | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                      |        |   |
|                |                      |                                                     | 1.7131 | 16MnCr5            | AISI 5115               |                                  |                      |        |   |
|                |                      | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6             | AISI 52100              | 30-40                            | siehe I₁             | -      |   |
|                |                      |                                                     | 1.7225 | 42CrMo4            | AISI 4140               |                                  |                      |        |   |
|                |                      |                                                     | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |                      |        |   |
| 11             |                      |                                                     | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                      |        |   |
| Q <sub>1</sub> |                      | Werkzeugstähle                                      | 1.2436 | X210CrW12          | AISI D4/D6              | 20. 60                           | alaha I              |        |   |
| Qx             |                      | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 30-60                            | siehe I <sub>1</sub> | -      |   |
| Qx             |                      |                                                     | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                      |        |   |
|                |                      | Rostfreie Stähle-                                   | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |                      |        |   |
|                | M                    | ferritisch                                          | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |                      |        |   |
|                | IVI                  | Rostfreie Stähle-                                   | 1.4034 | X46Cr13            | AISI 420C               |                                  |                      |        |   |
|                |                      | martensitisch                                       | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |                      |        |   |
|                |                      | Rostfreie Stähle-                                   | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                      |        |   |
|                |                      | martensitisch – PH                                  | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                      |        |   |
|                |                      |                                                     | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |                      |        | - |
|                |                      | Rostfreie Stähle-                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |                      |        |   |
|                |                      | austenitisch                                        | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |                      |        |   |
|                |                      |                                                     | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |                      |        |   |
|                |                      |                                                     | 0.6020 | GG20               | ASTM 30                 |                                  |                      |        |   |
|                | K                    |                                                     | 0.6030 | GG30               | ASTM 40B                |                                  |                      |        |   |
|                |                      | Gusseisen                                           | 0.7040 | GGG40              | ASTM 60-40-18           | 30-70                            | siehe I <sub>1</sub> | -      |   |
|                |                      |                                                     | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |                      |        |   |
|                |                      | Aluminium                                           | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |                      |        |   |
|                | N                    | Knetlegierungen                                     | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 80-150                           | siehe I <sub>1</sub> | -      |   |
|                | 1.4                  | Aluminium                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  | T                    |        | - |
|                |                      | Druckgusslegierungen                                |        | GD-AlSi10Mg        | UNS A03590              | 60-100                           | siehe I <sub>1</sub> | -      |   |
|                |                      |                                                     | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40 ==                            | T                    |        | - |
|                |                      | Kupfer                                              | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 40-70                            | siehe I₁             | -      |   |
|                |                      | Managina Int. 15 1                                  | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40. 70                           | 2.1 1                |        |   |
|                |                      | Messing bleifrei                                    | 2.036  | CuZn40 CW509L      | UNS C28000              | 40-70                            | siehe I₁             | -      |   |
|                |                      | Messing, Bronze                                     | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 40, 450                          | 2.1 1                |        |   |
|                |                      | Rm < 400 N/mm <sup>2</sup>                          | 2.102  | CuSn6              | UNS C51900              | 40-150                           | siehe I <sub>1</sub> | -      |   |
|                |                      | Bronze                                              | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 20 40                            | cioha I              |        |   |
|                |                      | Rm < 600 N/mm <sup>2</sup>                          | 2.096  | CuAl9Mn2           | UNS C63200              | 30-40                            | siehe I <sub>1</sub> |        |   |
|                |                      |                                                     | 2.4856 |                    | Inconel 625             |                                  |                      |        |   |
|                | C                    | Hitzebeständige                                     | 2.4668 |                    | Inconel 718             |                                  |                      |        |   |
|                | $S_1$                | Stähle                                              | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |                      |        |   |
|                |                      |                                                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |                      |        |   |
|                |                      | Tit                                                 | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |                      |        |   |
|                | S <sub>2</sub>       | Titan rein                                          | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |                      |        |   |
|                | 2                    | Titon Logio                                         | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |                      |        |   |
|                |                      | Titan Legierungen                                   | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |                      |        |   |
|                | C                    | CrCo Logic                                          | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |                      |        |   |
|                | $S_3$                | CrCo-Legierungen                                    |        | CrCoMo28           | ASTM F1537              |                                  |                      |        |   |
|                | H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4        | AISI O1                 | 20-40                            | 0.5xd1               | 0.5xd1 |   |
|                | H <sub>2</sub>       | Stähle gehärtet<br>≥ 55 HRC                         | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                      |        |   |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                        | <b>f</b> [mm/U]               |                               |
|------------------------|-------------------------------|-------------------------------|
| Ød1<br>0.3-0.6 mm<br>f | Ød1<br>0.6–1.0 mm<br><b>f</b> | Ød1<br>1.0–1.5 mm<br><b>f</b> |
|                        |                               |                               |
| 0.009                  | 0.016                         | 0.023                         |
| 0.007                  | 0.011                         | 0.015                         |
| 0.004                  | 0.009                         | 0.014                         |
|                        |                               |                               |
|                        |                               |                               |
|                        |                               |                               |
|                        |                               |                               |
| 0.007                  | 0.013                         | 0.023                         |
| 0.010                  | 0.023                         | 0.038                         |
| 0.008                  | 0.019                         | 0.030                         |
| 0.008                  | 0.014                         | 0.023                         |
| 0.008                  | 0.014                         | 0.023                         |
| 0.008                  | 0.017                         | 0.030                         |
| 0.007                  | 0.011                         | 0.015                         |
|                        |                               |                               |
|                        |                               |                               |
|                        |                               |                               |
|                        |                               |                               |
| <br>0.003              | 0.004                         | 0.007                         |
| <br>                   |                               |                               |

# MiquDrill 200 - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die unbeschichtete Variante von MiquDrill 200 ist universell einsetzbar für Stähle (legiert, unlegiert) Gusseisen und Nichteisenmetalle (z.B. Kupfer, Messing). Sein Durchmesserbereich geht von 0.1 mm bis 1.5 mm. Durchmesserabstufungen von 0.01 mm sind ab Lager erhältlich.

Seine Stärken: Kurze Bohrungen von 1.4 bis 2.4 x d in einem Bohrstoss fertig ausführen. Als Pilotbohrer für MiquDrill 210 garantiert er eine hohe Positionsgenauigkeit sowie eine präzise zylindrische Führung.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von MiquDrill 200 - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

05

Hartmetall



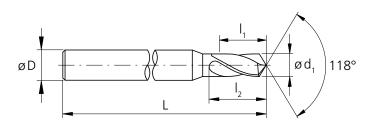



**Z**2



Nicht beschichtet




| Lage | Artikelnummer   | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|------|-----------------|----------|----------------|----------------|-----------|------|
| ■ ab | 7 ti dikemammer | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| -    | 2.MD.200010.0   | 0.10     | 0.15           | 0.3            | 1.0       | 30   |
| -    | 2.MD.200011.0   | 0.11     | 0.27           | 0.4            | 1.0       | 30   |
| -    | 2.MD.200012.0   | 0.12     | 0.26           | 0.4            | 1.0       | 30   |
| -    | 2.MD.200013.0   | 0.13     | 0.25           | 0.4            | 1.0       | 30   |
| •    | 2.MD.200014.0   | 0.14     | 0.24           | 0.4            | 1.0       | 30   |
| -    | 2.MD.200015.0   | 0.15     | 0.23           | 0.4            | 1.0       | 30   |
| •    | 2.MD.200016.0   | 0.16     | 0.34           | 0.5            | 1.0       | 30   |
| -    | 2.MD.200017.0   | 0.17     | 0.33           | 0.5            | 1.0       | 30   |
| •    | 2.MD.200018.0   | 0.18     | 0.32           | 0.5            | 1.0       | 30   |
| -    | 2.MD.200019.0   | 0.19     | 0.31           | 0.5            | 1.0       | 30   |
| •    | 2.MD.200020.0   | 0.20     | 0.30           | 0.5            | 1.0       | 30   |
|      | 2.MD.200021.0   | 0.21     | 0.44           | 0.7            | 1.0       | 30   |
|      | 2.MD.200022.0   | 0.22     | 0.43           | 0.7            | 1.0       | 30   |
| -    | 2.MD.200023.0   | 0.23     | 0.42           | 0.7            | 1.0       | 30   |
| -    | 2.MD.200024.0   | 0.24     | 0.41           | 0.7            | 1.0       | 30   |
| -    | 2.MD.200025.0   | 0.25     | 0.40           | 0.7            | 1.0       | 30   |
| •    | 2.MD.200026.0   | 0.26     | 0.49           | 8.0            | 1.0       | 30   |
|      | 2.MD.200027.0   | 0.27     | 0.48           | 8.0            | 1.0       | 30   |
| -    | 2.MD.200028.0   | 0.28     | 0.47           | 8.0            | 1.0       | 30   |
| -    | 2.MD.200029.0   | 0.29     | 0.46           | 8.0            | 1.0       | 30   |
| -    | 2.MD.200030.0   | 0.30     | 0.45           | 8.0            | 1.0       | 30   |
| -    | 2.MD.200031.0   | 0.31     | 0.59           | 0.9            | 1.0       | 30   |
| •    | 2.MD.200032.0   | 0.32     | 0.58           | 0.9            | 1.0       | 30   |
|      | 2.MD.200033.0   | 0.33     | 0.57           | 0.9            | 1.0       | 30   |
|      | 2.MD.200034.0   | 0.34     | 0.56           | 0.9            | 1.0       | 30   |
|      | 2.MD.200035.0   | 0.35     | 0.55           | 0.9            | 1.0       | 30   |
| •    | 2.MD.200036.0   | 0.36     | 0.64           | 1.0            | 1.0       | 30   |
|      | 2.MD.200037.0   | 0.37     | 0.63           | 1.0            | 1.0       | 30   |
| •    | 2.MD.200038.0   | 0.38     | 0.62           | 1.0            | 1.0       | 30   |
|      | 2.MD.200039.0   | 0.39     | 0.61           | 1.0            | 1.0       | 30   |
| •    | 2.MD.200040.0   | 0.40     | 0.60           | 1.0            | 1.0       | 30   |
| -    | 2.MD.200041.0   | 0.41     | 0.74           | 1.2            | 1.0       | 30   |
| •    | 2.MD.200042.0   | 0.42     | 0.73           | 1.2            | 1.0       | 30   |
| -    | 2.MD.200043.0   | 0.43     | 0.72           | 1.2            | 1.0       | 30   |
| •    | 2.MD.200044.0   | 0.44     | 0.71           | 1.2            | 1.0       | 30   |

| Lager | Artikelnummer      | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|--------------------|----------|----------------|----------------|-----------|------|
| ■ ab  | , a circuitaninici | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •     | 2.MD.200045.0      | 0.45     | 0.70           | 1.2            | 1.0       | 30   |
| •     | 2.MD.200046.0      | 0.46     | 0.84           | 1.3            | 1.0       | 30   |
| •     | 2.MD.200047.0      | 0.47     | 0.83           | 1.3            | 1.0       | 30   |
|       | 2.MD.200048.0      | 0.48     | 0.82           | 1.3            | 1.0       | 30   |
| •     | 2.MD.200049.0      | 0.49     | 0.81           | 1.3            | 1.0       | 30   |
|       | 2.MD.200050.0      | 0.50     | 0.90           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200051.0      | 0.51     | 0.89           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200052.0      | 0.52     | 0.88           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200053.0      | 0.53     | 0.87           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200054.0      | 0.54     | 0.86           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200055.0      | 0.55     | 0.85           | 1.4            | 1.0       | 30   |
| •     | 2.MD.200056.0      | 0.56     | 0.94           | 1.5            | 1.0       | 30   |
| •     | 2.MD.200057.0      | 0.57     | 0.93           | 1.5            | 1.0       | 30   |
| •     | 2.MD.200058.0      | 0.58     | 0.92           | 1.5            | 1.0       | 30   |
| •     | 2.MD.200059.0      | 0.59     | 0.91           | 1.5            | 1.0       | 30   |
| •     | 2.MD.200060.0      | 0.60     | 0.90           | 1.5            | 1.0       | 30   |
| •     | 2.MD.200061.0      | 0.61     | 0.99           | 1.6            | 1.0       | 30   |
| •     | 2.MD.200062.0      | 0.62     | 0.98           | 1.6            | 1.0       | 30   |
| •     | 2.MD.200063.0      | 0.63     | 0.97           | 1.6            | 1.0       | 30   |
| •     | 2.MD.200064.0      | 0.64     | 0.96           | 1.6            | 1.0       | 30   |
| •     | 2.MD.200065.0      | 0.65     | 0.95           | 1.6            | 1.0       | 30   |
| •     | 2.MD.200066.0      | 0.66     | 1.14           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200067.0      | 0.67     | 1.13           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200068.0      | 0.68     | 1.12           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200069.0      | 0.69     | 1.11           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200070.0      | 0.70     | 1.10           | 1.8            | 1.0       | 30   |
| •     | 2.MD.200071.0      | 0.71     | 1.19           | 1.9            | 1.0       | 30   |
|       | 2.MD.200072.0      | 0.72     | 1.18           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200073.0      | 0.73     | 1.17           | 1.9            | 1.0       | 30   |
|       | 2.MD.200074.0      | 0.74     | 1.16           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200075.0      | 0.75     | 1.15           | 1.9            | 1.0       | 30   |
| •     | 2.MD.200076.0      | 0.76     | 1.24           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200077.0      | 0.77     | 1.23           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200078.0      | 0.78     | 1.22           | 2.0            | 1.0       | 30   |
| •     | 2.MD.200079.0      | 0.79     | 1.21           | 2.0            | 1.0       | 30   |



# MiquDrill 200 - unbeschichtet

### **BOHREN MIT AUSSENKÜHLUNG**



| Lager | Artikelnummer        | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|----------------------|----------|----------------|----------------|-----------|------|
| ■ ab  | 7 ii cincentariiniei | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| -     | 2.MD.200080.0        | 0.80     | 1.20           | 2.0            | 1.5       | 30   |
| -     | 2.MD.200081.0        | 0.81     | 1.29           | 2.1            | 1.5       | 30   |
| -     | 2.MD.200082.0        | 0.82     | 1.28           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200083.0        | 0.83     | 1.27           | 2.1            | 1.5       | 30   |
| •     | 2.MD.200084.0        | 0.84     | 1.26           | 2.1            | 1.5       | 30   |
| -     | 2.MD.200085.0        | 0.85     | 1.25           | 2.1            | 1.5       | 30   |
| -     | 2.MD.200086.0        | 0.86     | 1.44           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200087.0        | 0.87     | 1.43           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200088.0        | 0.88     | 1.42           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200089.0        | 0.89     | 1.41           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200090.0        | 0.90     | 1.40           | 2.3            | 1.5       | 30   |
| •     | 2.MD.200091.0        | 0.91     | 1.39           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200092.0        | 0.92     | 1.38           | 2.3            | 1.5       | 30   |
| •     | 2.MD.200093.0        | 0.93     | 1.37           | 2.3            | 1.5       | 30   |
| •     | 2.MD.200094.0        | 0.94     | 1.36           | 2.3            | 1.5       | 30   |
| -     | 2.MD.200095.0        | 0.95     | 1.35           | 2.3            | 1.5       | 30   |
| •     | 2.MD.200096.0        | 0.96     | 1.54           | 2.5            | 1.5       | 30   |
| -     | 2.MD.200097.0        | 0.97     | 1.53           | 2.5            | 1.5       | 30   |
| -     | 2.MD.200098.0        | 0.98     | 1.52           | 2.5            | 1.5       | 30   |
| -     | 2.MD.200099.0        | 0.99     | 1.51           | 2.5            | 1.5       | 30   |
| •     | 2.MD.200100.0        | 1.00     | 1.50           | 2.5            | 1.5       | 30   |
| -     | 2.MD.200101.0        | 1.01     | 1.59           | 2.6            | 1.5       | 30   |
| •     | 2.MD.200102.0        | 1.02     | 1.58           | 2.6            | 1.5       | 30   |
| -     | 2.MD.200103.0        | 1.03     | 1.57           | 2.6            | 1.5       | 30   |
| •     | 2.MD.200104.0        | 1.04     | 1.56           | 2.6            | 1.5       | 30   |
| -     | 2.MD.200105.0        | 1.05     | 1.55           | 2.6            | 1.5       | 30   |
| -     | 2.MD.200106.0        | 1.06     | 1.74           | 2.8            | 1.5       | 30   |
| -     | 2.MD.200107.0        | 1.07     | 1.73           | 2.8            | 1.5       | 30   |
|       | 2.MD.200108.0        | 1.08     | 1.72           | 2.8            | 1.5       | 30   |
|       | 2.MD.200109.0        | 1.09     | 1.71           | 2.8            | 1.5       | 30   |
| -     | 2.MD.200110.0        | 1.10     | 1.70           | 2.8            | 1.5       | 30   |
| -     | 2.MD.200111.0        | 1.11     | 1.89           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200112.0        | 1.12     | 1.88           | 3.0            | 1.5       | 30   |
|       | 2.MD.200113.0        | 1.13     | 1.87           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200114.0        | 1.14     | 1.86           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200115.0        | 1.15     | 1.85           | 3.0            | 1.5       | 30   |
|       |                      |          |                |                |           |      |

<sup>■</sup> Ab Lager verfügbar, Mindestbestellmenge 5 Stk.

05

Hartmetall





**Z**2



Nicht beschichtet

| Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|       | 2.MD.200116.0 | 1.16     | 1.84           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200117.0 | 1.17     | 1.83           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200118.0 | 1.18     | 1.82           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200119.0 | 1.19     | 1.81           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200120.0 | 1.20     | 1.80           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200121.0 | 1.21     | 1.79           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200122.0 | 1.22     | 1.78           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200123.0 | 1.23     | 1.77           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200124.0 | 1.24     | 1.76           | 3.0            | 1.5       | 30   |
| -     | 2.MD.200125.0 | 1.25     | 1.75           | 3.0            | 1.5       | 30   |
| •     | 2.MD.200126.0 | 1.26     | 2.04           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200127.0 | 1.27     | 2.03           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200128.0 | 1.28     | 2.02           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200129.0 | 1.29     | 2.01           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200130.0 | 1.30     | 2.00           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200131.0 | 1.31     | 1.99           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200132.0 | 1.32     | 1.98           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200133.0 | 1.33     | 1.97           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200134.0 | 1.34     | 1.96           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200135.0 | 1.35     | 1.95           | 3.3            | 1.5       | 30   |
| •     | 2.MD.200136.0 | 1.36     | 2.14           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200137.0 | 1.37     | 2.13           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200138.0 | 1.38     | 2.12           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200139.0 | 1.39     | 2.11           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200140.0 | 1.40     | 2.10           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200141.0 | 1.41     | 2.09           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200142.0 | 1.42     | 2.08           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200143.0 | 1.43     | 2.07           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200144.0 | 1.44     | 2.06           | 3.5            | 1.5       | 30   |
| •     | 2.MD.200145.0 | 1.45     | 2.05           | 3.5            | 1.5       | 30   |
| -     | 2.MD.200146.0 | 1.46     | 2.34           | 3.8            | 1.5       | 30   |
| •     | 2.MD.200147.0 | 1.47     | 2.33           | 3.8            | 1.5       | 30   |
| •     | 2.MD.200148.0 | 1.48     | 2.32           | 3.8            | 1.5       | 30   |
| •     | 2.MD.200149.0 | 1.49     | 2.31           | 3.8            | 1.5       | 30   |
| •     | 2.MD.200150.0 | 1.50     | 2.30           | 3.8            | 2.0       | 38   |



### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                        | Werkstoff-<br>gruppe  | Werkstoff                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_1$        |  |
|----------------------------------------|-----------------------|-----------------------------|--------|--------------------|-------------------------|----------------------------------|-----------------------|--|
|                                        |                       | -                           | 1 0201 | C10                | AICI 1010               |                                  |                       |  |
|                                        | D                     |                             | 1.0301 | C15                | AISI 1010<br>AISI 1015  |                                  |                       |  |
|                                        | P                     | Stähle unlegiert            | 1.1191 | C45E/CK45          |                         | 20. 60                           | -1-11                 |  |
|                                        |                       | Rm < 800 N/mm <sup>2</sup>  |        |                    | AISI 1045               | 30-60                            | siehe I <sub>1</sub>  |  |
| \/( ///                                |                       |                             | 1.0044 | S275JR             | AISI 1020               |                                  |                       |  |
|                                        |                       |                             | 1.0715 | 11SMn30            | AISI 1215               |                                  |                       |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                       |                             | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                       |  |
|                                        |                       | Stähle niedriglegiert       | 1.7131 | 16MnCr5            | AISI 5115               | 25. 40                           |                       |  |
|                                        |                       | Rm > 900 N/mm <sup>2</sup>  | 1.3505 | 100Cr6             | AISI 52100              | 25-40                            | siehe I₁              |  |
|                                        |                       |                             | 1.7225 | 42CrMo4            | AISI 4140               |                                  |                       |  |
| d₁<br>  <del></del>                    |                       |                             | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |                       |  |
| ////                                   |                       | Werkzeugstähle              | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                       |  |
| V//                                    |                       | hochlegiert                 | 1.2436 | X210CrW12          | AISI D4/D6              | 25-40                            | siehe I <sub>1</sub>  |  |
|                                        |                       | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 23 .0                            | Sierie II             |  |
|                                        |                       |                             | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                       |  |
|                                        |                       | Rostfreie Stähle-           | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |                       |  |
|                                        | M                     | ferritisch                  | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |                       |  |
|                                        | IVI                   | Rostfreie Stähle-           | 1.4034 | X46Cr13            | AISI 420C               |                                  |                       |  |
|                                        |                       | martensitisch               | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |                       |  |
|                                        |                       | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                       |  |
|                                        |                       | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                       |  |
|                                        |                       |                             | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |                       |  |
|                                        |                       | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |                       |  |
|                                        |                       | austenitisch                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |                       |  |
|                                        |                       |                             | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |                       |  |
|                                        |                       |                             |        |                    |                         |                                  |                       |  |
|                                        | 1.7                   |                             | 0.6020 | GG20               | ASTM 400                |                                  |                       |  |
|                                        | Gusseisen             | 0.6030                      | GG30   | ASTM 40B           | 25-60                   | siehe I,                         |                       |  |
|                                        |                       |                             | 0.7040 | GGG40              | ASTM 60-40-18           |                                  |                       |  |
|                                        |                       |                             | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |                       |  |
|                                        |                       | Aluminium                   | 3.2315 | AlMgSi1            | ASTM 6351               | 50-100                           | siehe I₁              |  |
|                                        | N.                    | Knetlegierungen             | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  | Sierie ii             |  |
|                                        | -                     | Aluminium                   | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 40-80                            | siehe I,              |  |
|                                        |                       | Druckgusslegierungen        | 3.2381 | GD-AlSi10Mg        | UNS A03590              |                                  | Sierie II             |  |
|                                        |                       | Kupfer                      | 2.004  | Cu-OF / CW008A     | UNS C10100              | 30-50                            | siehe I₁              |  |
|                                        |                       | Kupiei                      | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 30-30                            | Sierie II             |  |
|                                        |                       | Massing blaifrai            | 2.0321 | CuZn37 CW508L      | UNS C27400              | 30-50                            | siehe I <sub>1</sub>  |  |
|                                        |                       | Messing bleifrei            | 2.036  | CuZn40 CW509L      | UNS C28000              | 30-30                            | Sierie I <sub>1</sub> |  |
|                                        |                       | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 20 00                            | sioho l               |  |
|                                        |                       | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6              | UNS C51900              | 30-80                            | siehe I <sub>1</sub>  |  |
|                                        |                       | Bronze                      | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 25 40                            | alaha I               |  |
|                                        |                       | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2           | UNS C63200              | 25-40                            | siehe I <sub>1</sub>  |  |
|                                        |                       |                             | 2.4856 |                    | Inconel 625             |                                  |                       |  |
|                                        | C                     | Hitzebeständige             | 2.4668 |                    | Inconel 718             |                                  |                       |  |
|                                        | $S_1$                 | Stähle                      | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |                       |  |
|                                        |                       | Starrie                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |                       |  |
|                                        |                       |                             | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |                       |  |
|                                        | C                     | Titan rein                  | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |                       |  |
|                                        | S <sub>2</sub>        |                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |                       |  |
|                                        | _                     | Titan Legierungen           |        |                    |                         |                                  |                       |  |
|                                        |                       |                             | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |                       |  |
|                                        | <b>S</b> <sub>3</sub> | CrCo-Legierungen            | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |                       |  |
|                                        | - 3                   |                             |        | CrCoMo28           | ASTM F1537              |                                  |                       |  |
|                                        | H₁                    | Stähle gehärtet<br>< 55 HRC | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |                       |  |
|                                        | H                     | Stähle gehärtet<br>≥ 55 HRC | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                       |  |



by Mikron Tool 200

ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                               | <b>f</b> [m                   | m/U]                          |                               |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Ød1<br>0.1-0.3 mm<br><b>f</b> | Ød1<br>0.3-0.6 mm<br><b>f</b> | Ød1<br>0.6–1.0 mm<br><b>f</b> | Ød1<br>1.0–1.5 mm<br><b>f</b> |
|                               |                               |                               |                               |
| 0.003                         | 0.009                         | 0.016                         | 0.023                         |
| 0.003                         | 0.007                         | 0.011                         | 0.015                         |
| 0.002                         | 0.004                         | 0.009                         | 0.014                         |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
| 0.003                         | 0.007                         | 0.013                         | 0.023                         |
| 0.006                         | 0.010                         | 0.023                         | 0.038                         |
| 0.005                         | 0.008                         | 0.019                         | 0.030                         |
| 0.004                         | 0.008                         | 0.014                         | 0.023                         |
| 0.004                         | 0.008                         | 0.014                         | 0.023                         |
| 0.005                         | 0.008                         | 0.017                         | 0.030                         |
| 0.003                         | 0.007                         | 0.011                         | 0.015                         |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
|                               |                               |                               |                               |
|                               | Empfohlen: MiquDr             | ill 200 - beschichtet         | <u>I</u>                      |
|                               |                               |                               |                               |
|                               |                               |                               |                               |



#### PRÄZISE UND SCHNELLE BOHRUNG 1.4 BIS 2.4 X D

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

## $\equiv$

#### MiquDrill 200

Der Bohrer MiquDrill 200 ermöglicht eine präzise Kurzbohrung und einen stabilen Bearbeitungsprozess. Er eignet sich auch perfekt als Pilotbohrer für MiquDrill 210.

Die robuste Bauweise des Werkzeuges und seine Leistungen ermöglichen eine maximale Positionsgenauigkeit sowie Rechtwinkligkeit und Geradheit der Folgebohrung.

Die Verwendung von MiquDrill 200 als Pilotbohrer trägt zu einer höheren Standzeit des Folgebohrers MiquDrill 210 bei.

05

BOHRUNG IN EINEM BOHRSTOSS (ALLE MATERIALIEN MIT AUSNAHME VON GEHÄRTETEM STAHL)

#### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

Mit MiquDrill 200 bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss (siehe Schnittdatentabelle).



#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



### BOHRUNG GEMÄSS DIN 66025 / PAL (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)

#### Bohrung gemäss DIN 66025 / PAL

G83 Tiefbohrzyklus mit Spanbruch und Entspänen Q = Tiefe des jeweiligen Bohrstosses

#### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

Mit MiquDrill 200 bis maximale Bohrtiefe Q<sub>1</sub> (siehe Schnittdatentabelle) in einem einzigen Bohrstoss, danach entspänen.



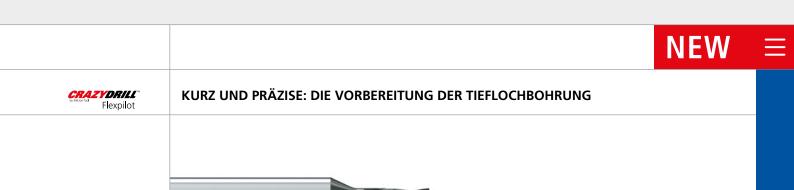
Weitere Bohrstösse Qx gemäss Schnittdatentabelle, anschliessend entspänen.



#### Bemerkung:

Zwischen den Bohrstössen komplett aus der Bohrung fahren.

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.


05



# NEW

# CrazyDrill Flexpilot





Mit CrazyDrill Flexpilot bietet Mikron Tool einen Pilotbohrer für die Vorbereitung von tiefen Bohrungen mit CrazyDrill Flex an. Mit Bohrtiefen bis zu 3 x d eignet er sich auch als Mikro-Kurzbohrer.

Der Durchmesserbereich von 0.1 bis 1.2 mm entspricht den Tieflochbohrern der Familie CrazyDrill Flex.

Neu ist eine beschichtete Variante (ab Ø 0.2 mm) für Stahl, passend zum beschichteten CrazyDrill Flex Steel, erhältlich.

Mit CrazyDrill Flexpilot erfolgen Zentrierung und Pilotbohrung bis zu 3 x d in einem einzigen Arbeitsgang. So wird der Nachfolgebohrer in der Pilotbohrung zylindrisch geführt, was eine hohe Geradheit der Folgebohrung ermöglicht. Die Geometrien dieses Pilotbohrers entsprechen den unterschiedlichen Varianten des Mikro-Tieflochbohrers CrazyDrill Flex (Steel und Titanium), so schafft er für jedes Material die perfekte Ausgangslage für Tiefbohrungen.

Eine optimale Abstimmung der Durchmessertoleranzen und Spitzenwinkel ermöglicht eine präzise Tieflochbohrung ohne messbare Übergänge von Pilot- zu Folgebohrung, sorgt für Prozesssicherheit und erhöht zusätzlich die Standzeit des Nachfolgebohrers wesentlich. Die spezielle Hochleistungsgeometrie von CrazyDrill Flexpilot ermöglicht eine hohe Bearbeitungsgeschwindigkeit, die optimale Beschichtung eine hohe Verschleissfestigkeit.



## Mikrobohrungen gut vorbereitet

#### FÜR PILOTBOHRUNGEN ODER KURZBOHRUNGEN AB Ø 0.1 MM

Mit CrazyDrill Flexpilot bietet Mikron Tool einen Pilotbohrer für die Vorbereitung von tiefen Bohrungen mit CrazyDrill Flex an. Mit Bohrtiefen bis zu 3 x d eignet er sich auch als Mikro-Kurzbohrer. Der Durchmesserbereich von 0.1 bis 1.2 mm entspricht den Tieflochbohrern der Familie CrazyDrill Flex. Neu ist eine beschichtete Variante (ab Ø 0.2 mm) für Stahl, passend zum beschichteten CrazyDrill Flex Steel, erhältlich.

- CrazyDrill Flexpilot Steel, Bohrtiefe 3 x d, Aussenkühlung, beschichtet und unbeschichtet
- CrazyDrill Flexpilot Titanium, Bohrtiefe 3 x d, Aussenkühlung, unbeschichtet

# CRAZYDRILL™ by Mikron Tool Flexpilot

| Steel                                                               | Titanium                           |                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Beschichtet / Unbeschichtet</li><li>Aussenkühlung</li></ul> | ■ Unbeschichtet<br>■ Aussenkühlung | NEW                                                                                                                                                                                                                                                                                              |
| ■ Ø0.2 - 1.2 mm mit Beschichtung<br>Ø0.1 - 1.2 mm ohne Beschichtung | ■ Ø0.1 - 1.2 mm                    | <b>1   SCHAFT</b> Der verstärkte Hartmetallschaft garantiert  Stabilität, hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.                                                                                                                                                              |
|                                                                     |                                    | 2   SPIRALNUTEN  Die Geometrie der Spiralnuten ist an die zu bearbeitenden Stähle oder langspanige Materialien wie Titan oder Kupfer angepasst.  Damit wird ein guter Spänebruch und eine rasche Späneabfuhr garantiert.                                                                         |
| 1                                                                   | 1                                  | 3   BESCHICHTUNG  Je nach Ausführung sind die Bohrer mit einer eXedur RIP Beschichtung versehen. Speziell entwickelt für höchste Leistung, ist sie verschleiss- und hitzeresistent, verhindert ein Verkleben der Späne und unterstützt den Spänetransport. Das Ergebnis ist eine hohe Standzeit. |
| 2                                                                   | 2                                  | 4   BOHRERSPITZENGEOMETRIE  Dank einem raffinierten Spitzenanschliff ist nur eine geringe Eindringkraft beim Bohren notwendig (Reduktion um 50% der Vorschubkraft), dadurch geringe Wärmeentwicklung und beste Positionsgenauigkeit. Höchste Bohrgeschwindigkeiten sind so möglich.              |
| <b>4 6</b>                                                          | 5<br>4<br>6                        | 5   SCHNEIDECKENSCHUTZ / SCHNEIDENGEOMETRIE Der Hartmetallbohrer hat eine spezielle Schneidengeometrie. Diese erlaubt ein schnelles Bohren ohne Verletzen der Schneidecken.                                                                                                                      |
|                                                                     |                                    | 6   DURCHMESSERBEREICH  Angepasst an die Abmessungen der  CrazyDrill Flex Familie hat jeder Tiefloch- bohrer sein passendes Pilotwerkzeug.                                                                                                                                                       |
| CrazyDrill Flexpilot Steel                                          | CrazyDrill Flexpilot Titanium      |                                                                                                                                                                                                                                                                                                  |

05

Bohrerspitze



## NEW

# Vorteile und Anwendungen

### DIE IDEALE ERGÄNZUNG ZU CRAZYDRILL FLEX STEEL / TITANIUM

KÜRZERE BEARBEITUNGSZEIT | Dank hoher Bohrgeschwindigkeiten

■ ERHÖHTE STANDZEIT | Bis zu 2 Mal höher

HOHE PROZESSSICHERHEIT | Dank neuer Schneidengeometrie

HOHE PRÄZISION Dank enger Toleranzen



#### TEIL

Zylinder

#### WERKSTOFF

100Cr6 / 1.3505 / AISI 52100

#### **BEARBEITUNG**

- Pilotbohren
- d = 1 mm
- Bohrtiefe 3 mm

#### WERKZEUG

Mikron Tool - CrazyDrill Flexpilot Steel - beschichtet

| DATEN         | MIKRON TOOL                                                     |
|---------------|-----------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Flexpilot - Hartmetall - Beschichtet - Aussenkühlung |
| Artikelnummer | 2.PFS.100.1                                                     |
| Schnittdaten  | $v_c = 40 \text{ m/min}$<br>f = 0.042 mm/U                      |



















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE               |
|-----------------------|----------------------------------------|
| Dentaltechnik         | Zahnimplantate                         |
| Raum- und Luftfahrt   | Einspritzdüse                          |
| Medizintechnik        | Chirurgisches Instrument               |
| Formenbau             | Entlüftungsbohrung im<br>Glasformenbau |
| Automobilbau          | Drehteil                               |
| Maschinenbau          | Sprühkopfdüse                          |
| Uhrenindustrie        | Glieder für Uhrenband                  |
| Elektronik / Elektrik | Elektromagnetisches Relais             |

| MATERIALGRUPPE                   |         | BEISPIELE      |                   |  |
|----------------------------------|---------|----------------|-------------------|--|
|                                  | Wr. Nr. | DIN            | AISI / ASTM / UNS |  |
| <b>Gruppe P</b><br>Unlegierte u. | 1.0401  | C15            | 1015              |  |
| legierte Stähle                  | 1.3505  | 100Cr6         | 52100             |  |
|                                  | 1.2436  | X210CrW12      | D4 / D6           |  |
| <b>Gruppe K</b><br>Gusseisen     | 0.7040  | GGG40          | 60-40-18          |  |
| Gruppe N<br>Nichteisenmetalle    | 3.2315  | AlMgSi1        | 6351              |  |
|                                  | 3.2163  | GD-AlSi9Cu3    | A380              |  |
|                                  | 2.004   | Cu-OF / CW008A | C10100            |  |
|                                  | 2.102   | CuSn6          | C51900            |  |
|                                  | 2.096   | CuAl9Mn2       | C63200            |  |
|                                  | 2.4665  | NiCr22Fe18Mo   | HASTELLOY X       |  |
| Gruppe S2<br>Titan rein u.       | 3.7035  | Gr.2           | B348 / F67        |  |
| Titan Legierungen                | 3.7165  | TiAl6V4        | B348 / F136       |  |

### **NEW**

# CrazyDrill Flexpilot Steel - 3 x d - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



CrazyDrill Flexpilot Steel beschichtet eignet sich als Pilotbohrer bzw. Kurzbohrer bis zu einer Bohrtiefe von 3 x d für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Die Pilotbohrung führt den Folgebohrer CrazyDrill Flex Steel beschichtet perfekt und unterstützt damit die Geradheit der tiefen Bohrung. Durch die stabile Konstruktion erreicht der Pilotbohrer eine hohe Positionsgenauigkeit. Zudem garantiert er dem Nachfolgebohrer eine wesentlich höhere Standzeit, da durch die beiden aufeinander abgestimmten Spitzenwinkel von 140° die Gefahr von Schneideckenausbrüchen verringert wird.

Die beschichtete Variante eignet sich im Vgl. zur unbeschichteten Variante zum Bohren von grösseren Serien. Auch die Oberflächenqualität profitiert von der Hochleistungsbeschichtung.

Auch als Kurzbohrer, wo er dank seiner stabilen Konstruktion (verstärkter Schaft) und Präzision eine hohe Bohrungsqualität erreicht, hat sich CrazyDrill Flexpilot bewährt. Dass er mit hohen Schnitt- und Vorschubgeschwindigkeiten prozesssicher eingesetzt werden kann, verdankt er seiner innovativen Bohrerspitzengeometrie.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

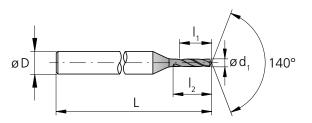
#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flexpilot Steel - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

# CRAZYDRILL<sup>TM</sup> by Mikron Tool Flexpilot STEEL

Hartmetall






**Z**2





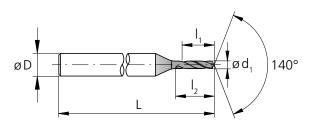


| ab Lager<br>auf Anfrage | Artikelnummer | d₁<br>k4 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab L<br>∆ auf /       |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|                         | 2.PFS.020.1   | 0.20     | 0.60           | 1.0            | 3         | 40   |
| Δ                       | 2.PFS.021.1   | 0.21     | 0.63           | 1.1            | 3         | 40   |
| Δ                       | 2.PFS.022.1   | 0.22     | 0.66           | 1.1            | 3         | 40   |
| Δ                       | 2.PFS.023.1   | 0.23     | 0.69           | 1.2            | 3         | 40   |
| Δ                       | 2.PFS.024.1   | 0.24     | 0.72           | 1.2            | 3         | 40   |
|                         | 2.PFS.025.1   | 0.25     | 0.75           | 1.3            | 3         | 40   |
| Δ                       | 2.PFS.026.1   | 0.26     | 0.78           | 1.3            | 3         | 40   |
| Δ                       | 2.PFS.027.1   | 0.27     | 0.81           | 1.4            | 3         | 40   |
| Δ                       | 2.PFS.028.1   | 0.28     | 0.84           | 1.4            | 3         | 40   |
| Δ                       | 2.PFS.029.1   | 0.29     | 0.87           | 1.5            | 3         | 40   |
|                         | 2.PFS.030.1   | 0.30     | 0.90           | 1.5            | 3         | 40   |
| Δ                       | 2.PFS.031.1   | 0.31     | 0.93           | 1.6            | 3         | 40   |
| Δ                       | 2.PFS.032.1   | 0.32     | 0.96           | 1.6            | 3         | 40   |
| Δ                       | 2.PFS.033.1   | 0.33     | 0.99           | 1.7            | 3         | 40   |
| Δ                       | 2.PFS.034.1   | 0.34     | 1.02           | 1.7            | 3         | 40   |
|                         | 2.PFS.035.1   | 0.35     | 1.05           | 1.8            | 3         | 40   |
| Δ                       | 2.PFS.036.1   | 0.36     | 1.08           | 1.8            | 3         | 40   |
| Δ                       | 2.PFS.037.1   | 0.37     | 1.11           | 1.9            | 3         | 40   |
| Δ                       | 2.PFS.038.1   | 0.38     | 1.14           | 1.9            | 3         | 40   |
| Δ                       | 2.PFS.039.1   | 0.39     | 1.17           | 2.0            | 3         | 40   |
|                         | 2.PFS.040.1   | 0.40     | 1.20           | 2.0            | 3         | 40   |
| Δ                       | 2.PFS.041.1   | 0.41     | 1.23           | 2.1            | 3         | 40   |
| Δ                       | 2.PFS.042.1   | 0.42     | 1.26           | 2.1            | 3         | 40   |
| Δ                       | 2.PFS.043.1   | 0.43     | 1.29           | 2.2            | 3         | 40   |
| Δ                       | 2.PFS.044.1   | 0.44     | 1.32           | 2.2            | 3         | 40   |
|                         | 2.PFS.045.1   | 0.45     | 1.35           | 2.3            | 3         | 40   |
| Δ                       | 2.PFS.046.1   | 0.46     | 1.38           | 2.3            | 3         | 40   |
| Δ                       | 2.PFS.047.1   | 0.47     | 1.41           | 2.4            | 3         | 40   |
| Δ                       | 2.PFS.048.1   | 0.48     | 1.44           | 2.4            | 3         | 40   |
| Δ                       | 2.PFS.049.1   | 0.49     | 1.47           | 2.5            | 3         | 40   |
| •                       | 2.PFS.050.1   | 0.50     | 1.50           | 2.5            | 3         | 40   |
| Δ                       | 2.PFS.051.1   | 0.51     | 1.53           | 2.6            | 3         | 40   |
| Δ                       | 2.PFS.052.1   | 0.52     | 1.56           | 2.6            | 3         | 40   |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte


CrazyDrill Flex Steel - beschichtet



## NEW

# CrazyDrill Flexpilot Steel - 3 x d - beschichtet

### **BOHREN MIT AUSSENKÜHLUNG**



| Lager<br>Anfrage | Artikelnummer | d₁<br>k4 | I <sub>1</sub> | $I_2$ | D<br>(h6) | L    |
|------------------|---------------|----------|----------------|-------|-----------|------|
| ■ ab L<br>∆ auf  |               | [mm]     | [mm]           | [mm]  | [mm]      | [mm] |
| Δ                | 2.PFS.053.1   | 0.53     | 1.59           | 2.7   | 3         | 40   |
| Δ                | 2.PFS.054.1   | 0.54     | 1.62           | 2.7   | 3         | 40   |
| •                | 2.PFS.055.1   | 0.55     | 1.65           | 2.8   | 3         | 40   |
| Δ                | 2.PFS.056.1   | 0.56     | 1.68           | 2.8   | 3         | 40   |
| Δ                | 2.PFS.057.1   | 0.57     | 1.71           | 2.9   | 3         | 40   |
| Δ                | 2.PFS.058.1   | 0.58     | 1.74           | 2.9   | 3         | 40   |
| Δ                | 2.PFS.059.1   | 0.59     | 1.77           | 3.0   | 3         | 40   |
| •                | 2.PFS.060.1   | 0.60     | 1.80           | 3.0   | 3         | 40   |
| Δ                | 2.PFS.061.1   | 0.61     | 1.83           | 3.1   | 3         | 40   |
| Δ                | 2.PFS.062.1   | 0.62     | 1.86           | 3.1   | 3         | 40   |
| Δ                | 2.PFS.063.1   | 0.63     | 1.89           | 3.2   | 3         | 40   |
| Δ                | 2.PFS.064.1   | 0.64     | 1.92           | 3.2   | 3         | 40   |
| •                | 2.PFS.065.1   | 0.65     | 1.95           | 3.3   | 3         | 40   |
| Δ                | 2.PFS.066.1   | 0.66     | 1.98           | 3.3   | 3         | 40   |
| Δ                | 2.PFS.067.1   | 0.67     | 2.01           | 3.4   | 3         | 40   |
| Δ                | 2.PFS.068.1   | 0.68     | 2.04           | 3.4   | 3         | 40   |
| Δ                | 2.PFS.069.1   | 0.69     | 2.07           | 3.5   | 3         | 40   |
| •                | 2.PFS.070.1   | 0.70     | 2.10           | 3.5   | 3         | 40   |
| Δ                | 2.PFS.071.1   | 0.71     | 2.13           | 3.6   | 3         | 40   |
| Δ                | 2.PFS.072.1   | 0.72     | 2.16           | 3.6   | 3         | 40   |
| Δ                | 2.PFS.073.1   | 0.73     | 2.19           | 3.7   | 3         | 40   |
| Δ                | 2.PFS.074.1   | 0.74     | 2.22           | 3.7   | 3         | 40   |
| •                | 2.PFS.075.1   | 0.75     | 2.25           | 3.8   | 3         | 40   |
| Δ                | 2.PFS.076.1   | 0.76     | 2.28           | 3.8   | 3         | 40   |
| Δ                | 2.PFS.077.1   | 0.77     | 2.31           | 3.9   | 3         | 40   |
| Δ                | 2.PFS.078.1   | 0.78     | 2.34           | 3.9   | 3         | 40   |
| Δ                | 2.PFS.079.1   | 0.79     | 2.37           | 4.0   | 3         | 40   |
| •                | 2.PFS.080.1   | 0.80     | 2.40           | 4.0   | 3         | 40   |
| Δ                | 2.PFS.081.1   | 0.81     | 2.43           | 4.1   | 3         | 40   |
| Δ                | 2.PFS.082.1   | 0.82     | 2.46           | 4.1   | 3         | 40   |
| Δ                | 2.PFS.083.1   | 0.83     | 2.49           | 4.2   | 3         | 40   |
| Δ                | 2.PFS.084.1   | 0.84     | 2.52           | 4.2   | 3         | 40   |
| •                | 2.PFS.085.1   | 0.85     | 2.55           | 4.3   | 3         | 40   |
| Δ                | 2.PFS.086.1   | 0.86     | 2.58           | 4.3   | 3         | 40   |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

05

Hartmetall





**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> ₁<br><b>k4</b><br>[mm] | <b>l</b> ₁<br>[mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|-------------------------|---------------|---------------------------------|--------------------|------------------------------|--------------------------|------------------|
| ■ <                     |               |                                 |                    |                              |                          |                  |
| Δ                       | 2.PFS.087.1   | 0.87                            | 2.61               | 4.4                          | 3                        | 40               |
| Δ                       | 2.PFS.088.1   | 0.88                            | 2.64               | 4.4                          | 3                        | 40               |
| Δ                       | 2.PFS.089.1   | 0.89                            | 2.67               | 4.5                          | 3                        | 40               |
| •                       | 2.PFS.090.1   | 0.90                            | 2.70               | 4.5                          | 3                        | 40               |
| Δ                       | 2.PFS.091.1   | 0.91                            | 2.73               | 4.6                          | 3                        | 40               |
| Δ                       | 2.PFS.092.1   | 0.92                            | 2.76               | 4.6                          | 3                        | 40               |
| Δ                       | 2.PFS.093.1   | 0.93                            | 2.79               | 4.7                          | 3                        | 40               |
| Δ                       | 2.PFS.094.1   | 0.94                            | 2.82               | 4.7                          | 3                        | 40               |
| •                       | 2.PFS.095.1   | 0.95                            | 2.85               | 4.8                          | 3                        | 40               |
| Δ                       | 2.PFS.096.1   | 0.96                            | 2.88               | 4.8                          | 3                        | 40               |
| Δ                       | 2.PFS.097.1   | 0.97                            | 2.91               | 4.9                          | 3                        | 40               |
| Δ                       | 2.PFS.098.1   | 0.98                            | 2.94               | 4.9                          | 3                        | 40               |
| Δ                       | 2.PFS.099.1   | 0.99                            | 2.97               | 5.0                          | 3                        | 40               |
| •                       | 2.PFS.100.1   | 1.00                            | 3.00               | 5.0                          | 3                        | 40               |
| Δ                       | 2.PFS.101.1   | 1.01                            | 3.03               | 5.1                          | 3                        | 40               |
| Δ                       | 2.PFS.102.1   | 1.02                            | 3.06               | 5.1                          | 3                        | 40               |
| Δ                       | 2.PFS.103.1   | 1.03                            | 3.09               | 5.2                          | 3                        | 40               |
| Δ                       | 2.PFS.104.1   | 1.04                            | 3.12               | 5.2                          | 3                        | 40               |
| •                       | 2.PFS.105.1   | 1.05                            | 3.15               | 5.3                          | 3                        | 40               |
| Δ                       | 2.PFS.106.1   | 1.06                            | 3.18               | 5.3                          | 3                        | 40               |
| Δ                       | 2.PFS.107.1   | 1.07                            | 3.21               | 5.4                          | 3                        | 40               |
| Δ                       | 2.PFS.108.1   | 1.08                            | 3.24               | 5.4                          | 3                        | 40               |
| Δ                       | 2.PFS.109.1   | 1.09                            | 3.27               | 5.5                          | 3                        | 40               |
| •                       | 2.PFS.110.1   | 1.10                            | 3.30               | 5.5                          | 3                        | 40               |
| Δ                       | 2.PFS.111.1   | 1.11                            | 3.33               | 5.6                          | 3                        | 40               |
| Δ                       | 2.PFS.112.1   | 1.12                            | 3.36               | 5.6                          | 3                        | 40               |
| Δ                       | 2.PFS.113.1   | 1.13                            | 3.39               | 5.7                          | 3                        | 40               |
| Δ                       | 2.PFS.114.1   | 1.14                            | 3.42               | 5.7                          | 3                        | 40               |
| •                       | 2.PFS.115.1   | 1.15                            | 3.45               | 5.8                          | 3                        | 40               |
| Δ                       | 2.PFS.116.1   | 1.16                            | 3.48               | 5.8                          | 3                        | 40               |
| Δ                       | 2.PFS.117.1   | 1.17                            | 3.51               | 5.9                          | 3                        | 40               |
| Δ                       | 2.PFS.118.1   | 1.18                            | 3.54               | 5.9                          | 3                        | 40               |
| Δ                       | 2.PFS.119.1   | 1.19                            | 3.57               | 6.0                          | 3                        | 40               |
| •                       | 2.PFS.120.1   | 1.20                            | 3.60               | 6.0                          | 3                        | 40               |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flex Steel - beschichtet

Flexpilot STEEL

## NEW

# CrazyDrill Flexpilot Steel - 3 x d - beschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                             | Werkstoff-            | W. L                              | 187 87 | F.II.              | A161/A6774//            | V <sub>c</sub> |                    |  |  |
|-----------------------------|-----------------------|-----------------------------------|--------|--------------------|-------------------------|----------------|--------------------|--|--|
|                             | gruppe                | Werkstoff                         | Wr.Nr. | DIN                | AISI/ASTM/UNS           | Ød1≤0.4        | [m/min]<br>Ød1>0.4 |  |  |
|                             |                       |                                   | 4 0204 | C10                | AIGI 4040               | 1201≤0.4       | Ød1>0.4            |  |  |
|                             | В                     |                                   | 1.0301 | C10<br>C15         | AISI 1010<br>AISI 1015  |                |                    |  |  |
|                             | P                     | Stähle unlegiert                  | 1.1191 | C45E/CK45          | AISI 1015               | 5 – 40         | 40 – 60            |  |  |
|                             |                       | Rm < 800 N/mm <sup>2</sup>        | 1.0044 | \$275JR            | AISI 1020               | 5 – 40         |                    |  |  |
| \ \/(//                     |                       |                                   | 1.0044 | 11SMn30            | AISI 1020               |                |                    |  |  |
| \ \(\lambda_{\mathcal{M}}\) |                       |                                   | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                |                    |  |  |
| ΥΔ//                        |                       |                                   | 1.7131 | 16MnCr5            | AISI 5115               |                |                    |  |  |
|                             |                       | Stähle niedriglegiert             | 1.3505 | 100Cr6             | AISI 52100              | 5 – 25         | 25 – 50            |  |  |
|                             |                       | Rm > 900 N/mm <sup>2</sup>        | 1.7225 | 42CrMo4            | AISI 4140               | 3 23           | 25 50              |  |  |
| de                          |                       |                                   | 1.2842 | 90MnCrV8           | AISI O2                 |                |                    |  |  |
| u1                          |                       |                                   | 1.2379 | X153CrMoV12        | AISI D2                 |                |                    |  |  |
| ]3 x d <sub>1</sub>         |                       | Werkzeugstähle                    | 1.2436 | X210CrW12          | AISI D4/D6              |                |                    |  |  |
|                             |                       | hochlegiert                       | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 5 – 20         | 20 – 35            |  |  |
|                             |                       | Rm < 1200 N/mm <sup>2</sup>       | 1.3345 | HS18-0-1           | AISI T1 / UNS T12001    |                |                    |  |  |
|                             |                       |                                   |        |                    |                         |                |                    |  |  |
|                             | B 6                   | Rostfreie Stähle-                 | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                |                    |  |  |
|                             | M                     | ferritisch                        | 1.4105 | X6CrMoS17          | AISI 430F               |                |                    |  |  |
|                             |                       | Rostfreie Stähle-                 | 1.4034 | X46Cr13            | AISI 420C               |                |                    |  |  |
|                             |                       | martensitisch                     | 1.4112 | X90CrMoV18         | AISI 440B               |                |                    |  |  |
|                             |                       | Rostfreie Stähle-                 | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                |                    |  |  |
|                             |                       | martensitisch – PH                | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                |                    |  |  |
|                             |                       | Rostfreie Stähle-<br>austenitisch | 1.4301 | X5CrNi 18-10       | AISI 304                |                |                    |  |  |
|                             |                       |                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                |                    |  |  |
|                             |                       |                                   | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                |                    |  |  |
|                             |                       |                                   | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                |                    |  |  |
|                             |                       | Gusseisen                         | 0.6020 | GG20               | ASTM 30                 | 5 – 40         | 50 – 100           |  |  |
|                             | K                     |                                   | 0.6030 | GG30               | ASTM 40B                |                | 30 - 100           |  |  |
|                             |                       |                                   | 0.7040 | GGG40              | ASTM 60-40-18           |                | 40 – 80            |  |  |
|                             |                       |                                   | 0.7060 | GGG60              | ASTM 80-60-03           |                | 40 00              |  |  |
|                             |                       | Aluminium                         | 3.2315 | AlMgSi1            | ASTM 6351               | F 40           | 60 400             |  |  |
|                             | N                     | Knetlegierungen                   | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 5 – 40         | 60 – 120           |  |  |
|                             | 1 41                  | Aluminium                         | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | F 40           | F0 00              |  |  |
|                             |                       | Druckgusslegierungen              | 3.2381 | GD-AlSi10Mg        | UNS A03590              | 5 – 40         | 50 – 80            |  |  |
|                             |                       | V f                               | 2.004  | Cu-OF / CW008A     | UNS C10100              |                |                    |  |  |
|                             |                       | Kupfer                            | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                |                    |  |  |
|                             |                       | N. Annada a dalaifani             | 2.0321 | CuZn37 CW508L      | UNS C27400              |                |                    |  |  |
|                             |                       | Messing bleifrei                  | 2.036  | CuZn40 CW509L      | UNS C28000              |                |                    |  |  |
|                             |                       | Messing, Bronze                   | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | F 40           | 60 – 100           |  |  |
|                             |                       | Rm < 400 N/mm <sup>2</sup>        | 2.102  | CuSn6              | UNS C51900              | 5 – 40         | 40 – 60            |  |  |
|                             |                       | Bronze                            | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | F 30           | 20 40              |  |  |
|                             |                       | Rm < 600 N/mm <sup>2</sup>        | 2.096  | CuAl9Mn2           | UNS C63200              | 5 – 20         | 20 – 40            |  |  |
|                             |                       |                                   | 2.4856 |                    | Inconel 625             |                |                    |  |  |
|                             | C                     | Hitzebeständige                   | 2.4668 |                    | Inconel 718             |                |                    |  |  |
|                             | S <sub>1</sub>        | Stähle                            | 2.4617 | NiMo28             | Hastelloy B-2           |                |                    |  |  |
|                             |                       |                                   | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                |                    |  |  |
|                             |                       |                                   | 3.7035 | Gr.2               | ASTM B348 / F67         |                |                    |  |  |
|                             | C                     | Titan rein                        | 3.7065 | Gr.4               | ASTM B348 / F68         |                |                    |  |  |
|                             | S <sub>2</sub>        |                                   | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                |                    |  |  |
|                             |                       | Titan Legierungen                 | 9.9367 | TiAl6Nb7           | ASTM F1295              |                |                    |  |  |
|                             | C                     |                                   | 2.4964 | CoCr20W15Ni        | Haynes 25               |                |                    |  |  |
|                             | <b>S</b> <sub>3</sub> | CrCo-Legierungen                  | 2.1504 | CrCoMo28           | ASTM F1537              |                |                    |  |  |
|                             |                       | Guill I in a co                   |        | 2.20020            |                         |                |                    |  |  |
|                             | H₁                    | Stähle gehärtet                   | 1.2510 | 100MnCrMoW4        | AISI O1                 |                |                    |  |  |
|                             | • •1                  | < 55 HRC                          |        |                    |                         |                |                    |  |  |
|                             | $H_2$                 | Stähle gehärtet                   | 1.2379 | X153CrMoV12        | AISI D2                 |                |                    |  |  |
|                             | 112                   | ≥ 55 HRC                          |        |                    | 52                      |                |                    |  |  |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> [mm/U]                          |                      |                      |                        |                      |                             |  |  |  |  |
|------------------------------------------|----------------------|----------------------|------------------------|----------------------|-----------------------------|--|--|--|--|
| <b>Ød1</b><br>0.2 mm                     | <b>Ød1</b><br>0.3 mm | <b>Ød1</b><br>0.4 mm | <b>Ød1</b><br>0.6 mm   | <b>Ød1</b><br>0.8 mm | <b>Ød1</b><br>1.0 mm-1.2 mn |  |  |  |  |
| f                                        | f                    | f                    | f                      | f                    | f                           |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.005                                    | 0.010                | 0.015                | 0.030                  | 0.040                | 0.060                       |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.003 - 0.005                            | 0.008 - 0.010        | 0.012 - 0.015        | 0.020 - 0.025          | 0.035                | 0.050                       |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.004                                    | 0.008                | 0.010                | 0.015                  | 0.025                | 0.040                       |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.005                                    | 0.010                | 0.015                | 0.020                  | 0.035                | 0.050                       |  |  |  |  |
| 0.015                                    | 0.040                | 0.050                | 0.080                  | 0.100                | 0.120                       |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.015                                    | 0.040                | 0.050                | 0.080                  | 0.100                | 0.120                       |  |  |  |  |
| Empfohlen: CrazyDrill Flexpilot Titanium |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
| 0.010                                    | 0.030                | 0.040                | 0.060                  | 0.080                | 0.100                       |  |  |  |  |
|                                          | 0.006                | 0.010                |                        | 0.025                |                             |  |  |  |  |
| 0.004                                    | 0.006                | 0.010                | 0.015                  | 0.025                | 0.040                       |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          | Emp                  | ofohlen: CrazyDı     | ill Flexpilot Titani   | um                   |                             |  |  |  |  |
|                                          |                      |                      | rill Flexpilot Titani  |                      |                             |  |  |  |  |
|                                          | cini                 | отопнен. Стагург     | III I IEAPIIOL TILATII | uiii                 |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |
|                                          |                      |                      |                        |                      |                             |  |  |  |  |

## CrazyDrill Flexpilot Steel - 3 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



CrazyDrill Flexpilot Steel eignet sich als Pilotbohrer bzw. Kurzbohrer bis zu einer Bohrtiefe von 3 x d für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Die Pilotbohrung führt den Folgebohrer CrazyDrill Flex Steel unbeschichtet perfekt und unterstützt damit die Geradheit der tiefen Bohrung. Durch die stabile Konstruktion erreicht der Pilotbohrer eine hohe Positionsgenauigkeit. Zudem garantiert er dem Nachfolgebohrer eine wesentlich höhere Standzeit, da durch die beiden aufeinander abgestimmten Spitzenwinkel von 140° die Gefahr von Schneideckenausbrüchen verringert wird.

Auch als Kurzbohrer, wo er dank seiner stabilen Konstruktion (verstärkter Schaft) und Präzision eine hohe Bohrungsqualität erreicht, hat sich CrazyDrill Flexpilot bewährt. Dass er mit hohen Schnitt- und Vorschubgeschwindigkeiten prozesssicher eingesetzt werden kann, verdankt er seiner innovativen Bohrerspitzengeometrie.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

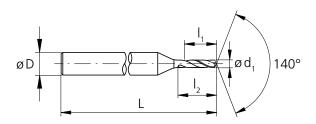
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Flexpilot Steel - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall






**Z**2





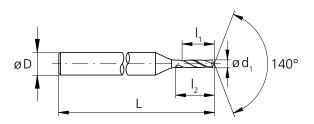


| ■ ab Lager<br>∆ auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br><b>k4</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|-----------------------------|---------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|------------------|
| - 7                         | 2.PFS.010.0   | 0.10                                       | 0.30                       | 0.5                          | 3                        | 40               |
| Δ                           | 2.PFS.011.0   | 0.11                                       | 0.33                       | 0.6                          | 3                        | 40               |
| Δ                           | 2.PFS.012.0   | 0.12                                       | 0.36                       | 0.6                          | 3                        | 40               |
| Δ                           | 2.PFS.013.0   | 0.13                                       | 0.39                       | 0.7                          | 3                        | 40               |
| Δ                           | 2.PFS.014.0   | 0.14                                       | 0.42                       | 0.7                          | 3                        | 40               |
|                             | 2.PFS.015.0   | 0.15                                       | 0.45                       | 0.8                          | 3                        | 40               |
| Δ                           | 2.PFS.016.0   | 0.16                                       | 0.48                       | 0.8                          | 3                        | 40               |
| Δ                           | 2.PFS.017.0   | 0.17                                       | 0.51                       | 0.9                          | 3                        | 40               |
| Δ                           | 2.PFS.018.0   | 0.18                                       | 0.54                       | 0.9                          | 3                        | 40               |
| Δ                           | 2.PFS.019.0   | 0.19                                       | 0.57                       | 1.0                          | 3                        | 40               |
| •                           | 2.PFS.020.0   | 0.20                                       | 0.60                       | 1.0                          | 3                        | 40               |
| Δ                           | 2.PFS.021.0   | 0.21                                       | 0.63                       | 1.1                          | 3                        | 40               |
| Δ                           | 2.PFS.022.0   | 0.22                                       | 0.66                       | 1.1                          | 3                        | 40               |
| Δ                           | 2.PFS.023.0   | 0.23                                       | 0.69                       | 1.2                          | 3                        | 40               |
| Δ                           | 2.PFS.024.0   | 0.24                                       | 0.72                       | 1.2                          | 3                        | 40               |
|                             | 2.PFS.025.0   | 0.25                                       | 0.75                       | 1.3                          | 3                        | 40               |
| Δ                           | 2.PFS.026.0   | 0.26                                       | 0.78                       | 1.3                          | 3                        | 40               |
| Δ                           | 2.PFS.027.0   | 0.27                                       | 0.81                       | 1.4                          | 3                        | 40               |
| Δ                           | 2.PFS.028.0   | 0.28                                       | 0.84                       | 1.4                          | 3                        | 40               |
| Δ                           | 2.PFS.029.0   | 0.29                                       | 0.87                       | 1.5                          | 3                        | 40               |
|                             | 2.PFS.030.0   | 0.30                                       | 0.90                       | 1.5                          | 3                        | 40               |
| Δ                           | 2.PFS.031.0   | 0.31                                       | 0.93                       | 1.6                          | 3                        | 40               |
| Δ                           | 2.PFS.032.0   | 0.32                                       | 0.96                       | 1.6                          | 3                        | 40               |
| Δ                           | 2.PFS.033.0   | 0.33                                       | 0.99                       | 1.7                          | 3                        | 40               |
| Δ                           | 2.PFS.034.0   | 0.34                                       | 1.02                       | 1.7                          | 3                        | 40               |
|                             | 2.PFS.035.0   | 0.35                                       | 1.05                       | 1.8                          | 3                        | 40               |
| Δ                           | 2.PFS.036.0   | 0.36                                       | 1.08                       | 1.8                          | 3                        | 40               |
| Δ                           | 2.PFS.037.0   | 0.37                                       | 1.11                       | 1.9                          | 3                        | 40               |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

| ■ ab Lager<br>∆ auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br><b>k4</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|-----------------------------|---------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|-----------|
| Δ                           | 2.PFS.038.0   | 0.38                                       | 1.14                       | 1.9                          | 3                        | 40        |
| Δ                           | 2.PFS.039.0   | 0.39                                       | 1.17                       | 2.0                          | 3                        | 40        |
| •                           | 2.PFS.040.0   | 0.40                                       | 1.20                       | 2.0                          | 3                        | 40        |
| Δ                           | 2.PFS.041.0   | 0.41                                       | 1.23                       | 2.1                          | 3                        | 40        |
| Δ                           | 2.PFS.042.0   | 0.42                                       | 1.26                       | 2.1                          | 3                        | 40        |
| Δ                           | 2.PFS.043.0   | 0.43                                       | 1.29                       | 2.2                          | 3                        | 40        |
| Δ                           | 2.PFS.044.0   | 0.44                                       | 1.32                       | 2.2                          | 3                        | 40        |
|                             | 2.PFS.045.0   | 0.45                                       | 1.35                       | 2.3                          | 3                        | 40        |
| Δ                           | 2.PFS.046.0   | 0.46                                       | 1.38                       | 2.3                          | 3                        | 40        |
| Δ                           | 2.PFS.047.0   | 0.47                                       | 1.41                       | 2.4                          | 3                        | 40        |
| Δ                           | 2.PFS.048.0   | 0.48                                       | 1.44                       | 2.4                          | 3                        | 40        |
| Δ                           | 2.PFS.049.0   | 0.49                                       | 1.47                       | 2.5                          | 3                        | 40        |
| •                           | 2.PFS.050.0   | 0.50                                       | 1.50                       | 2.5                          | 3                        | 40        |
| Δ                           | 2.PFS.051.0   | 0.51                                       | 1.53                       | 2.6                          | 3                        | 40        |
| Δ                           | 2.PFS.052.0   | 0.52                                       | 1.56                       | 2.6                          | 3                        | 40        |
| Δ                           | 2.PFS.053.0   | 0.53                                       | 1.59                       | 2.7                          | 3                        | 40        |
| Δ                           | 2.PFS.054.0   | 0.54                                       | 1.62                       | 2.7                          | 3                        | 40        |
| •                           | 2.PFS.055.0   | 0.55                                       | 1.65                       | 2.8                          | 3                        | 40        |
| Δ                           | 2.PFS.056.0   | 0.56                                       | 1.68                       | 2.8                          | 3                        | 40        |
| Δ                           | 2.PFS.057.0   | 0.57                                       | 1.71                       | 2.9                          | 3                        | 40        |
| Δ                           | 2.PFS.058.0   | 0.58                                       | 1.74                       | 2.9                          | 3                        | 40        |
| Δ                           | 2.PFS.059.0   | 0.59                                       | 1.77                       | 3.0                          | 3                        | 40        |
| •                           | 2.PFS.060.0   | 0.60                                       | 1.80                       | 3.0                          | 3                        | 40        |
| Δ                           | 2.PFS.061.0   | 0.61                                       | 1.83                       | 3.1                          | 3                        | 40        |
| Δ                           | 2.PFS.062.0   | 0.62                                       | 1.86                       | 3.1                          | 3                        | 40        |
| Δ                           | 2.PFS.063.0   | 0.63                                       | 1.89                       | 3.2                          | 3                        | 40        |
| Δ                           | 2.PFS.064.0   | 0.64                                       | 1.92                       | 3.2                          | 3                        | 40        |
|                             | 2.PFS.065.0   | 0.65                                       | 1.95                       | 3.3                          | 3                        | 40        |


Ergänzende Produkte

CrazyDrill Flex Steel - unbeschichtet



# CrazyDrill Flexpilot Steel - 3 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> ₁<br>k4 | I <sub>1</sub> | I <sub>1</sub> I <sub>2</sub> |      | L    |
|-------------------------|---------------|------------------|----------------|-------------------------------|------|------|
| ■ ab<br>∆ auf           |               | [mm]             | [mm]           | [mm]                          | [mm] | [mm] |
| Δ                       | 2.PFS.066.0   | 0.66             | 1.98           | 3.3                           | 3    | 40   |
| Δ                       | 2.PFS.067.0   | 0.67             | 2.01           | 3.4                           | 3    | 40   |
| Δ                       | 2.PFS.068.0   | 0.68             | 2.04           | 3.4                           | 3    | 40   |
| Δ                       | 2.PFS.069.0   | 0.69             | 2.07           | 3.5                           | 3    | 40   |
|                         | 2.PFS.070.0   | 0.70             | 2.10           | 3.5                           | 3    | 40   |
| Δ                       | 2.PFS.071.0   | 0.71             | 2.13           | 3.6                           | 3    | 40   |
| Δ                       | 2.PFS.072.0   | 0.72             | 2.16           | 3.6                           | 3    | 40   |
| Δ                       | 2.PFS.073.0   | 0.73             | 2.19           | 3.7                           | 3    | 40   |
| Δ                       | 2.PFS.074.0   | 0.74             | 2.22           | 3.7                           | 3    | 40   |
|                         | 2.PFS.075.0   | 0.75             | 2.25           | 3.8                           | 3    | 40   |
| Δ                       | 2.PFS.076.0   | 0.76             | 2.28           | 3.8                           | 3    | 40   |
| Δ                       | 2.PFS.077.0   | 0.77             | 2.31           | 3.9                           | 3    | 40   |
| Δ                       | 2.PFS.078.0   | 0.78             | 2.34           | 3.9                           | 3    | 40   |
| Δ                       | 2.PFS.079.0   | 0.79             | 2.37           | 4.0                           | 3    | 40   |
| •                       | 2.PFS.080.0   | 0.80             | 2.40           | 4.0                           | 3    | 40   |
| Δ                       | 2.PFS.081.0   | 0.81             | 2.43           | 4.1                           | 3    | 40   |
| Δ                       | 2.PFS.082.0   | 0.82             | 2.46           | 4.1                           | 3    | 40   |
| Δ                       | 2.PFS.083.0   | 0.83             | 2.49           | 4.2                           | 3    | 40   |
| Δ                       | 2.PFS.084.0   | 0.84             | 2.52           | 4.2                           | 3    | 40   |
|                         | 2.PFS.085.0   | 0.85             | 2.55           | 4.3                           | 3    | 40   |
| Δ                       | 2.PFS.086.0   | 0.86             | 2.58           | 4.3                           | 3    | 40   |
| Δ                       | 2.PFS.087.0   | 0.87             | 2.61           | 4.4                           | 3    | 40   |
| Δ                       | 2.PFS.088.0   | 0.88             | 2.64           | 4.4                           | 3    | 40   |
| Δ                       | 2.PFS.089.0   | 0.89             | 2.67           | 4.5                           | 3    | 40   |
| -                       | 2.PFS.090.0   | 0.90             | 2.70           | 4.5                           | 3    | 40   |
| Δ                       | 2.PFS.091.0   | 0.91             | 2.73           | 4.6                           | 3    | 40   |
| Δ                       | 2.PFS.092.0   | 0.92             | 2.76           | 4.6                           | 3    | 40   |
| Δ                       | 2.PFS.093.0   | 0.93             | 2.79           | 4.7                           | 3    | 40   |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



Hartmetall





**Z**2



Nicht beschichtet

| ab Lager<br>auf Anfrage | Artikelnummer | d₁<br>k4 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab l<br>∆ auf .       |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.PFS.094.0   | 0.94     | 2.82           | 4.7            | 3         | 40   |
| •                       | 2.PFS.095.0   | 0.95     | 2.85           | 4.8            | 3         | 40   |
| Δ                       | 2.PFS.096.0   | 0.96     | 2.88           | 4.8            | 3         | 40   |
| Δ                       | 2.PFS.097.0   | 0.97     | 2.91           | 4.9            | 3         | 40   |
| Δ                       | 2.PFS.098.0   | 0.98     | 2.94           | 4.9            | 3         | 40   |
| Δ                       | 2.PFS.099.0   | 0.99     | 2.97           | 5.0            | 3         | 40   |
|                         | 2.PFS.100.0   | 1.00     | 3.00           | 5.0            | 3         | 40   |
| Δ                       | 2.PFS.101.0   | 1.01     | 3.03           | 5.1            | 3         | 40   |
| Δ                       | 2.PFS.102.0   | 1.02     | 3.06           | 5.1            | 3         | 40   |
| Δ                       | 2.PFS.103.0   | 1.03     | 3.09           | 5.2            | 3         | 40   |
| Δ                       | 2.PFS.104.0   | 1.04     | 3.12           | 5.2            | 3         | 40   |
|                         | 2.PFS.105.0   | 1.05     | 3.15           | 5.3            | 3         | 40   |
| Δ                       | 2.PFS.106.0   | 1.06     | 3.18           | 5.3            | 3         | 40   |
| Δ                       | 2.PFS.107.0   | 1.07     | 3.21           | 5.4            | 3         | 40   |
| Δ                       | 2.PFS.108.0   | 1.08     | 3.24           | 5.4            | 3         | 40   |
| Δ                       | 2.PFS.109.0   | 1.09     | 3.27           | 5.5            | 3         | 40   |
| •                       | 2.PFS.110.0   | 1.10     | 3.30           | 5.5            | 3         | 40   |
| Δ                       | 2.PFS.111.0   | 1.11     | 3.33           | 5.6            | 3         | 40   |
| Δ                       | 2.PFS.112.0   | 1.12     | 3.36           | 5.6            | 3         | 40   |
| Δ                       | 2.PFS.113.0   | 1.13     | 3.39           | 5.7            | 3         | 40   |
|                         |               |          |                |                |           |      |

2.PFS.120.0 ■ Ab Lager verfügbar.

2.PFS.114.0

2.PFS.115.0

2.PFS.116.0

2.PFS.117.0

2.PFS.118.0

2.PFS.119.0

1.14

1.15

1.16

1.17

1.18

1.19

1.20

3.42

3.45

3.48

3.51

3.54

3.57

3.60

5.7

5.8

5.8

5.9

5.9

6.0

6.0

Δ

Δ Δ

Δ

Δ

Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte

CrazyDrill Flex Steel - unbeschichtet

3

3

3

3

3

40

40

40

40

40

40

40

# CrazyDrill Flexpilot Steel - 3 x d - unbeschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                        | Werkstoff-     |                                         |                  |                          |                         | V <sub>c</sub> |          |  |  |
|----------------------------------------|----------------|-----------------------------------------|------------------|--------------------------|-------------------------|----------------|----------|--|--|
|                                        | gruppe         | Werkstoff                               | Wr.Nr. DI        | DIN                      | AISI/ASTM/UNS           | [m/min]        |          |  |  |
|                                        | grappe         |                                         |                  |                          |                         | Ød1≤0.4        | Ød1>0.4  |  |  |
|                                        |                |                                         | 1.0301           | C10                      | AISI 1010               |                |          |  |  |
|                                        | D              |                                         | 1.0301           | C15                      | AISI 1015               |                |          |  |  |
|                                        | P              | Stähle unlegiert                        | 1.1191           | C45E/CK45                | AISI 1045               | E 40           | 40 60    |  |  |
|                                        |                | Rm < 800 N/mm <sup>2</sup>              | 1.0044           | S275JR                   | AISI 1020               | 5 – 40 40 – 60 | 40 - 60  |  |  |
| \ \\/\(\(\)\(\)                        |                |                                         | 1.0044           | 11SMn30                  | AISI 1020               |                |          |  |  |
| \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                |                                         | 1.5752           | 15NiCr13                 | ASTM 3415 / AISI 3310   |                |          |  |  |
| <b>YD</b>                              |                |                                         | 1.7131           | 16MnCr5                  | AISI 5115               |                |          |  |  |
|                                        |                | Stähle niedriglegiert                   | 1.3505           | 100Cr6                   | AISI 52100              | 5 – 25         | 25 – 50  |  |  |
|                                        |                | Rm > 900 N/mm <sup>2</sup>              | 1.7225           | 42CrMo4                  | AISI 4140               | 3-23           | 25 - 50  |  |  |
|                                        |                |                                         | 1.7223           | 90MnCrV8                 | AISI O2                 |                |          |  |  |
| 41                                     |                |                                         |                  |                          | AISI D2                 |                |          |  |  |
| 3x d <sub>1</sub>                      |                | Werkzeugstähle                          | 1.2379<br>1.2436 | X153CrMoV12<br>X210CrW12 | AISI D4/D6              | 5 – 20         | 20 – 35  |  |  |
| /// <del>/////</del>                   |                | hochlegiert                             |                  |                          |                         |                |          |  |  |
|                                        |                | Rm < 1200 N/mm <sup>2</sup>             | 1.3343           | HS6-5-2C                 | AISI M2 / UNS T11302    |                |          |  |  |
|                                        |                |                                         | 1.3355           | HS18-0-1                 | AISI T1 / UNS T12001    |                |          |  |  |
|                                        |                | Rostfreie Stähle-                       | 1.4016           | X6Cr17                   | AISI 430 / UNS S43000   |                |          |  |  |
| ·                                      | M              | ferritisch                              | 1.4105           | X6CrMoS17                | AISI 430F               |                |          |  |  |
|                                        |                | Rostfreie Stähle-                       | 1.4034           | X46Cr13                  | AISI 420C               |                |          |  |  |
|                                        |                | martensitisch                           | 1.4112           | X90CrMoV18               | AISI 440B               |                |          |  |  |
|                                        |                | Rostfreie Stähle-<br>martensitisch – PH | 1.4542           | X5CrNiCuNb 16-4          | AISI 630 / ASTM 17-4 PH |                |          |  |  |
|                                        |                |                                         | 1.4545           | X5CrNiCuNb 15-5          | ASTM 15-5 PH            |                |          |  |  |
|                                        |                | Rostfreie Stähle-<br>austenitisch       | 1.4301           | X5CrNi 18-10             | AISI 304                |                |          |  |  |
|                                        |                |                                         | 1.4435           | X2CrNiMo 18-14-3         | AISI 316L               |                |          |  |  |
|                                        |                |                                         | 1.4441           | X2CrNiMo 18-15-3         | AISI 316LM              |                |          |  |  |
|                                        |                |                                         | 1.4539           | X1NiCrMoCu 25-20-5       | AISI 904L               |                |          |  |  |
|                                        | K              | Gusseisen                               | 0.6020           | GG20                     | ASTM 30                 | 5 – 40         | 50 – 100 |  |  |
|                                        |                |                                         | 0.6030           | GG30                     | ASTM 40B                |                |          |  |  |
|                                        |                |                                         | 0.7040           | GGG40                    | ASTM 60-40-18           |                | 40 – 80  |  |  |
|                                        |                |                                         | 0.7060           | GGG60                    | ASTM 80-60-03           |                |          |  |  |
|                                        |                | Aluminium                               | 3.2315           | AlMgSi1                  | ASTM 6351               | 5 – 40         | 60 – 120 |  |  |
|                                        | N              | Knetlegierungen                         | 3.4365           | AlZnMgCu1.5              | ASTM 7075               | 3 – 40         | 00 - 120 |  |  |
|                                        | 1 4            | Aluminium                               | 3.2163           | GD-AlSi9Cu3              | ASTM A380               | 5 – 40         | 50 – 80  |  |  |
|                                        |                | Druckgusslegierungen                    | 3.2381           | GD-AlSi10Mg              | UNS A03590              | 3 – 40         | 30 - 60  |  |  |
|                                        |                | Kupfer                                  | 2.004            | Cu-OF / CW008A           | UNS C10100              |                |          |  |  |
|                                        |                | Kupiei                                  | 2.0065           | Cu-ETP / CW004A          | UNS C11000              |                |          |  |  |
|                                        |                | Messing bleifrei                        | 2.0321           | CuZn37 CW508L            | UNS C27400              |                |          |  |  |
|                                        |                | iviessing bienrei                       | 2.036            | CuZn40 CW509L            | UNS C28000              |                |          |  |  |
|                                        |                | Messing, Bronze                         | 2.0401           | CuZn39Pb3 / CW614N       | UNS C38500              | 5 – 40         | 60 – 100 |  |  |
|                                        |                | Rm < 400 N/mm <sup>2</sup>              | 2.102            | CuSn6                    | UNS C51900              | 5 – 40         | 40 – 60  |  |  |
|                                        |                | Bronze                                  | 2.0966           | CuAl10Ni5Fe4             | UNS C63000              | 5 – 20         | 20 – 40  |  |  |
|                                        |                | Rm < 600 N/mm <sup>2</sup>              | 2.096            | CuAl9Mn2                 | UNS C63200              | 3 – 20         | 20-40    |  |  |
|                                        |                |                                         | 2.4856           |                          | Inconel 625             |                |          |  |  |
|                                        | S <sub>1</sub> | Hitzebeständige                         | 2.4668           |                          | Inconel 718             |                |          |  |  |
|                                        | <b>J</b> 1     | Stähle                                  | 2.4617           | NiMo28                   | Hastelloy B-2           |                |          |  |  |
|                                        |                |                                         | 2.4665           | NiCr22Fe18Mo             | Hastelloy X             |                |          |  |  |
|                                        |                | Titan rein Titan Legierungen            | 3.7035           | Gr.2                     | ASTM B348 / F67         |                |          |  |  |
|                                        | S <sub>2</sub> |                                         | 3.7065           | Gr.4                     | ASTM B348 / F68         |                |          |  |  |
|                                        | 2              |                                         | 3.7165           | TiAl6V4                  | ASTM B348 / F136        |                |          |  |  |
|                                        |                | Than Legiciungen                        | 9.9367           | TiAl6Nb7                 | ASTM F1295              |                |          |  |  |
|                                        | S <sub>3</sub> | CrCo-Legierungen                        | 2.4964           | CoCr20W15Ni              | Haynes 25               |                |          |  |  |
|                                        | 3              | c. co regionarigen                      |                  | CrCoMo28                 | ASTM F1537              |                |          |  |  |
|                                        | H <sub>1</sub> | Stähle gehärtet<br>< 55 HRC             | 1.2510           | 100MnCrMoW4              | AISI O1                 |                |          |  |  |
|                                        | $H_2$          | Stähle gehärtet<br>≥ 55 HRC             | 1.2379           | X153CrMoV12              | AISI D2                 |                |          |  |  |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                                          |                    |                    | <b>f</b> [mm/U]    |                    |                    |                      |  |  |  |
|------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--|--|--|
| Ød1<br>0.1 mm<br>f                       | Ød1<br>0.2 mm<br>f | Ød1<br>0.3 mm<br>f | Ød1<br>0.4 mm<br>f | Ød1<br>0.6 mm<br>f | Ød1<br>0.8 mm<br>f | Ød1<br>1.0 mm-1.2 mm |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
| 0.002                                    | 0.005              | 0.010              | 0.015              | 0.030              | 0.040              | 0.060                |  |  |  |
| 0.002                                    | 0.003 - 0.005      | 0.008 – 0.010      | 0.012 - 0.015      | 0.020 - 0.025      | 0.035              | 0.050                |  |  |  |
| 0.0005                                   | 0.004              | 0.008              | 0.010              | 0.015              | 0.025              | 0.040                |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
| 0.002                                    | 0.005              | 0.010              | 0.015              | 0.020              | 0.035              | 0.050                |  |  |  |
| 0.003                                    | 0.015              | 0.040              | 0.050              | 0.080              | 0.100              | 0.120                |  |  |  |
| 0.003                                    | 0.015              | 0.040              | 0.050              | 0.080              | 0.100              | 0.120                |  |  |  |
| Empfohlen: CrazyDrill Flexpilot Titanium |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
| 0.004                                    | 0.010              | 0.030              | 0.040              | 0.060              | 0.080              | 0.100                |  |  |  |
| 0.002                                    | 0.004              | 0.006              | 0.010              | 0.015              | 0.025              | 0.040                |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    | Empfohlen:         | CrazyDrill Flexp   | ilot Titanium      |                    |                      |  |  |  |
| Empfohlen: CrazyDrill Flexpilot Titanium |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |
|                                          |                    |                    |                    |                    |                    |                      |  |  |  |

## CrazyDrill Flexpilot Titanium - 3 x d

#### **BOHREN MIT AUSSENKÜHLUNG**



CrazyDrill Flexpilot Titanium eignet sich als Pilotbohrer bzw. Kurzbohrer bis zu einer Bohrtiefe von 3 x d für langspanige Materialien wie Titan, Titanlegierungen und Kupfer. Die Pilotbohrung führt den Folgebohrer CrazyDrill Flex Titanium perfekt und unterstützt damit die Geradheit der tiefen Bohrung. Durch die stabile Konstruktion erreicht der Pilotbohrer eine hohe Positionsgenauigkeit. Zudem garantiert er dem Nachfolgebohrer eine wesentlich höhere Standzeit, da durch die beiden aufeinander abgestimmten Spitzenwinkel von 140° die Gefahr von Schneideckenausbrüchen verringert wird.

Auch als Kurzbohrer, wo er dank seiner stabilen Konstruktion (verstärkter Schaft) und Präzision eine hohe Bohrungsqualität erreicht, hat sich CrazyDrill Flexpilot bewährt. Dass er mit hohen Schnitt- und Vorschubgeschwindigkeiten prozesssicher eingesetzt werden kann, verdankt er seiner innovativen Bohrerspitzengeometrie.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flexpilot Titanium (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

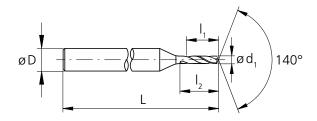
Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

### PILOTBOHREN UND KURZBOHREN



Hartmetall






**Z**2



Nicht beschichtet



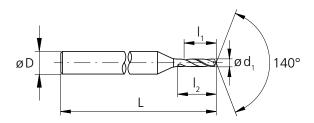


| ab Lager<br>auf Anfrage   | Artikelnummer | d₁<br>k4 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|---------------------------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab Lager<br>∆ auf Anfra |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|                           | 2.PFT.010.0   | 0.10     | 0.30           | 0.5            | 3         | 40   |
| Δ                         | 2.PFT.011.0   | 0.11     | 0.33           | 0.6            | 3         | 40   |
| Δ                         | 2.PFT.012.0   | 0.12     | 0.36           | 0.6            | 3         | 40   |
| Δ                         | 2.PFT.013.0   | 0.13     | 0.39           | 0.7            | 3         | 40   |
| Δ                         | 2.PFT.014.0   | 0.14     | 0.42           | 0.7            | 3         | 40   |
|                           | 2.PFT.015.0   | 0.15     | 0.45           | 0.8            | 3         | 40   |
| Δ                         | 2.PFT.016.0   | 0.16     | 0.48           | 0.8            | 3         | 40   |
| Δ                         | 2.PFT.017.0   | 0.17     | 0.51           | 0.9            | 3         | 40   |
| Δ                         | 2.PFT.018.0   | 0.18     | 0.54           | 0.9            | 3         | 40   |
| Δ                         | 2.PFT.019.0   | 0.19     | 0.57           | 1.0            | 3         | 40   |
|                           | 2.PFT.020.0   | 0.20     | 0.60           | 1.0            | 3         | 40   |
| Δ                         | 2.PFT.021.0   | 0.21     | 0.63           | 1.1            | 3         | 40   |
| Δ                         | 2.PFT.022.0   | 0.22     | 0.66           | 1.1            | 3         | 40   |
| Δ                         | 2.PFT.023.0   | 0.23     | 0.69           | 1.2            | 3         | 40   |
| Δ                         | 2.PFT.024.0   | 0.24     | 0.72           | 1.2            | 3         | 40   |
|                           | 2.PFT.025.0   | 0.25     | 0.75           | 1.3            | 3         | 40   |
| Δ                         | 2.PFT.026.0   | 0.26     | 0.78           | 1.3            | 3         | 40   |
| Δ                         | 2.PFT.027.0   | 0.27     | 0.81           | 1.4            | 3         | 40   |
| Δ                         | 2.PFT.028.0   | 0.28     | 0.84           | 1.4            | 3         | 40   |
| Δ                         | 2.PFT.029.0   | 0.29     | 0.87           | 1.5            | 3         | 40   |
|                           | 2.PFT.030.0   | 0.30     | 0.90           | 1.5            | 3         | 40   |
| Δ                         | 2.PFT.031.0   | 0.31     | 0.93           | 1.6            | 3         | 40   |
| Δ                         | 2.PFT.032.0   | 0.32     | 0.96           | 1.6            | 3         | 40   |
| Δ                         | 2.PFT.033.0   | 0.33     | 0.99           | 1.7            | 3         | 40   |
| Δ                         | 2.PFT.034.0   | 0.34     | 1.02           | 1.7            | 3         | 40   |
|                           | 2.PFT.035.0   | 0.35     | 1.05           | 1.8            | 3         | 40   |
| Δ                         | 2.PFT.036.0   | 0.36     | 1.08           | 1.8            | 3         | 40   |
| Δ                         | 2.PFT.037.0   | 0.37     | 1.11           | 1.9            | 3         | 40   |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

| ab Lager<br>auf Anfrage | Artikelnummer | d₁<br>k4 | I <sub>1</sub> | <b>I</b> <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|---------------|----------|----------------|-----------------------|-----------|------|
| ■ at                    |               | [mm]     | [mm]           | [mm]                  | [mm]      | [mm] |
| Δ                       | 2.PFT.038.0   | 0.38     | 1.14           | 1.9                   | 3         | 40   |
| Δ                       | 2.PFT.039.0   | 0.39     | 1.17           | 2.0                   | 3         | 40   |
| •                       | 2.PFT.040.0   | 0.40     | 1.20           | 2.0                   | 3         | 40   |
| Δ                       | 2.PFT.041.0   | 0.41     | 1.23           | 2.1                   | 3         | 40   |
| Δ                       | 2.PFT.042.0   | 0.42     | 1.26           | 2.1                   | 3         | 40   |
| Δ                       | 2.PFT.043.0   | 0.43     | 1.29           | 2.2                   | 3         | 40   |
| Δ                       | 2.PFT.044.0   | 0.44     | 1.32           | 2.2                   | 3         | 40   |
|                         | 2.PFT.045.0   | 0.45     | 1.35           | 2.3                   | 3         | 40   |
| Δ                       | 2.PFT.046.0   | 0.46     | 1.38           | 2.3                   | 3         | 40   |
| Δ                       | 2.PFT.047.0   | 0.47     | 1.41           | 2.4                   | 3         | 40   |
| Δ                       | 2.PFT.048.0   | 0.48     | 1.44           | 2.4                   | 3         | 40   |
| Δ                       | 2.PFT.049.0   | 0.49     | 1.47           | 2.5                   | 3         | 40   |
|                         | 2.PFT.050.0   | 0.50     | 1.50           | 2.5                   | 3         | 40   |
| Δ                       | 2.PFT.051.0   | 0.51     | 1.53           | 2.6                   | 3         | 40   |
| Δ                       | 2.PFT.052.0   | 0.52     | 1.56           | 2.6                   | 3         | 40   |
| Δ                       | 2.PFT.053.0   | 0.53     | 1.59           | 2.7                   | 3         | 40   |
| Δ                       | 2.PFT.054.0   | 0.54     | 1.62           | 2.7                   | 3         | 40   |
| •                       | 2.PFT.055.0   | 0.55     | 1.65           | 2.8                   | 3         | 40   |
| Δ                       | 2.PFT.056.0   | 0.56     | 1.68           | 2.8                   | 3         | 40   |
| Δ                       | 2.PFT.057.0   | 0.57     | 1.71           | 2.9                   | 3         | 40   |
| Δ                       | 2.PFT.058.0   | 0.58     | 1.74           | 2.9                   | 3         | 40   |
| Δ                       | 2.PFT.059.0   | 0.59     | 1.77           | 3.0                   | 3         | 40   |
| •                       | 2.PFT.060.0   | 0.60     | 1.80           | 3.0                   | 3         | 40   |
| Δ                       | 2.PFT.061.0   | 0.61     | 1.83           | 3.1                   | 3         | 40   |
| Δ                       | 2.PFT.062.0   | 0.62     | 1.86           | 3.1                   | 3         | 40   |
| Δ                       | 2.PFT.063.0   | 0.63     | 1.89           | 3.2                   | 3         | 40   |
| Δ                       | 2.PFT.064.0   | 0.64     | 1.92           | 3.2                   | 3         | 40   |
| •                       | 2.PFT.065.0   | 0.65     | 1.95           | 3.3                   | 3         | 40   |


Ergänzende Produkte

CrazyDrill Flex Titanium



# CrazyDrill Flexpilot Titanium - 3 x d

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> ₁<br>k4 | I <sub>1</sub> | l <sub>2</sub> | <b>D</b><br>(h6) | L    |
|-------------------------|---------------|------------------|----------------|----------------|------------------|------|
| ■ ab<br>∆ auf           |               | [mm]             | [mm]           | [mm]           | [mm]             | [mm] |
| Δ                       | 2.PFT.066.0   | 0.66             | 1.98           | 3.3            | 3                | 40   |
| Δ                       | 2.PFT.067.0   | 0.67             | 2.01           | 3.4            | 3                | 40   |
| Δ                       | 2.PFT.068.0   | 0.68             | 2.04           | 3.4            | 3                | 40   |
| Δ                       | 2.PFT.069.0   | 0.69             | 2.07           | 3.5            | 3                | 40   |
| •                       | 2.PFT.070.0   | 0.70             | 2.10           | 3.5            | 3                | 40   |
| Δ                       | 2.PFT.071.0   | 0.71             | 2.13           | 3.6            | 3                | 40   |
| Δ                       | 2.PFT.072.0   | 0.72             | 2.16           | 3.6            | 3                | 40   |
| Δ                       | 2.PFT.073.0   | 0.73             | 2.19           | 3.7            | 3                | 40   |
| Δ                       | 2.PFT.074.0   | 0.74             | 2.22           | 3.7            | 3                | 40   |
|                         | 2.PFT.075.0   | 0.75             | 2.25           | 3.8            | 3                | 40   |
| Δ                       | 2.PFT.076.0   | 0.76             | 2.28           | 3.8            | 3                | 40   |
| Δ                       | 2.PFT.077.0   | 0.77             | 2.31           | 3.9            | 3                | 40   |
| Δ                       | 2.PFT.078.0   | 0.78             | 2.34           | 3.9            | 3                | 40   |
| Δ                       | 2.PFT.079.0   | 0.79             | 2.37           | 4.0            | 3                | 40   |
| •                       | 2.PFT.080.0   | 0.80             | 2.40           | 4.0            | 3                | 40   |
| Δ                       | 2.PFT.081.0   | 0.81             | 2.43           | 4.1            | 3                | 40   |
| Δ                       | 2.PFT.082.0   | 0.82             | 2.46           | 4.1            | 3                | 40   |
| Δ                       | 2.PFT.083.0   | 0.83             | 2.49           | 4.2            | 3                | 40   |
| Δ                       | 2.PFT.084.0   | 0.84             | 2.52           | 4.2            | 3                | 40   |
|                         | 2.PFT.085.0   | 0.85             | 2.55           | 4.3            | 3                | 40   |
| Δ                       | 2.PFT.086.0   | 0.86             | 2.58           | 4.3            | 3                | 40   |
| Δ                       | 2.PFT.087.0   | 0.87             | 2.61           | 4.4            | 3                | 40   |
| Δ                       | 2.PFT.088.0   | 0.88             | 2.64           | 4.4            | 3                | 40   |
| Δ                       | 2.PFT.089.0   | 0.89             | 2.67           | 4.5            | 3                | 40   |
| -                       | 2.PFT.090.0   | 0.90             | 2.70           | 4.5            | 3                | 40   |
| Δ                       | 2.PFT.091.0   | 0.91             | 2.73           | 4.6            | 3                | 40   |
| Δ                       | 2.PFT.092.0   | 0.92             | 2.76           | 4.6            | 3                | 40   |
| Δ                       | 2.PFT.093.0   | 0.93             | 2.79           | 4.7            | 3                | 40   |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

### PILOTBOHREN UND KURZBOHREN



Flexpilot<sup>TITANIUM</sup>

Hartme





**Z**2



Nicht beschichtet

| etall |  |
|-------|--|
|       |  |
|       |  |

| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> ₁<br>k4 | I <sub>1</sub> | <b>l</b> <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|---------------|------------------|----------------|-----------------------|-----------|------|
| ■ ab<br>△ au            |               | [mm]             | [mm]           | [mm]                  | [mm]      | [mm] |
| Δ                       | 2.PFT.094.0   | 0.94             | 2.82           | 4.7                   | 3         | 40   |
| -                       | 2.PFT.095.0   | 0.95             | 2.85           | 4.8                   | 3         | 40   |
| Δ                       | 2.PFT.096.0   | 0.96             | 2.88           | 4.8                   | 3         | 40   |
| Δ                       | 2.PFT.097.0   | 0.97             | 2.91           | 4.9                   | 3         | 40   |
| Δ                       | 2.PFT.098.0   | 0.98             | 2.94           | 4.9                   | 3         | 40   |
| Δ                       | 2.PFT.099.0   | 0.99             | 2.97           | 5.0                   | 3         | 40   |
| •                       | 2.PFT.100.0   | 1.00             | 3.00           | 5.0                   | 3         | 40   |
| Δ                       | 2.PFT.101.0   | 1.01             | 3.03           | 5.1                   | 3         | 40   |
| Δ                       | 2.PFT.102.0   | 1.02             | 3.06           | 5.1                   | 3         | 40   |
| Δ                       | 2.PFT.103.0   | 1.03             | 3.09           | 5.2                   | 3         | 40   |
| Δ                       | 2.PFT.104.0   | 1.04             | 3.12           | 5.2                   | 3         | 40   |
| •                       | 2.PFT.105.0   | 1.05             | 3.15           | 5.3                   | 3         | 40   |
| Δ                       | 2.PFT.106.0   | 1.06             | 3.18           | 5.3                   | 3         | 40   |
| Δ                       | 2.PFT.107.0   | 1.07             | 3.21           | 5.4                   | 3         | 40   |
| Δ                       | 2.PFT.108.0   | 1.08             | 3.24           | 5.4                   | 3         | 40   |
| Δ                       | 2.PFT.109.0   | 1.09             | 3.27           | 5.5                   | 3         | 40   |
| •                       | 2.PFT.110.0   | 1.10             | 3.30           | 5.5                   | 3         | 40   |
| Δ                       | 2.PFT.111.0   | 1.11             | 3.33           | 5.6                   | 3         | 40   |
| Δ                       | 2.PFT.112.0   | 1.12             | 3.36           | 5.6                   | 3         | 40   |
| Δ                       | 2.PFT.113.0   | 1.13             | 3.39           | 5.7                   | 3         | 40   |
| Δ                       | 2.PFT.114.0   | 1.14             | 3.42           | 5.7                   | 3         | 40   |
| •                       | 2.PFT.115.0   | 1.15             | 3.45           | 5.8                   | 3         | 40   |
| Δ                       | 2.PFT.116.0   | 1.16             | 3.48           | 5.8                   | 3         | 40   |
| Δ                       | 2.PFT.117.0   | 1.17             | 3.51           | 5.9                   | 3         | 40   |
| Δ                       | 2.PFT.118.0   | 1.18             | 3.54           | 5.9                   | 3         | 40   |
| Δ                       | 2.PFT.119.0   | 1.19             | 3.57           | 6.0                   | 3         | 40   |
| •                       | 2.PFT.120.0   | 1.20             | 3.60           | 6.0                   | 3         | 40   |

■ Ab Lager verfügbar.

Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flex Titanium

# CrazyDrill Flexpilot Titanium - 3 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                        | Werkstoff-            | Werkstoff                                     | Wr.Nr.           | DIN                               | AISI/ASTM/UNS            | <b>V</b> ,                 |         |  |  |
|----------------------------------------|-----------------------|-----------------------------------------------|------------------|-----------------------------------|--------------------------|----------------------------|---------|--|--|
|                                        | gruppe                | WEIKSTOII                                     | WI.INI.          | DIN                               | AISI/ASTIVI/OIVS         | [m/min]<br>Ød1≤0.4 Ød1>0.4 |         |  |  |
|                                        |                       |                                               | 4.0204           | C10                               | AIGI 4040                | 20130.4                    | 20170.4 |  |  |
|                                        | В                     |                                               | 1.0301           | C10<br>C15                        | AISI 1010<br>AISI 1015   |                            |         |  |  |
|                                        | P                     | Stähle unlegiert                              |                  |                                   |                          |                            |         |  |  |
|                                        |                       | Rm < 800 N/mm <sup>2</sup>                    | 1.1191           | C45E/CK45                         | AISI 1045                |                            |         |  |  |
| \ \/( <b>//</b>                        |                       |                                               | 1.0044           | \$275JR                           | AISI 1020                |                            |         |  |  |
| \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                       |                                               | 1.0715           | 11SMn30                           | AISI 1215                |                            |         |  |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                       | Stähle niedriglegiert<br>Rm > 900 N/mm²       | 1.5752           | 15NiCr13                          | ASTM 3415 / AISI 3310    |                            |         |  |  |
|                                        |                       |                                               | 1.7131<br>1.3505 | 16MnCr5                           | AISI 5115                |                            |         |  |  |
|                                        |                       |                                               |                  | 100Cr6                            | AISI 52100               |                            |         |  |  |
|                                        |                       |                                               | 1.7225           | 42CrMo4<br>90MnCrV8               | AISI 4140                |                            |         |  |  |
| d <sub>1</sub>                         |                       |                                               | 1.2842           |                                   | AISI O2                  |                            |         |  |  |
| 3 x d <sub>1</sub>                     |                       | Werkzeugstähle                                | 1.2379           | X153CrMoV12                       | AISI D2                  |                            |         |  |  |
| /// <del>/////</del>                   |                       | hochlegiert                                   | 1.2436           | X210CrW12                         | AISI D4/D6               |                            |         |  |  |
|                                        |                       | Rm < 1200 N/mm <sup>2</sup>                   | 1.3343           | HS6-5-2C                          | AISI M2 / UNS T11302     |                            |         |  |  |
|                                        |                       |                                               | 1.3355           | HS18-0-1                          | AISI T1 / UNS T12001     |                            |         |  |  |
|                                        |                       | Rostfreie Stähle-                             | 1.4016           | X6Cr17                            | AISI 430 / UNS S43000    |                            |         |  |  |
|                                        | M                     | M                                             | ferritisch       | 1.4105                            | X6CrMoS17                | AISI 430F                  |         |  |  |
|                                        |                       | Rostfreie Stähle-                             | 1.4034           | X46Cr13                           | AISI 420C                |                            |         |  |  |
|                                        |                       | martensitisch                                 | 1.4112           | X90CrMoV18                        | AISI 440B                |                            |         |  |  |
|                                        |                       | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4                   | AISI 630 / ASTM 17-4 PH  |                            |         |  |  |
|                                        |                       | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5                   | ASTM 15-5 PH             |                            |         |  |  |
|                                        |                       |                                               | 1.4301           | X5CrNi 18-10                      | AISI 304                 |                            |         |  |  |
|                                        |                       | Rostfreie Stähle-                             | 1.4435           | X2CrNiMo 18-14-3                  | AISI 316L                |                            |         |  |  |
|                                        |                       | austenitisch                                  | 1.4441           | X2CrNiMo 18-15-3                  | AISI 316LM               |                            |         |  |  |
|                                        |                       |                                               | 1.4539           | X1NiCrMoCu 25-20-5                | AISI 904L                |                            |         |  |  |
|                                        |                       |                                               | 0.6020           | GG20                              | ASTM 30                  |                            |         |  |  |
|                                        | <b>K</b> G            | Gusseisen                                     | 0.6030           | GG30                              | ASTM 40B                 |                            |         |  |  |
|                                        |                       |                                               | 0.7040           | GGG40                             | ASTM 60-40-18            |                            |         |  |  |
|                                        |                       |                                               | 0.7060           | GGG60                             | ASTM 80-60-03            |                            |         |  |  |
|                                        |                       |                                               |                  |                                   |                          |                            |         |  |  |
|                                        | II. II                | Aluminium<br>Knetlegierungen                  | 3.2315<br>3.4365 | AlMgSi1<br>AlZnMgCu1.5            | ASTM 6351<br>ASTM 7075   |                            |         |  |  |
|                                        | N                     |                                               | 3.2163           | GD-AlSi9Cu3                       | ASTM A380                |                            |         |  |  |
|                                        |                       | Aluminium<br>Druckgusslegierungen             | 3.2381           | GD-AlSi9Cu3                       | UNS A03590               |                            |         |  |  |
|                                        |                       | Drackgassicgicrangen                          | 2.004            |                                   |                          |                            |         |  |  |
|                                        |                       | Kupfer                                        | 2.004            | Cu-OF / CW008A<br>Cu-ETP / CW004A | UNS C10100<br>UNS C11000 | 5 – 40                     | 20 – 40 |  |  |
|                                        |                       |                                               |                  |                                   |                          |                            |         |  |  |
|                                        |                       | Messing bleifrei                              | 2.0321           | CuZn37 CW508L                     | UNS C27400               |                            |         |  |  |
|                                        |                       |                                               | 2.036            | CuZn40 CW509L                     | UNS C28000               |                            |         |  |  |
|                                        |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N                |                          |                            |         |  |  |
|                                        |                       |                                               | 2.102            | CuSn6                             | UNS C51900               |                            |         |  |  |
|                                        |                       | Bronze                                        | 2.0966           | CuAl10Ni5Fe4                      | UNS C63000               |                            |         |  |  |
|                                        |                       | Rm < 600 N/mm <sup>2</sup>                    | 2.096            | CuAl9Mn2                          | UNS C63200               |                            |         |  |  |
|                                        |                       |                                               | 2.4856           |                                   | Inconel 625              |                            |         |  |  |
|                                        | $S_1$                 | Hitzebeständige                               | 2.4668           |                                   | Inconel 718              |                            |         |  |  |
|                                        |                       | Stähle                                        | 2.4617           | NiMo28                            | Hastelloy B-2            |                            |         |  |  |
|                                        |                       |                                               | 2.4665           | NiCr22Fe18Mo                      | Hastelloy X              |                            |         |  |  |
|                                        |                       | Titan rein                                    | 3.7035           | Gr.2                              | ASTM B348 / F67          | 5 – 20                     | 20 – 40 |  |  |
|                                        | S <sub>2</sub>        |                                               | 3.7065           | Gr.4                              | ASTM B348 / F68          |                            |         |  |  |
|                                        |                       | Titan Legierungen                             | 3.7165           | TiAl6V4                           | ASTM B348 / F136         | 5 – 20                     | 20 – 40 |  |  |
|                                        |                       | 3.2.2.90.                                     | 9.9367           | TiAl6Nb7                          | ASTM F1295               |                            |         |  |  |
|                                        | <b>S</b> <sub>3</sub> | CrCo-Legierungen                              | 2.4964           | CoCr20W15Ni                       | Haynes 25                |                            |         |  |  |
| L                                      | 3                     | 2. 20 Legiciangen                             |                  | CrCoMo28                          | ASTM F1537               |                            |         |  |  |
|                                        | H₁                    | Stähle gehärtet                               | 1.2510           | 100MnCrMoW4                       | AISI O1                  |                            |         |  |  |
|                                        | • •1                  | < 55 HRC                                      |                  |                                   |                          |                            |         |  |  |
|                                        |                       | Stähle gehärtet                               |                  |                                   |                          |                            |         |  |  |

### PILOTBOHREN UND KURZBOHREN



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                      |                      |                      | <b>f</b> [mm/U]      |                      |               |                             |
|----------------------|----------------------|----------------------|----------------------|----------------------|---------------|-----------------------------|
| <b>Ød1</b><br>0.1 mm | <b>Ød1</b><br>0.2 mm | <b>Ød1</b><br>0.3 mm | <b>Ød1</b><br>0.4 mm | <b>Ød1</b><br>0.6 mm | Ød1<br>0.8 mm | <b>Ød1</b><br>1.0 mm-1.2 mr |
| f                    | f                    | f                    | f                    | f                    | f             | f                           |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      | Empfohle             | en: CrazyDrill Fle   | vnilot Steel         |               |                             |
|                      |                      | Emplome              | in. Crazyonii ric.   | Aprior Steel         |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      | Empfohle             | n: CrazyDrill Flex   | pilot Steel          |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      | 5 (11                | C D 111 E1           | 1                    |               |                             |
|                      |                      | Emptonie             | n: CrazyDrill Flex   | (pilot Steel         |               |                             |
| 0.005                | 0.020                | 0.040                | 0.060                | 0.120                | 0.180         | 0.200                       |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      | Empfohle             | n: CrazyDrill Flex   | xpilot Steel         |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
| 0.002                | 0.005                | 0.007                | 0.010                | 0.015                | 0.025         | 0.035                       |
| 0.002                | 0.010                | 0.015                | 0.020                | 0.050                | 0.090         | 0.140                       |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |
|                      |                      |                      |                      |                      |               |                             |



#### **KURZBOHRUNG 3 X D**

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

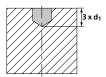
#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### Pilotbohrung und Kurzbohrung

Die Pilotbohrung mit CrazyDrill Flexpilot ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess.

Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.


CrazyDrill Flexpilot ist nicht nur die ideale Vorbereitung von tiefen Folgebohrungen mit CrazyDrill Flex. Er ist gleichzeitig ein Kurzbohrer, hochpräzise und schnell für Bohrungen bis 3 x d.



#### **BOHRPROZESS**

#### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

Bohren in einem Bohrstoss mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit (siehe Schnittdatentabelle).



#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.

## **PATENTED**

# CrazyDrill Pilot SST-Inox





Mit CrazyDrill Pilot SST-Inox bietet Mikron Tool einen Pilot- und Kurzbohrer an für rost-, säure- und hitzebeständige Stähle sowie CrCo-Legierungen im Durchmesserbereich von 0.3 bis 2.0 mm, für Bohrtiefen bis 3 x d. Alle Kurzbohrer sind beschichtet, mit einer im Schaft integrierten Kühlung und 90° Fasenschneiden versehen.

Auch ohne innere Kühlmittelzufuhr (mit äusserer Kühlmittelzufuhr) ist CrazyDrill Pilot SST-Inox ein hervorragender Pilotbohrer.

Er ist die perfekte Vorbereitung für die tiefe und präzise Bohrung mit CrazyDrill SST-Inox und CrazyDrill Flex SST-Inox. Die degressive Spiralnute, die Kühlkanäle, die Beschichtung und die Möglichkeit, eine 90°-Senkung anzubringen, machen aus ihm einen äusserst effizienten Pilotbzw. Kurzbohrer.

### **PATENTED**

## Präzise in die Tiefe

#### **EFFIZIENTES PILOT- UND KURZBOHREN IN EDELSTAHL**

Mit CrazyDrill Pilot SST-Inox bietet Mikron Tool einen Pilot- und Kurzbohrer an für rost-, säure- und hitzebeständige Stähle sowie CrCo-Legierungen im Durchmesserbereich von 0.3 bis 2.0 mm, für Bohrtiefen bis 3 x d. Alle Kurzbohrer sind beschichtet, mit einer im Schaft integrierten Kühlung und 90° Fasenschneiden versehen.

CrazyDrill Pilot SST-Inox, Bohrtiefe 3 x d, mit Kühlkanälen im Schaft, Senkung 90°

## CrazyDrill Pilot SST-Inox

Beschichtet Aussenkühlung



Integrierte Kühlung

## **NEW**

#### 1 | SCHAFT

Der robuste Hartmetallschaft unterstützt ein stabiles, schwingungsfreies Bohren.

#### 2 | NEUES KÜHLKONZEPT

Die im Schaft integrierten Kühlkanäle garantieren eine kontinuierliche, massive Kühlung der Schneiden schon ab 15 bar. Das Resultat ist eine erhöhte Prozesssicherheit und Produktivität. Dieses Werkzeug kann auch mit äusserer Kühlmittelzufuhr eingesetzt werden.

#### 3 | HARTMETALL

Dank hoher Zähigkeit und Wärmeschockresistenz erfüllt das speziell für SST-Inox Produkte entwickelte Hartmetall perfekt die Anforderungen für das Zerspanen von rost-, säure- und hitzebeständigen Stählen sowie CrCo-Legierungen.

#### 4 | BESCHICHTUNG

Die Hochleistungsbeschichtung eXedur RIP ist verschleiss- und hitzeresistent. Sie verhindert ein Verkleben der Schneiden und unterstützt den Spänetransport. Das Ergebnis ist eine hohe Standzeit des Werkzeuges.

#### **5 | FASENSCHNEIDE 90°**

Mit der Bohrung kann gleichzeitig eine Senkung von 90° angebracht werden.

#### **6 | DEGRESSIVE SPIRALNUT - PATENTIERT**

Die degressive Spiralnut, mit einer neuen und patentierten Geometrie, garantiert eine hohe Werkzeugstabilität. Sie sorgt im vorderen Teil für einen guten Spanbruch, im hinteren für eine rasche Späneabfuhr.

#### 7 | SPITZENGEOMETRIE

Die Spitzengeometrie ist speziell entwickelt für rost-, säure- und hitzebeständige Stähle:

- Hohe Schneideckenstabilität
- Selbstzentrierung
- Kurze Späne

CrazyDrill Pilot SST-Inox mit Aussenkühlung

CrazyDrill Pilot SST-Inox mit integrierter Kühlung

Bohrerspitze





## NEW

# Vorteile und Anwendungen

#### **GEEIGNET FÜR JEDE ANWENDUNG**

KÜRZERE BEARBEITUNGSZEIT

Dank innovativem Kühlkonzept

Da 3 x d + 90° Senkung in einem Bohrstoss

ERHÖHTE STANDZEIT

Dank neuer Schneidengeometrie

HOHE PROZESSSICHERHEIT

Dank enger Toleranzen

HOHE PRÄZISION



#### TEIL

Einspritzkomponente - Automobil

#### WERKSTOFF

X5CrNi 18-10 / 1.4301 / AISI 304

#### **BEARBEITUNG**

- Pilotbohren und senken 90°
- d = 0.9 mm
- Bohrtiefe 2.9 mm

#### WERKZEUG

 ${\sf Mikron\ Tool\ -\ CrazyDrill\ Pilot\ SST-Inox}$ 

| DATEN         | MIKRON TOOL                                                                |
|---------------|----------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Pilot SST-Inox - Hartmetall - Beschichtet - Integrierte Kühlung |
| Artikelnummer | 2.PD.00900.090.IK                                                          |
| Schnittdaten  | $v_c = 40 \text{ m/min}$<br>f = 0.030 mm/U                                 |

### PILOTBOHREN UND KURZBOHREN























| MATERIALGRUPPE                                   | BEISPIELE |                  |                   |  |  |  |  |
|--------------------------------------------------|-----------|------------------|-------------------|--|--|--|--|
|                                                  | Wr. Nr.   | DIN              | AISI / ASTM / UNS |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle              | 1.4105    | X6CrMoS17        | 430F              |  |  |  |  |
|                                                  | 1.4112    | X90CrMoV18       | 440B              |  |  |  |  |
|                                                  | 1.4542    | X5CrNiCuNb 16-4  | 630               |  |  |  |  |
|                                                  | 1.4435    | X2CrNiMo 18-14-3 | 316L              |  |  |  |  |
| <b>Gruppe N</b><br>Kupfer und<br>Messig bleifrei | 2.004     | Cu-OF / CW008A   | C10100            |  |  |  |  |
| iviessig bierirei                                | 2.0321    | CuZn37 CW508L    | C27400            |  |  |  |  |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle       | 2.4856    |                  | INCONEL 625       |  |  |  |  |
|                                                  | 2.4665    | NiCr22Fe18Mo     | HASTELLOY X       |  |  |  |  |
| <b>Gruppe S3</b><br>CrCo-Legierungen             | 2.4964    | CoCr20W15Ni      | HAYNES 25         |  |  |  |  |

### **NEW**

## CrazyDrill Pilot SST-Inox - 3 x d - 90° Senkung

#### **BOHREN MIT INTEGRIERTER KÜHLUNG**



Der Pilot- und Kurzbohrer ist speziell entwickelt für rost-, säure- und hitzebeständige Stähle sowie CrCo-Legierungen. Er verfügt über eine integrierte Kühlung im Schaft sowie eine degressive Spannute und ist als Pilotbohrer die ideale Ergänzung von CrazyDrill SST-Inox und CrazyDrill Flex SST-Inox. Der Bohrer eignet sich ausserdem als Kurzbohrer für Bohrtiefen bis 3 x d.

CrazyDrill Pilot SST-Inox wurde entwickelt als Pilot- und Kurzbohrer mit integrierter Fasenschneide, welche eine Senkung von 90° im selben Bohrschritt ermöglicht. Speziell sind bei diesem Bohrer die im Schaft integrierten Kühlkanäle, die schon ab 15 bar für einen effizienten Kühlmittelstrahl sorgen, die Späne vom Bohrer wegspülen und die Temperatur unter Kontrolle halten. Das Resultat ist eine deutlich erhöhte Standzeit des Werkzeuges.

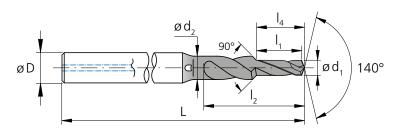
#### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Pilot SST-Inox (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.





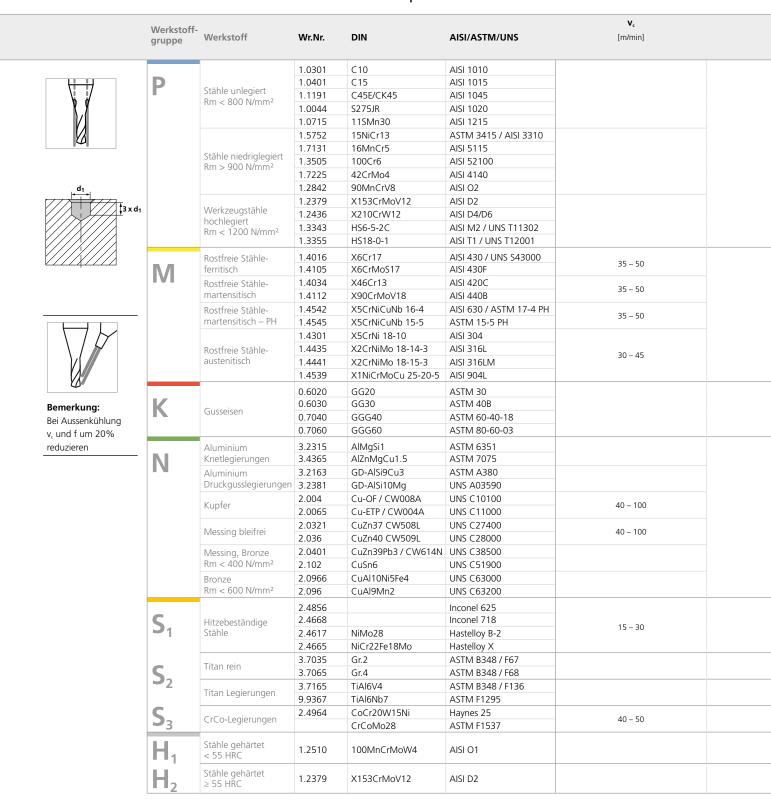

**Z**2







Hart-


metall

| Lager | Autikalaumanaa    | d <sub>1</sub>    | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | I <sub>4</sub> | D                   | L    |
|-------|-------------------|-------------------|----------------|----------------|----------------|----------------|---------------------|------|
| ab =  | Artikelnummer     | <b>m5</b><br>[mm] | [mm]           | [mm]           | [mm]           | [mm]           | <b>(h6)</b><br>[mm] | [mm] |
|       | 2.PD.00300.090.IK | 0.30              | 0.90           | 0.60           | 2.5            | 0.95           | 3                   | 45   |
|       | 2.PD.00350.090.IK | 0.35              | 1.05           | 0.70           | 2.8            | 1.11           | 3                   | 45   |
| -     | 2.PD.00400.090.IK | 0.40              | 1.20           | 0.80           | 3.2            | 1.26           | 3                   | 45   |
| •     | 2.PD.00450.090.IK | 0.45              | 1.35           | 0.90           | 3.6            | 1.42           | 3                   | 45   |
| •     | 2.PD.00500.090.IK | 0.50              | 1.50           | 1.00           | 4.0            | 1.58           | 3                   | 48   |
| -     | 2.PD.00550.090.IK | 0.55              | 1.65           | 1.00           | 4.4            | 1.74           | 3                   | 48   |
| •     | 2.PD.00600.090.IK | 0.60              | 1.80           | 1.10           | 4.7            | 1.90           | 3                   | 48   |
| -     | 2.PD.00650.090.IK | 0.65              | 1.95           | 1.10           | 5.1            | 2.05           | 3                   | 48   |
| •     | 2.PD.00700.090.IK | 0.70              | 2.10           | 1.30           | 5.5            | 2.21           | 4                   | 52   |
| -     | 2.PD.00750.090.IK | 0.75              | 2.25           | 1.40           | 5.8            | 2.37           | 4                   | 52   |
| -     | 2.PD.00800.090.IK | 0.80              | 2.40           | 1.40           | 6.2            | 2.53           | 4                   | 52   |
| -     | 2.PD.00850.090.IK | 0.85              | 2.55           | 1.50           | 6.5            | 2.68           | 4                   | 52   |
| •     | 2.PD.00900.090.IK | 0.90              | 2.70           | 1.50           | 6.9            | 2.84           | 4                   | 52   |
| -     | 2.PD.00950.090.IK | 0.95              | 2.85           | 1.50           | 7.2            | 3.00           | 4                   | 52   |
| •     | 2.PD.01000.090.IK | 1.00              | 3.00           | 1.70           | 7.5            | 3.16           | 4                   | 55   |
| -     | 2.PD.01050.090.IK | 1.05              | 3.15           | 1.70           | 7.9            | 3.32           | 4                   | 55   |
| •     | 2.PD.01100.090.IK | 1.10              | 3.30           | 1.70           | 8.2            | 3.47           | 4                   | 55   |
| -     | 2.PD.01150.090.IK | 1.15              | 3.45           | 1.80           | 8.5            | 3.63           | 4                   | 55   |
| •     | 2.PD.01200.090.IK | 1.20              | 3.60           | 1.80           | 8.8            | 3.79           | 4                   | 55   |
| -     | 2.PD.01250.090.IK | 1.25              | 3.75           | 2.00           | 9.2            | 3.95           | 4                   | 55   |
| •     | 2.PD.01300.090.IK | 1.30              | 3.90           | 2.00           | 9.5            | 4.11           | 4                   | 55   |
| -     | 2.PD.01350.090.IK | 1.35              | 4.05           | 2.00           | 9.8            | 4.26           | 4                   | 55   |
| •     | 2.PD.01400.090.IK | 1.40              | 4.20           | 2.25           | 10.1           | 4.42           | 4                   | 55   |
| -     | 2.PD.01450.090.IK | 1.45              | 4.35           | 2.25           | 10.4           | 4.58           | 4                   | 55   |
| •     | 2.PD.01500.090.IK | 1.50              | 4.50           | 2.25           | 10.7           | 4.74           | 4                   | 55   |
| -     | 2.PD.01550.090.IK | 1.55              | 4.65           | 2.25           | 10.9           | 4.89           | 4                   | 55   |
| •     | 2.PD.01600.090.IK | 1.60              | 4.80           | 2.25           | 11.2           | 5.05           | 4                   | 55   |
|       | 2.PD.01650.090.IK | 1.65              | 4.95           | 2.25           | 11.5           | 5.21           | 4                   | 55   |
| •     | 2.PD.01700.090.IK | 1.70              | 5.10           | 2.60           | 11.8           | 5.37           | 6                   | 55   |
| -     | 2.PD.01750.090.IK | 1.75              | 5.25           | 2.60           | 12.0           | 5.53           | 6                   | 55   |
| •     | 2.PD.01800.090.IK | 1.80              | 5.40           | 2.60           | 12.3           | 5.68           | 6                   | 55   |
| -     | 2.PD.01850.090.IK | 1.85              | 5.55           | 2.60           | 12.6           | 5.84           | 6                   | 55   |
|       | 2.PD.01900.090.IK | 1.90              | 5.70           | 2.60           | 12.8           | 6.00           | 6                   | 55   |
| -     | 2.PD.01950.090.IK | 1.95              | 5.85           | 2.60           | 13.1           | 6.16           | 6                   | 55   |
|       | 2.PD.02000.090.IK | 2.00              | 6.00           | 3.10           | 13.3           | 6.32           | 6                   | 55   |

### NEW

# CrazyDrill Pilot SST-Inox - 3 x d - 90° Senkung

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT



### PILOTBOHREN UND KURZBOHREN



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|        |        |        |        | <b>f</b> [mm/U] |        |        |        |        |
|--------|--------|--------|--------|-----------------|--------|--------|--------|--------|
| Ød1    | Ød1    | Ød1    | Ød1    | Ød1             | Ød1    | Ød1    | Ød1    | Ød1    |
| 0.3 mm | 0.5 mm | 0.8 mm | 1.0 mm | 1.2 mm          | 1.4 mm | 1.6 mm | 1.8 mm | 2.0 mm |
| f      | f      | f      | f      | f               | f      | f      | f      | f      |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
| 0.015  | 0.020  | 0.030  | 0.025  | 0.040           | 0.050  | 0.055  | 0.060  | 0.070  |
| 0.015  | 0.020  | 0.030  | 0.035  | 0.040           | 0.050  | 0.055  | 0.060  | 0.070  |
|        |        |        |        |                 |        |        |        |        |
| 0.015  | 0.020  | 0.025  | 0.030  | 0.040           | 0.050  | 0.055  | 0.060  | 0.070  |
| 0.010  | 0.020  | 0.025  | 0.030  | 0.035           | 0.045  | 0.050  | 0.055  | 0.060  |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
| 0.040  | 0.060  | 0.080  | 0.090  | 0.100           | 0.120  | 0.140  | 0.160  | 0.180  |
| 0.040  | 0.060  | 0.080  | 0.090  | 0.100           | 0.120  | 0.140  | 0.160  | 0.180  |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
| 0.010  | 0.015  | 0.020  | 0.022  | 0.025           | 0.035  | 0.037  | 0.045  | 0.055  |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
| 0.020  | 0.030  | 0.040  | 0.055  | 0.060           | 0.070  | 0.075  | 0.080  | 0.100  |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |
|        |        |        |        |                 |        |        |        |        |



#### **KURZBOHRUNG 3 X D MIT ZUSÄTZLICHER SENKUNG 90°**

#### Kühlschmierstoff, Filter und Druck

#### Kühlen mit innerer Kühlmittelzufuhr

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Filter: Die grossen Kühlkanäle erlauben einen Standardfilter. Filterqualität ≤ 0.050 mm.

Kühlmitteldruck: Für CrazyDrill Pilot SST-Inox wird mindestens 15 bar Kühlmitteldruck benötigt, um prozesssicher zu bohren. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

| Drehzahl                     | [U/min] | ≤ 10′000 | > 10′000 |  |
|------------------------------|---------|----------|----------|--|
| Minimaler<br>Kühlmitteldruck | [bar]   | 15       | 30       |  |

#### Kühlen mit äusserer Kühlmittelzufuhr

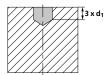
Bei der externen Kühlung ist darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

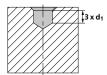
Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### Pilotbohrung und Kurzbohrung

Die Pilotbohrung mit CrazyDrill Pilot SST-Inox ist der perfekte Ausgangspunkt für eine präzise Bohrungsposition mit hoher Fluchtungsgenauigkeit.


Dank perfekt abgestimmter Bohrertoleranz entsteht kein messbarer Übergang vom Pilotbohrer zum Folgebohrer. Eine durchgehend hohe Qualität der Bohrung ist gewährleistet.

CrazyDrill Pilot SST-Inox kann ideal auch als Kurzbohrer verwendet werden für eine äusserst präzise und schnelle Bohrung bis zu einer Tiefe 3 x d mit einer Senkung von 90°.


#### **BOHRPROZESS**

#### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

- Interne oder externe Kühlung einschalten.
- Bohren in einem Bohrstoss mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit (siehe Schnittdatentabelle).



Bei Bedarf kann nach dem Erreichen der maximalen Bohrtiefe von 3 x d eine Senkung von 90° angebracht werden.



#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.

# CrazyDrill Pilot





Mit CrazyDrill Pilot bietet Mikron Tool einen Kurzbohrer bzw. Pilotbohrer inklusive Senkschneide an. Er dient nicht nur zum Kurzbohren sondern auch zur perfekten Bohrvorbereitung für eine hochpräzise Positionsgenauigkeit und Geradheit beim Tieflochbohren von über 6 x d.

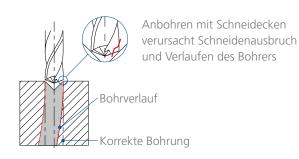
Ab Lager verfügbar ist er in den Durchmessern von 0.4 bis 6.0 mm und für eine maximale Bohrtiefe von 2 x d. Alle Kurzbohrer sind beschichtet und mit einem Senkwinkel von 90° versehen.

Mit CrazyDrill Pilot erfolgen Zentrierung und Pilotbohrung bis zu 2 x d in einem einzigen Arbeitsgang. So wird der Nachfolgebohrer in der Pilotbohrung zylindrisch geführt, was eine hohe Geradheit der Folgebohrung ermöglicht. Zudem kann mit demselben Werkzeug direkt eine 90° Senkung an der Bohrung angebracht werden. Dies erspart Werkzeugplätze auf der Maschine und ermöglicht kürzere Taktzeiten. Die degressive Spiralnut sorgt vom Bohren übers Senken für gleichbleibende Schnittbedingungen.

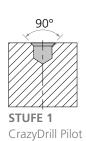
Eine optimale Abstimmung der Durchmessertoleranzen und Spitzenwinkel ermöglicht eine präzise Tieflochbohrung ohne messbare Übergänge von Pilot- zu Folgebohrung, sorgt für Prozesssicherheit und erhöht zusätzlich die Standzeit des Nachfolgebohrers wesentlich. Die spezielle Hochleistungsgeometrie von CrazyDrill Pilot ermöglicht eine hohe Bearbeitungsgeschwindigkeit, die optimale Beschichtung eine hohe Verschleissfestigkeit.

## Ideale Vorbereitung von tiefen Bohrungen

#### ZENTRIEREN, PILOTIEREN UND SENKEN IN EINEM ARBEITSGANG

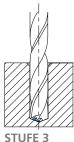

Mit CrazyDrill Pilot bietet Mikron Tool einen Kurzbohrer bzw. Pilotbohrer inklusive Senkschneide an. Er dient nicht nur zum Kurzbohren sondern auch zur perfekten Bohrvorbereitung für eine hochpräzise Positionsgenauigkeit und Geradheit beim Tieflochbohren von über 6 x d. Ab Lager verfügbar ist er in den Durchmessern von 0.4 bis 6.0 mm und für eine maximale Bohrtiefe von 2 x d. Alle Kurzbohrer sind beschichtet und mit einem Senkwinkel von 90° versehen.

CrazyDrill Pilot, Bohrtiefe 3 x d, Aussenkühlung, Senkung 90°


#### Der Vergleich

Konventionell






■ Mikron Tool



STUFE 2
Bohrer geführt

in Pilotbohrung



Tiefes Bohren ohne messbaren Übergang zur Pilotbohrung

## CrazyDrill Pilot

Beschichtet

Aussenkühlung





#### 1 | SCHAFT

Der verstärkte Hartmetallschaft garantiert Stabilität, hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.

#### 2 | HARTMETALL

Ein speziell ausgewähltes Hartmetall ermöglicht hohe Bearbeitungsgeschwindigkeiten.

#### 3 | BESCHICHTUNG

Optimale Beschichtung schützt den Hartmetallbohrer vor Verschleiss und erhöht so seine Lebensdauer.

#### **4 | DEGRESSIVE SPIRALNUTE**

Für optimale und gleichbleibende Schnittverhältnisse vom Bohren bis zum Senken von 90°. Das Resultat: Höhere Prozesssicherheit und Standzeit.

#### 5 | 90° SENKSCHNEIDE

Ermöglicht im gleichen Arbeitsvorgang eine Senkung von 90°.

#### 6 | BOHRERSPITZENGEOMETRIE

Hohe Schnitt- und Vorschubgeschwindigkeiten dank spezieller Bohrerspitzengeometrie. Spitzenwinkel von 140° und abgestimmte Toleranz erhöhen Standzeit von Folgebohrer.

#### 7 | DURCHMESSERBEREICH

Angepasst an die Abmessungen der CrazyDrill Familie hat jeder Tieflochbohrer sein passendes Pilotwerkzeug. Durch abgestimmte Toleranzen gibt es keinen messbaren Übergang zwischen Pilot- und Folgebohrung.

Bohrerspitze

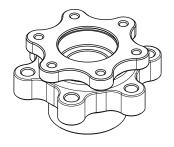




# Vorteile und Anwendungen

#### ZENTRIERUNG UND PILOTIERUNG IN EINEM SCHRITT

KÜRZERE BEARBEITUNGSZEIT


Da 2 x d + 90° Senkung in einem Bohrstoss

HOHE PROZESSSICHERHEIT

Dank stabiler Bauweise

HOHE PRÄZISION

Dank abgestimmter Toleranzen zu Folgebohrwerkzeugen



### TEIL

Radnabe

#### WERKSTOFF

AlMg 1 SiCu / 3.3211 / ASTM B211

#### **BEARBEITUNG**

- Kurzbohren und senken 90°
- d = 3 mm
- Bohrtiefe 6.2 mm

#### WERKZEUG

Mikron Tool - CrazyDrill Pilot

| DATEN         | MIKRON TOOL                                                 |
|---------------|-------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Pilot - Hartmetall - Beschichtet - Aussenkühlung |
| Artikelnummer | 2.PD.03000.090                                              |
| Schnittdaten  | $v_c = 160 \text{ m/min}$<br>f = 0.16 mm/U                  |

















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE   |
|-----------------------|----------------------------|
| Dentaltechnik         | Zahnimplantat              |
| Raum- und Luftfahrt   | Komponente für<br>Flugzeug |
| Medizintechnik        | DHS Schraube               |
| Automobilbau          | Ventilgehäuse              |
| Maschinenbau          | Führungsbuchse             |
| Hydraulik / Pneumatik | Pneumatikventil            |

| MATERIALGRUPPE                              | BEISPIELE |                |                   |  |  |  |  |
|---------------------------------------------|-----------|----------------|-------------------|--|--|--|--|
|                                             | Wr. Nr.   | DIN            | AISI / ASTM / UNS |  |  |  |  |
| Gruppe P<br>Unlegierte u.                   | 1.0401    | C15            | 1015              |  |  |  |  |
| legierte Stähle                             | 1.3505    | 100Cr6         | 52100             |  |  |  |  |
|                                             | 1.2436    | X210CrW12      | D4 / D6           |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105    | X6CrMoS17      | 430F              |  |  |  |  |
|                                             | 1.4112    | X90CrMoV18     | 440B              |  |  |  |  |
|                                             | 1.4301    | X5CrNi 18-10   | 304               |  |  |  |  |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040    | GGG40          | 60-40-18          |  |  |  |  |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315    | AlMgSi1        | 6351              |  |  |  |  |
|                                             | 3.2163    | GD-AlSi9Cu3    | A380              |  |  |  |  |
|                                             | 2.004     | Cu-OF / CW008A | C10100            |  |  |  |  |
|                                             | 2.0321    | CuZn37 CW508L  | C27400            |  |  |  |  |
|                                             | 2.102     | CuSn6          | C51900            |  |  |  |  |
|                                             | 2.096     | CuAl9Mn2       | C63200            |  |  |  |  |
| Gruppe S2<br>Titan rein u.                  | 3.7035    | Gr.2           | B348 / F67        |  |  |  |  |
| Titan Legierungen                           | 3.7165    | TiAl6V4        | B348 / F136       |  |  |  |  |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510    | 100MnCrMoW4    | O1                |  |  |  |  |

# CrazyDrill Pilot - 2 x d - 90° Senkung

#### **BOHREN MIT AUSSENKÜHLUNG**



CrazyDrill Pilot zentriert und realisiert eine Pilotbohrung mit einer Bohrtiefe von 2 x d. Die Pilotbohrung führt den Folgebohrer perfekt und unterstützt damit die Geradheit der tiefen Bohrung. Durch die stabile Konstruktion erreicht der Pilotbohrer eine hohe Positionsgenauigkeit. Zudem garantiert er dem Nachfolgebohrer eine wesentlich höhere Standzeit, da durch die beiden aufeinander abgestimmten Spitzenwinkel von 140° die Gefahr von Schneideckenausbrüchen verringert wird.

Auch als Kurzbohrer, wo er dank seiner stabilen Konstruktion (verstärkter Schaft) und der idealen Beschichtung hohe Standzeiten und Bohrungsqualität erreicht, hat sich CrazyDrill Pilot bewährt. Dass er mit hohen Schnitt- und Vorschubgeschwindigkeiten eingesetzt werden kann, verdankt er seiner Spitzengeometrie, die degressive Spiralnute ermöglicht konstante Schnittverhältnisse vom Bohren über das prozesssichere direkte Anbringen der 90° Senkung.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

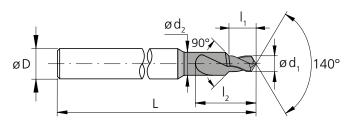
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Pilot (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.



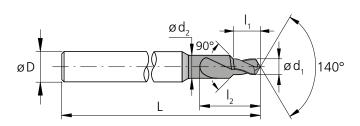







**Z**2








| ab Lager | Artikelnummer  | <b>d</b> ₁<br>m5 | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|------------------|----------------|----------------|----------------|-----------|------|
| ab<br>ab |                | [mm]             | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.PD.00400.090 | 0.40             | 0.8            | 1.00           | 2.8            | 4         | 46.5 |
| -        | 2.PD.00450.090 | 0.45             | 0.9            | 1.00           | 2.9            | 4         | 46.5 |
| -        | 2.PD.00500.090 | 0.50             | 1.0            | 1.20           | 3.4            | 4         | 47.0 |
| -        | 2.PD.00550.090 | 0.55             | 1.1            | 1.20           | 3.5            | 4         | 47.0 |
|          | 2.PD.00600.090 | 0.60             | 1.2            | 1.50           | 4.2            | 4         | 48.0 |
|          | 2.PD.00650.090 | 0.65             | 1.3            | 1.50           | 4.3            | 4         | 48.0 |
|          | 2.PD.00700.090 | 0.70             | 1.4            | 1.75           | 4.9            | 4         | 49.0 |
|          | 2.PD.00750.090 | 0.75             | 1.5            | 1.75           | 5.0            | 4         | 49.0 |
|          | 2.PD.00800.090 | 0.80             | 1.6            | 2.00           | 5.6            | 4         | 49.0 |
| -        | 2.PD.00850.090 | 0.85             | 1.7            | 2.00           | 5.7            | 4         | 49.0 |
| -        | 2.PD.00900.090 | 0.90             | 1.8            | 2.00           | 5.8            | 4         | 49.0 |
|          | 2.PD.00950.090 | 0.95             | 1.9            | 2.00           | 5.9            | 4         | 49.0 |
|          | 2.PD.01000.090 | 1.00             | 2.0            | 2.50           | 7.0            | 4         | 51.0 |
|          | 2.PD.01050.090 | 1.05             | 2.1            | 2.50           | 7.1            | 4         | 51.0 |
|          | 2.PD.01100.090 | 1.10             | 2.2            | 2.50           | 7.2            | 4         | 51.0 |
| •        | 2.PD.01150.090 | 1.15             | 2.3            | 2.50           | 7.3            | 4         | 51.0 |
| •        | 2.PD.01200.090 | 1.20             | 2.4            | 2.50           | 7.4            | 4         | 51.0 |
| •        | 2.PD.01250.090 | 1.25             | 2.5            | 2.50           | 7.5            | 4         | 51.0 |
|          | 2.PD.01300.090 | 1.30             | 2.6            | 2.50           | 7.6            | 4         | 51.0 |
| •        | 2.PD.01350.090 | 1.35             | 2.7            | 2.50           | 7.7            | 4         | 51.0 |
| •        | 2.PD.01400.090 | 1.40             | 2.8            | 2.50           | 7.8            | 4         | 51.0 |
| •        | 2.PD.01450.090 | 1.45             | 2.9            | 2.50           | 7.9            | 4         | 51.0 |
| •        | 2.PD.01500.090 | 1.50             | 3.0            | 3.00           | 9.0            | 4         | 53.0 |
| -        | 2.PD.01550.090 | 1.55             | 3.1            | 3.00           | 9.1            | 4         | 53.0 |
| •        | 2.PD.01600.090 | 1.60             | 3.2            | 3.00           | 9.2            | 4         | 53.0 |
| •        | 2.PD.01650.090 | 1.65             | 3.3            | 3.00           | 9.3            | 4         | 53.0 |
| •        | 2.PD.01700.090 | 1.70             | 3.4            | 3.00           | 9.4            | 4         | 53.0 |
| •        | 2.PD.01750.090 | 1.75             | 3.5            | 3.00           | 9.5            | 4         | 53.0 |
| •        | 2.PD.01800.090 | 1.80             | 3.6            | 3.00           | 9.6            | 4         | 53.0 |
| •        | 2.PD.01850.090 | 1.85             | 3.7            | 3.00           | 9.7            | 4         | 53.0 |
| •        | 2.PD.01900.090 | 1.90             | 3.8            | 3.00           | 9.8            | 4         | 53.0 |

# CrazyDrill Pilot - 2 x d - 90° Senkung

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager | Artikelnummer  | d₁<br>m5 | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|----------------|----------------|-----------|------|
| = ap     |                | [mm]     | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| -        | 2.PD.01950.090 | 1.95     | 3.9            | 3.00           | 9.9            | 4         | 53.0 |
| -        | 2.PD.02000.090 | 2.00     | 4.0            | 3.50           | 11.0           | 4         | 55.0 |
| -        | 2.PD.02050.090 | 2.05     | 4.1            | 3.50           | 11.1           | 4         | 55.0 |
|          | 2.PD.02100.090 | 2.10     | 4.2            | 3.50           | 11.2           | 4         | 55.0 |
| -        | 2.PD.02150.090 | 2.15     | 4.3            | 3.50           | 11.3           | 4         | 55.0 |
| -        | 2.PD.02200.090 | 2.20     | 4.4            | 3.50           | 11.4           | 4         | 55.0 |
| -        | 2.PD.02250.090 | 2.25     | 4.5            | 3.50           | 11.5           | 4         | 55.0 |
| -        | 2.PD.02300.090 | 2.30     | 4.6            | 3.50           | 11.6           | 4         | 55.0 |
| -        | 2.PD.02350.090 | 2.35     | 4.7            | 3.50           | 11.7           | 4         | 55.0 |
| -        | 2.PD.02400.090 | 2.40     | 4.8            | 3.50           | 11.8           | 4         | 55.0 |
| -        | 2.PD.02450.090 | 2.45     | 4.9            | 3.50           | 11.9           | 4         | 55.0 |
| -        | 2.PD.02500.090 | 2.50     | 5.0            | 3.80           | 12.6           | 4         | 57.0 |
| -        | 2.PD.02550.090 | 2.55     | 5.1            | 3.80           | 12.7           | 4         | 57.0 |
| -        | 2.PD.02600.090 | 2.60     | 5.2            | 3.80           | 12.8           | 4         | 57.0 |
| -        | 2.PD.02650.090 | 2.65     | 5.3            | 3.80           | 12.9           | 4         | 57.0 |
| -        | 2.PD.02700.090 | 2.70     | 5.4            | 3.80           | 13.0           | 4         | 57.0 |
| -        | 2.PD.02750.090 | 2.75     | 5.5            | 3.80           | 13.1           | 4         | 57.0 |
| -        | 2.PD.02800.090 | 2.80     | 5.6            | 3.80           | 13.2           | 4         | 57.0 |
| -        | 2.PD.02850.090 | 2.85     | 5.7            | 3.80           | 13.3           | 4         | 57.0 |
|          | 2.PD.02900.090 | 2.90     | 5.8            | 3.80           | 13.4           | 4         | 57.0 |
| -        | 2.PD.02950.090 | 2.95     | 5.9            | 3.80           | 13.5           | 4         | 57.0 |
| -        | 2.PD.03000.090 | 3.00     | 6.0            | 3.80           | 13.6           | 4         | 57.0 |
| -        | 2.PD.03050.090 | 3.05     | 6.1            | 4.50           | 15.1           | 6         | 61.0 |
|          | 2.PD.03100.090 | 3.10     | 6.2            | 4.50           | 15.2           | 6         | 61.0 |
| -        | 2.PD.03150.090 | 3.15     | 6.3            | 4.50           | 15.3           | 6         | 61.0 |
| •        | 2.PD.03200.090 | 3.20     | 6.4            | 4.50           | 15.4           | 6         | 61.0 |
|          | 2.PD.03250.090 | 3.25     | 6.5            | 4.50           | 15.5           | 6         | 61.0 |
|          | 2.PD.03300.090 | 3.30     | 6.6            | 4.50           | 15.6           | 6         | 61.0 |
|          | 2.PD.03350.090 | 3.35     | 6.7            | 4.50           | 15.7           | 6         | 61.0 |
|          | 2.PD.03400.090 | 3.40     | 6.8            | 4.50           | 15.8           | 6         | 61.0 |
|          | 2.PD.03450.090 | 3.45     | 6.9            | 4.50           | 15.9           | 6         | 61.0 |

Hartmetall







**Z**2







| ab Lager      | Artikelnummer  | <b>d</b> ₁<br>m5 | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|---------------|----------------|------------------|----------------|----------------|----------------|-----------|------|
| ю<br><b>=</b> |                | [mm]             | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| •             | 2.PD.03500.090 | 3.50             | 7.0            | 4.50           | 16.0           | 6         | 61.0 |
| •             | 2.PD.03550.090 | 3.55             | 7.1            | 5.30           | 17.7           | 6         | 64.0 |
| •             | 2.PD.03600.090 | 3.60             | 7.2            | 5.30           | 17.8           | 6         | 64.0 |
| •             | 2.PD.03650.090 | 3.65             | 7.3            | 5.30           | 17.9           | 6         | 64.0 |
| •             | 2.PD.03700.090 | 3.70             | 7.4            | 5.30           | 18.0           | 6         | 64.0 |
| •             | 2.PD.03750.090 | 3.75             | 7.5            | 5.30           | 18.1           | 6         | 64.0 |
| •             | 2.PD.03800.090 | 3.80             | 7.6            | 5.30           | 18.2           | 6         | 64.0 |
| •             | 2.PD.03850.090 | 3.85             | 7.7            | 5.30           | 18.3           | 6         | 64.0 |
| •             | 2.PD.03900.090 | 3.90             | 7.8            | 5.30           | 18.4           | 6         | 64.0 |
| •             | 2.PD.03950.090 | 3.95             | 7.9            | 5.30           | 18.5           | 6         | 64.0 |
| •             | 2.PD.04000.090 | 4.00             | 8.0            | 5.30           | 18.6           | 6         | 64.0 |
| •             | 2.PD.04100.090 | 4.10             | 8.2            | 6.00           | 20.2           | 6         | 70.0 |
| •             | 2.PD.04200.090 | 4.20             | 8.4            | 6.00           | 20.4           | 6         | 70.0 |
| •             | 2.PD.04300.090 | 4.30             | 8.6            | 6.00           | 20.6           | 6         | 70.0 |
| •             | 2.PD.04400.090 | 4.40             | 8.8            | 6.00           | 20.8           | 6         | 70.0 |
| •             | 2.PD.04500.090 | 4.50             | 9.0            | 6.00           | 21.0           | 6         | 70.0 |
| •             | 2.PD.04600.090 | 4.60             | 9.2            | 6.00           | 21.2           | 6         | 70.0 |
| -             | 2.PD.04700.090 | 4.70             | 9.4            | 6.00           | 21.4           | 6         | 70.0 |
| •             | 2.PD.04800.090 | 4.80             | 9.6            | 6.00           | 21.6           | 6         | 70.0 |
| •             | 2.PD.04900.090 | 4.90             | 9.8            | 6.00           | 21.8           | 6         | 70.0 |
| -             | 2.PD.05000.090 | 5.00             | 10.0           | 6.00           | 22.0           | 6         | 70.0 |
| •             | 2.PD.05100.090 | 5.10             | 10.2           | 8.00           | 26.2           | 8         | 80.0 |
| •             | 2.PD.05200.090 | 5.20             | 10.4           | 8.00           | 26.4           | 8         | 80.0 |
| •             | 2.PD.05300.090 | 5.30             | 10.6           | 8.00           | 26.6           | 8         | 80.0 |
| •             | 2.PD.05400.090 | 5.40             | 10.8           | 8.00           | 26.8           | 8         | 80.0 |
| •             | 2.PD.05500.090 | 5.50             | 11.0           | 8.00           | 27.0           | 8         | 80.0 |
| •             | 2.PD.05600.090 | 5.60             | 11.2           | 8.00           | 27.2           | 8         | 80.0 |
| •             | 2.PD.05700.090 | 5.70             | 11.4           | 8.00           | 27.4           | 8         | 80.0 |
| •             | 2.PD.05800.090 | 5.80             | 11.6           | 8.00           | 27.6           | 8         | 80.0 |
| -             | 2.PD.05900.090 | 5.90             | 11.8           | 8.00           | 27.8           | 8         | 80.0 |
|               | 2.PD.06000.090 | 6.00             | 12.0           | 8.00           | 28.0           | 8         | 80.0 |



# CrazyDrill Pilot - 2 x d - 90° Senkung

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                    | Werkstoff-<br>gruppe  | Werkstoff                                     | Wr.Nr.           | DIN                           | AISI/ASTM/UNS            | <b>V</b> <sub>c</sub><br>[m/min] |            |            |     |       |  |      |                 |       |  |
|--------------------|-----------------------|-----------------------------------------------|------------------|-------------------------------|--------------------------|----------------------------------|------------|------------|-----|-------|--|------|-----------------|-------|--|
|                    |                       |                                               | 1.0301           | C10                           | AISI 1010                |                                  |            |            |     |       |  |      |                 |       |  |
|                    | P                     |                                               |                  | 1.0401                        | C15                      | AISI 1015                        |            |            |     |       |  |      |                 |       |  |
|                    |                       | Stähle unlegiert                              | 1.1191           | C45E/CK45                     | AISI 1045                | 32 – 64                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Rm < 800 N/mm <sup>2</sup>                    | 1.0044           | S275JR                        | AISI 1020                | 32 0.                            |            |            |     |       |  |      |                 |       |  |
| /(//               |                       |                                               | 1.0715           | 11SMn30                       | AISI 1215                |                                  |            |            |     |       |  |      |                 |       |  |
| (/)//              |                       |                                               | 1.5752           | 15NiCr13                      | ASTM 3415 / AISI 3310    |                                  |            |            |     |       |  |      |                 |       |  |
| (A)                |                       |                                               | 1.7131           | 16MnCr5                       | AISI 5115                |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Stähle niedriglegiert                         | 1.3505           | 100Cr6                        | AISI 52100               | 32 – 64                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Rm > 900 N/mm <sup>2</sup>                    | 1.7225           | 42CrMo4                       | AISI 4140                | 32 04                            |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 1.2842           | 90MnCrV8                      | AISI O2                  |                                  |            |            |     |       |  |      |                 |       |  |
| d <sub>1</sub>     |                       |                                               | 1.2379           | X153CrMoV12                   | AISI D2                  |                                  |            |            |     |       |  |      |                 |       |  |
| 2 x d <sub>1</sub> |                       | Werkzeugstähle                                | 1.2436           | X210CrW12                     | AISI D4/D6               |                                  |            |            |     |       |  |      |                 |       |  |
| // <del>////</del> |                       | hochlegiert                                   |                  |                               |                          | 24 – 48                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Rm < 1200 N/mm <sup>2</sup>                   | 1.3343           | HS6-5-2C                      | AISI M2 / UNS T11302     |                                  |            |            |     |       |  |      |                 |       |  |
| //////             |                       | 1.3355                                        | HS18-0-1         | AISI T1 / UNS T12001          |                          |                                  |            |            |     |       |  |      |                 |       |  |
| 1///               |                       | Rostfreie Stähle-                             | 1.4016           | X6Cr17                        | AISI 430 / UNS S43000    | 20 – 40                          |            |            |     |       |  |      |                 |       |  |
|                    | M                     | ferritisch                                    | 1.4105           | X6CrMoS17                     | AISI 430F                | 20 40                            |            |            |     |       |  |      |                 |       |  |
|                    | 141                   | Rostfreie Stähle-                             | 1.4034           | X46Cr13                       | AISI 420C                | 24 – 48                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | martensitisch                                 | 1.4112           | X90CrMoV18                    | AISI 440B                | 24 - 40                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4               | AISI 630 / ASTM 17-4 PH  |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5               | ASTM 15-5 PH             |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | 1.4301                                        | X5CrNi 18-10     | AISI 304                      | 16 – 32                  |                                  |            |            |     |       |  |      |                 |       |  |
|                    | Rostfreie Stähle-     | 1.4435                                        | X2CrNiMo 18-14-3 | AISI 316L                     |                          |                                  |            |            |     |       |  |      |                 |       |  |
|                    | austenitisch          | 1.4441                                        | X2CrNiMo 18-15-3 | AISI 316LM                    |                          |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 1.4539           | X1NiCrMoCu 25-20-5            | AISI 904L                |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Gusseisen                                     | 0.6020           | GG20                          | ASTM 30                  |                                  |            |            |     |       |  |      |                 |       |  |
|                    | V                     |                                               | 0.6030           | GG30                          | ASTM 40B                 |                                  |            |            |     |       |  |      |                 |       |  |
|                    | K                     |                                               | 0.7040           | GGG40                         | ASTM 60-40-18            | 40 – 80                          |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 0.7060           | GGG60                         | ASTM 80-60-03            |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | A1                                            |                  |                               |                          |                                  |            |            |     |       |  |      |                 |       |  |
|                    | IN II                 | Aluminium<br>Knetlegierungen                  | 3.2315<br>3.4365 | AlMgSi1<br>AlZnMgCu1.5        | ASTM 6351<br>ASTM 7075   | 80 – 160                         |            |            |     |       |  |      |                 |       |  |
|                    | N                     |                                               | 3.2163           | GD-AlSi9Cu3                   | ASTM A380                |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Aluminium<br>Druckgusslegierungen             | 3.2381           |                               | UNS A03590               | 64 – 120                         |            |            |     |       |  |      |                 |       |  |
|                    |                       | 2 rackgassicg/clurigett                       | 2.004            | GD-AlSi10Mg<br>Cu-OF / CW008A | UNS C10100               |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Kupfer                                        | 2.004            | Cu-ETP / CW008A               | UNS C11000               | 40 – 80                          |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 2.0065           |                               |                          |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Messing bleifrei                              | 2.0321           | CuZn37 CW508L                 | UNS C27400<br>UNS C28000 | 40 – 80                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Massins Duri                                  |                  | CuZn40 CW509L                 |                          |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N<br>CuSn6   |                          | 56 – 120                         |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               |                  |                               | UNS C51900               |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966           | CuAl0Nn3                      | UNS C63000               | 32 – 56                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | MIT < 000 IWIIIII                             | 2.096            | CuAl9Mn2                      | UNS C63200               |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 2.4856           |                               | Inconel 625              |                                  |            |            |     |       |  |      |                 |       |  |
|                    | S <sub>1</sub>        | Hitzebeständige                               | 2.4668           |                               | Inconel 718              |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Stähle                                        | 2.4617           | NiMo28                        | Hastelloy B-2            |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       |                                               | 2.4665           | NiCr22Fe18Mo                  | Hastelloy X              |                                  |            |            |     |       |  |      |                 |       |  |
|                    |                       | Titan rein                                    | 3.7035           | Gr.2                          | ASTM B348 / F67          | 10 – 32                          |            |            |     |       |  |      |                 |       |  |
|                    | S                     | S <sub>2</sub>                                | i itali rein     | Titali relli                  |                          | Titali relli                     | Titan rein | Titan rein | 3.7 | 3.706 |  | Gr.4 | ASTM B348 / F68 | 10 32 |  |
|                    | 2                     | Titan Legierungen                             | 3.7165           | TiAl6V4                       | ASTM B348 / F136         | 10 – 44                          |            |            |     |       |  |      |                 |       |  |
|                    |                       | Train Legierungen                             | 9.9367           | TiAl6Nb7                      | ASTM F1295               | 10 - 44                          |            |            |     |       |  |      |                 |       |  |
|                    | S                     | CrCo-Legierungen                              | 2.4964           | CoCr20W15Ni                   | Haynes 25                |                                  |            |            |     |       |  |      |                 |       |  |
|                    | <b>S</b> <sub>3</sub> | CrCo-Legierungen                              |                  | CrCoMo28                      | ASTM F1537               |                                  |            |            |     |       |  |      |                 |       |  |
|                    | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                   | 1.2510           | 100MnCrMoW4                   | AISI O1                  | 16 – 32                          |            |            |     |       |  |      |                 |       |  |
|                    | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC                   | 1.2379           | X153CrMoV12                   | AISI D2                  |                                  |            |            |     |       |  |      |                 |       |  |

# PILOTBOHREN UND KURZBOHREN

ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> [mm/U]    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Ød1                |
| 0.4 mm<br><b>f</b> | 0.8 mm<br><b>f</b> | 1.0 mm<br><b>f</b> | 1.5 mm<br><b>f</b> | 2.0 mm<br><b>f</b> | 2.5 mm<br><b>f</b> | 3.0 mm<br><b>f</b> | 4.0 mm<br><b>f</b> | 5.0 mm<br><b>f</b> | 6.0 mm<br><b>f</b> |
|                    |                    |                    |                    | •                  | <u> </u>           |                    | · ·                | <b>!</b>           | <u> </u>           |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.044              | 0.064              | 0.112              | 0.144              | 0.168              | 0.192              | 0.224              | 0.248              | 0.272              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.044              | 0.064              | 0.096              | 0.120              | 0.136              | 0.152              | 0.176              | 0.192              | 0.208              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.016              | 0.040              | 0.064              | 0.088              | 0.104              | 0.120              | 0.144              | 0.160              | 0.176              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.009              | 0.024              | 0.048              | 0.064              | 0.072              | 0.080              | 0.096              | 0.104              | 0.112              |
| 0.008              | 0.016              | 0.040              | 0.064              | 0.088              | 0.104              | 0.120              | 0.144              | 0.160              | 0.176              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.000              | 0.000              | 0.016              | 0.040              | 0.055              | 0.054              | 0.072              | 0.000              | 0.000              | 0.104              |
| 0.008              | 0.009              | 0.016              | 0.040              | 0.056              | 0.064              | 0.072              | 0.088              | 0.096              | 0.104              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.040              | 0.064              | 0.096              | 0.120              | 0.120              | 0.120              | 0.160              | 0.160              | 0.160              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.040              | 0.080              | 0.096              | 0.120              | 0.160              | 0.160              | 0.200              | 0.200              | 0.200              |
| 0.012              |                    | 0.000              |                    |                    |                    |                    |                    |                    |                    |
| 0.012              | 0.064              | 0.088              | 0.128              | 0.160              | 0.200              | 0.200              | 0.224              | 0.224              | 0.224              |
| 0.012              | 0.024              | 0.048              | 0.064              | 0.080              | 0.112              | 0.128              | 0.144              | 0.160              | 0.176              |
| 0.016              | 0.032              | 0.064              | 0.080              | 0.096              | 0.128              | 0.144              | 0.160              | 0.176              | 0.192              |
| 0.012              | 0.048              | 0.080              | 0.096              | 0.120              | 0.160              | 0.160              | 0.200              | 0.200              | 0.200              |
| 0.012              | 0.040              | 0.000              | 0.030              | 0.120              |                    | 0.100              | 0.200              | 0.200              | 0.200              |
| 0.008              | 0.040              | 0.064              | 0.080              | 0.096              | 0.120              | 0.120              | 0.160              | 0.160              | 0.160              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.024              | 0.032              | 0.048              | 0.056              | 0.064              | 0.064              | 0.080              | 0.080              | 0.096              |
| 0.008              | 0.064              | 0.072              | 0.088              | 0.096              | 0.100              | 0.104              | 0.112              | 0.120              | 0.120              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 0.008              | 0.006              | 0.008              | 0.012              | 0.016              | 0.020              | 0.024              | 0.032              | 0.040              | 0.048              |
|                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |



#### **KURZBOHRUNG 2 X D MIT ZUSÄTZLICHER SENKUNG 90°**

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

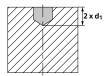
Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

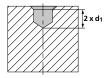
Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### Pilotbohrung und Kurzbohrung

Die Pilotbohrung mit CrazyDrill Pilot ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess.


Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.

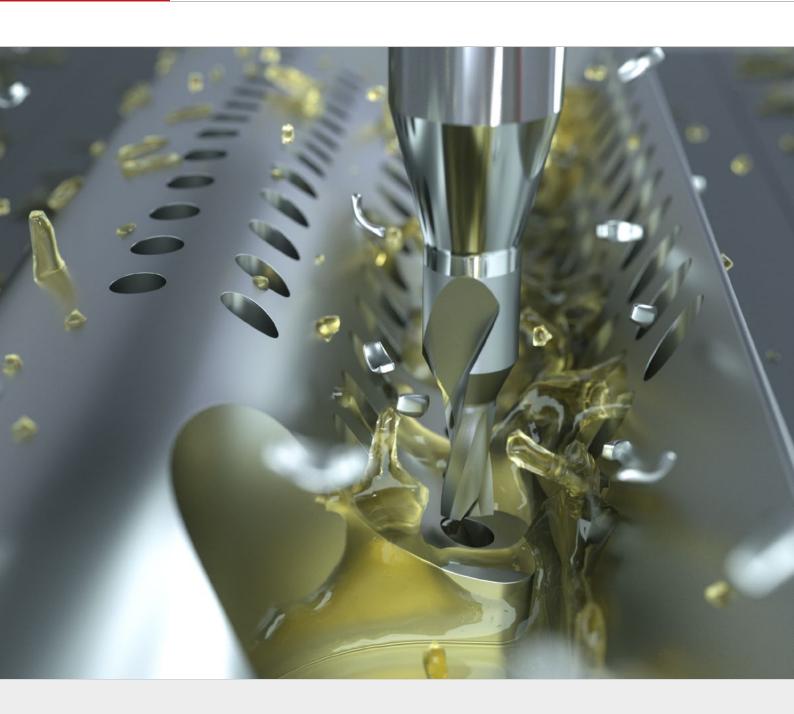
CrazyDrill Pilot ist nicht nur die ideale Vorbereitung von tiefen Folgebohrungen. Er ist gleichzeitig ein Kurzbohrer für hochpräzise und schnelle Bohrungen bis  $2 \times d + 90^{\circ}$  Senkung.


#### **BOHRPROZESS**

#### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

Bohren in einem Bohrstoss mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit (siehe Schnittdatentabelle).




Bei Bedarf kann nach dem Erreichen der maximalen Bohrtiefe von 2 x d eine Senkung von 90° angebracht werden.



#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.

# CrazyDrill Crosspilot





Mit dem direkten Anbringen der Pilotbohrung auf schrägen Oberflächen reduzieren sich die drei üblichen Schritte "Anspiegeln mit Fräser – Zentrieren – Bohren" auf zwei: "Pilotbohren – Bohren".

Die kompakte und stabile Konstruktion sorgt für eine hohe Positioniergenauigkeit. Der Bohrer mit einem Spitzenwinkel von 170° gibt dem Folgebohrer eine perfekte Zentrierung und zylindrische Führung. Höchste Präzision und Geradheit wird so erreicht. Eine optimale Abstimmung der Durchmessertoleranzen ermöglicht eine präzise Tieflochbohrung auch auf schrägen Oberflächen.

# Perfekter Pilotbohrer für das Schräganbohren

#### BOHREN AUF SCHRÄGEN, KONVEXEN UND KONKAVEN OBERFLÄCHEN

Mit CrazyDrill Crosspilot bietet Mikron Tool einen beschichteten VHM-Pilotbohrer für das direkte Bohren in schrägen Oberflächen bis zu einem maximalen Neigungswinkel von 60° an. Ab Lager verfügbar sind Durchmesser von 0.4 bis 6.0 mm.

CrazyDrill Crosspilot, Bohrtiefe bis 2 x d (Nominal), Aussenkühlung

#### CrazyDrill Crosspilot kommt zum Einsatz:



Bohrungen in bis zu 60° geneigte Oberflächen.



Bohrungen bis 60° Neigungswinkel in konvexe Oberflächen.



Exzentrische Bohrungen in konvexe Oberflächen.



Bohrungen bis 60° Neigungswinkel in konkave Oberflächen.

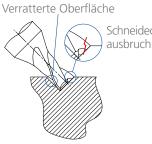


Bohrerspitze



Crosspilot

# Vorteile und Anwendungen


#### PERFEKT FÜR BOHRUNGEN AUF SCHRÄGEN

- KÜRZERE BEARBEITUNGSZEIT
- HOHE PROZESSSICHERHEIT
- HOHE PRÄZISION
- TIEFE FERTIGUNGSKOSTEN

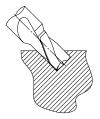
- Direkte Pilotbohrung auf Schrägen
- Dank innovativer Schneidengeometrie
- Dank enger Toleranzen
- Einsparung eines Werkzeuges: zwei anstelle von drei Arbeitsschritten

#### Der Vergleich

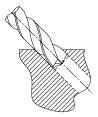
■ Schrägbohrung mit herkömmlicher Zentrierung



**Schritt 1:** "Anspiegeln mit Fräser" Fläche anfräsen **Werkzeug:** Fräser


ne Stufe am Übergang Schneideckenausbruch

**Schritt 2:** Zentrieren **Werkzeug:** NC-Anbohrer




**Schritt 3:** Schrägbohrung **Werkzeug:** Spiralbohrer

■ Schrägbohrung mit CrazyDrill Crosspilot



**Schritt 1:** Schräges Anbohren mit Pilotbohrer von Mikron Tool **Werkzeug:** CrazyDrill Crosspilot



**Schritt 2:** Lange Schrägbohrung **Werkzeug:** Spiralbohrer

05

## PILOTBOHREN UND KURZBOHREN

















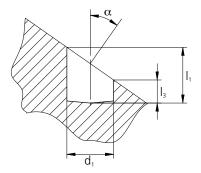


| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE       |
|-----------------------|--------------------------------|
| Dentaltechnik         | Zahnimplantat                  |
| Raum- und Luftfahrt   | Kugelgelenk                    |
| Medizintechnik        | Teil zu<br>Messinstrument      |
| Formenbau             | Form für Blister<br>Verpackung |
| Automobilbau          | Einspritzkörper                |
| Maschinenbau          | Nabe mit<br>Schrägbohrungen    |
| Hydraulik / Pneumatik | Sicherheitsschraube            |

| MATERIALGRUPPE                              | BEISPIELE |                |                   |  |  |  |  |
|---------------------------------------------|-----------|----------------|-------------------|--|--|--|--|
|                                             | Wr. Nr.   | DIN            | AISI / ASTM / UNS |  |  |  |  |
| Gruppe P<br>Unlegierte u.                   | 1.0401    | C15            | 1015              |  |  |  |  |
| legierte Stähle                             | 1.3505    | 100Cr6         | 52100             |  |  |  |  |
|                                             | 1.2436    | X210CrW12      | D4 / D6           |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105    | X6CrMoS17      | 430F              |  |  |  |  |
|                                             | 1.4112    | X90CrMoV18     | 440B              |  |  |  |  |
|                                             | 1.4301    | X5CrNi 18-10   | 304               |  |  |  |  |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040    | GGG40          | 60-40-18          |  |  |  |  |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315    | AlMgSi1        | 6351              |  |  |  |  |
|                                             | 3.2163    | GD-AlSi9Cu3    | A380              |  |  |  |  |
|                                             | 2.004     | Cu-OF / CW008A | C10100            |  |  |  |  |
|                                             | 2.0321    | CuZn37 CW508L  | C27400            |  |  |  |  |
|                                             | 2.102     | CuSn6          | C51900            |  |  |  |  |
|                                             | 2.096     | CuAl9Mn2       | C63200            |  |  |  |  |
| Gruppe S2<br>Titan rein u.                  | 3.7035    | Gr.2           | B348 / F67        |  |  |  |  |
| Titan Legierungen                           | 3.7165    | TiAl6V4        | B348 / F136       |  |  |  |  |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510    | 100MnCrMoW4    | 01                |  |  |  |  |



# CrazyDrill Crosspilot - 2 x d (nominal)


#### **BOHREN MIT AUSSENKÜHLUNG**



Der beschichtete Hartmetallbohrer für Stahl, rostfreie Materialien, Titan und Nichteisenmetalle ist ein einzigartiger Spezialist für Bohrungen auf schrägen, konvexen und konkaven Oberflächen. Er bringt Pilotbohrungen direkt in Oberflächen ein bis zu einem maximalen Neigungswinkel von 60°. Damit wird ein Arbeitsgang, das Anspiegeln (Fräsen), eingespart.

Die kompakte und stabile Bauweise von CrazyDrill Crosspilot sorgt für eine gute Positioniergenauigkeit, seine Geometrie ist ausgelegt auf extreme Einsätze. Sein Spitzenwinkel von 170° sorgt für gute Zentrierung, Reduktion der Radialkräfte und verhindert Schneideckenausbruch des Folgebohrers. Die Pilotbohrung mittels CrazyDrill Crosspilot ermöglicht eine zylindrische Führung des Folgebohrers. Das Ergebnis: Prozesssicherheit und höchste Positionsgenauigkeit sowie Geradheit.

**Die Formel:**  $l_3 = 2 \times d_1 - d_1 \times \tan(\alpha)$ 



Das Beispiel:

Neigungswinkel 35°, Bohrdurchmesser 2 mm.

 $l_3 = 2 \times 2 \text{ mm} - 2 \text{ mm} \times (\tan 35^\circ) = 2.6 \text{ mm}$ 

Bei einem Winkel von 35° zur Oberfläche und einem Eintauchen von 4 mm (2 x d<sub>1</sub>) auf der langen Seite, ist die Bohrung auf der kurzen Seite noch 2.6 mm lang (1.3 x d<sub>1</sub>).

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

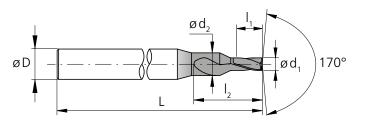
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Crosspilot (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.

05

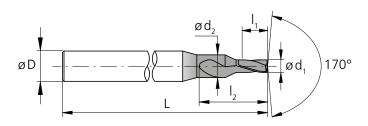
Hartmetall






**Z**2








| ab Lager | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | d₂   | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|------|----------------|-----------|------|
| ab       |                | [mm]     | [mm]           | [mm] | [mm] [mm]      |           | [mm] |
| •        | 2.PD.00400.170 | 0.40     | 0.8            | 1.0  | 2.6            | 4         | 50   |
| •        | 2.PD.00450.170 | 0.45     | 0.9            | 1.0  | 2.8            | 4         | 50   |
|          | 2.PD.00500.170 | 0.50     | 1.0            | 1.2  | 3.2            | 4         | 50   |
|          | 2.PD.00550.170 | 0.55     | 1.1            | 1.2  | 3.3            | 4         | 50   |
|          | 2.PD.00600.170 | 0.60     | 1.2            | 1.5  | 4.0            | 4         | 50   |
| •        | 2.PD.00650.170 | 0.65     | 1.3            | 1.5  | 4.1            | 4         | 50   |
|          | 2.PD.00700.170 | 0.70     | 1.4            | 1.5  | 4.2            | 4         | 50   |
|          | 2.PD.00750.170 | 0.75     | 1.5            | 1.5  | 4.3            | 4         | 50   |
|          | 2.PD.00800.170 | 0.80     | 1.6            | 1.7  | 4.8            | 4         | 50   |
| •        | 2.PD.00850.170 | 0.85     | 1.7            | 1.7  | 4.9            | 4         | 50   |
| -        | 2.PD.00900.170 | 0.90     | 1.8            | 1.7  | 5.0            | 4         | 50   |
| •        | 2.PD.00950.170 | 0.95     | 1.9            | 1.7  | 5.1            | 4         | 50   |
| •        | 2.PD.01000.170 | 1.00     | 2.0            | 2.0  | 5.7            | 4         | 55   |
| •        | 2.PD.01050.170 | 1.05     | 2.1            | 2.0  | 5.8            | 4         | 55   |
|          | 2.PD.01100.170 | 1.10     | 2.2            | 2.0  | 6.0            | 4         | 55   |
|          | 2.PD.01150.170 | 1.15     | 2.3            | 2.0  | 6.1            | 4         | 55   |
|          | 2.PD.01200.170 | 1.20     | 2.4            | 2.0  | 6.2            | 4         | 55   |
|          | 2.PD.01250.170 | 1.25     | 2.5            | 2.5  | 7.2            | 4         | 55   |
| -        | 2.PD.01300.170 | 1.30     | 2.6            | 2.5  | 7.3            | 4         | 55   |
|          | 2.PD.01350.170 | 1.35     | 2.7            | 2.5  | 7.4            | 4         | 55   |
|          | 2.PD.01400.170 | 1.40     | 2.8            | 2.5  | 7.5            | 4         | 55   |
|          | 2.PD.01450.170 | 1.45     | 2.9            | 2.5  | 7.6            | 4         | 55   |
|          | 2.PD.01500.170 | 1.50     | 3.0            | 3.0  | 8.6            | 4         | 55   |
|          | 2.PD.01550.170 | 1.55     | 3.1            | 3.0  | 8.7            | 4         | 55   |
|          | 2.PD.01600.170 | 1.60     | 3.2            | 3.0  | 8.8            | 4         | 55   |
|          | 2.PD.01650.170 | 1.65     | 3.3            | 3.0  | 8.9            | 4         | 55   |
| •        | 2.PD.01700.170 | 1.70     | 3.4            | 3.0  | 9.1            | 4         | 55   |
| •        | 2.PD.01750.170 | 1.75     | 3.5            | 3.0  | 9.2            | 4         | 55   |
|          | 2.PD.01800.170 | 1.80     | 3.6            | 3.5  | 10.1           | 4         | 55   |
| •        | 2.PD.01850.170 | 1.85     | 3.7            | 3.5  | 10.3           | 4         | 55   |
| •        | 2.PD.01900.170 | 1.90     | 3.8            | 3.5  | 10.4           | 4         | 55   |

# CrazyDrill Crosspilot - 2 x d (nominal)

### **BOHREN MIT AUSSENKÜHLUNG**



| Lager | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|----------------|----------|----------------|----------------|----------------|-----------|------|
| ab =  |                | [mm]     | [mm]           | nm] [mm] [n    |                | [mm]      | [mm] |
|       | 2.PD.01950.170 | 1.95     | 3.9            | 3.5            | 10.5           | 4         | 55   |
| -     | 2.PD.02000.170 | 2.00     | 4.0            | 3.5            | 10.6           | 6         | 65   |
| -     | 2.PD.02050.170 | 2.05     | 4.1            | 3.5            | 10.7           | 6         | 65   |
| •     | 2.PD.02100.170 | 2.10     | 4.2            | 3.5            | 10.8           | 6         | 65   |
| •     | 2.PD.02150.170 | 2.15     | 4.3            | 3.5            | 10.9           | 6         | 65   |
|       | 2.PD.02200.170 | 2.20     | 4.4            | 4.5            | 12.8           | 6         | 65   |
| •     | 2.PD.02250.170 | 2.25     | 4.5            | 4.5            | 12.9           | 6         | 65   |
|       | 2.PD.02300.170 | 2.30     | 4.6            | 4.5            | 13.0           | 6         | 65   |
| •     | 2.PD.02350.170 | 2.35     | 4.7            | 4.5            | 13.1           | 6         | 65   |
|       | 2.PD.02400.170 | 2.40     | 4.8            | 4.5            | 13.2           | 6         | 65   |
|       | 2.PD.02450.170 | 2.45     | 4.9            | 4.5            | 13.4           | 6         | 65   |
|       | 2.PD.02500.170 | 2.50     | 5.0            | 4.5            | 13.5           | 6         | 65   |
|       | 2.PD.02550.170 | 2.55     | 5.1            | 4.5            | 13.6           | 6         | 65   |
|       | 2.PD.02600.170 | 2.60     | 5.2            | 4.5            | 13.7           | 6         | 65   |
| •     | 2.PD.02650.170 | 2.65     | 5.3            | 5.0            | 14.7           | 6         | 65   |
|       | 2.PD.02700.170 | 2.70     | 5.4            | 5.0            | 14.8           | 6         | 65   |
|       | 2.PD.02750.170 | 2.75     | 5.5            | 5.0            | 14.9           | 6         | 65   |
|       | 2.PD.02800.170 | 2.80     | 5.6            | 5.0            | 15.0           | 6         | 65   |
| •     | 2.PD.02850.170 | 2.85     | 5.7            | 5.0            | 15.1           | 6         | 65   |
|       | 2.PD.02900.170 | 2.90     | 5.8            | 5.0            | 15.2           | 6         | 65   |
|       | 2.PD.02950.170 | 2.95     | 5.9            | 5.0            | 15.4           | 6         | 65   |
|       | 2.PD.03000.170 | 3.00     | 6.0            | 6.0            | 17.2           | 6         | 70   |
| -     | 2.PD.03050.170 | 3.05     | 6.1            | 6.0            | 17.3           | 6         | 70   |
|       | 2.PD.03100.170 | 3.10     | 6.2            | 6.0            | 17.4           | 6         | 70   |
| •     | 2.PD.03150.170 | 3.15     | 6.3            | 6.0            | 17.5           | 6         | 70   |
| •     | 2.PD.03200.170 | 3.20     | 6.4            | 6.0            | 17.7           | 6         | 70   |
| •     | 2.PD.03250.170 | 3.25     | 6.5            | 6.0            | 17.8           | 6         | 70   |
| •     | 2.PD.03300.170 | 3.30     | 6.6            | 6.0            | 17.9           | 6         | 70   |
| •     | 2.PD.03350.170 | 3.35     | 6.7            | 6.0            | 18.0           | 6         | 70   |
|       | 2.PD.03400.170 | 3.40     | 6.8            | 6.0            | 18.1           | 6         | 70   |
| •     | 2.PD.03450.170 | 3.45     | 6.9            | 6.0            | 18.2           | 6         | 70   |

# PILOTBOHREN UND KURZBOHREN

CRAZYDRILL™

ty Mikron Tool

Crosspilot

Hartmetall





**Z**2







| ab Lager | Artikelnummer                    | <b>d₁</b><br><b>k6</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>d</b> <sub>2</sub> | <b>l<sub>2</sub></b> [mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|----------|----------------------------------|--------------------------------|----------------------------|-----------------------|---------------------------|--------------------|-----------|
| -        | 2.PD.03500.170                   | 3.50                           | 7.0                        | 6.0                   | 18.3                      | 6                  | 70        |
|          | 2.PD.03500.170<br>2.PD.03550.170 |                                | 7.0                        | 6.0                   | 18.4                      | 6                  | 70        |
|          | 2.PD.03530.170<br>2.PD.03600.170 | 3.55                           | 7.1                        | 6.0                   | 18.6                      | 6                  | 70        |
| -        | 2.PD.03600.170<br>2.PD.03650.170 | 3.65                           | 7.2                        | 6.0                   | 18.7                      | 6                  | 70        |
|          |                                  |                                |                            |                       |                           | _                  |           |
|          | 2.PD.03700.170                   | 3.70                           | 7.4                        | 6.0                   | 18.8                      | 6                  | 70        |
|          | 2.PD.03750.170                   | 3.75                           | 7.5                        | 6.0                   | 18.9                      | 6                  | 70        |
| -        | 2.PD.03800.170                   | 3.80                           | 7.6                        | 6.0                   | 19.0                      | 6                  | 70        |
|          | 2.PD.03850.170                   | 3.85                           | 7.7                        | 6.0                   | 19.1                      | 6                  | 70        |
| -        | 2.PD.03900.170                   | 3.90                           | 7.8                        | 6.0                   | 19.2                      | 6                  | 70        |
| •        | 2.PD.03950.170                   | 3.95                           | 7.9                        | 6.0                   | 19.4                      | 6                  | 70        |
| •        | 2.PD.04000.170                   | 4.00                           | 8.0                        | 6.0                   | 19.5                      | 6                  | 70        |
| •        | 2.PD.04100.170                   | 4.10                           | 8.2                        | 6.0                   | 21.3                      | 6                  | 70        |
| •        | 2.PD.04200.170                   | 4.20                           | 8.4                        | 6.0                   | 21.4                      | 6                  | 70        |
| •        | 2.PD.04300.170                   | 4.30                           | 8.6                        | 6.0                   | 21.6                      | 6                  | 70        |
| •        | 2.PD.04400.170                   | 4.40                           | 8.8                        | 6.0                   | 21.7                      | 6                  | 70        |
| •        | 2.PD.04500.170                   | 4.50                           | 9.0                        | 8.0                   | 27.0                      | 8                  | 80        |
| •        | 2.PD.04600.170                   | 4.60                           | 9.2                        | 8.0                   | 27.1                      | 8                  | 80        |
| •        | 2.PD.04700.170                   | 4.70                           | 9.4                        | 8.0                   | 27.3                      | 8                  | 80        |
| •        | 2.PD.04800.170                   | 4.80                           | 9.6                        | 8.0                   | 27.4                      | 8                  | 80        |
| -        | 2.PD.04900.170                   | 4.90                           | 9.8                        | 8.0                   | 27.6                      | 8                  | 80        |
| •        | 2.PD.05000.170                   | 5.00                           | 10.0                       | 8.0                   | 27.7                      | 8                  | 80        |
| •        | 2.PD.05100.170                   | 5.10                           | 10.2                       | 8.0                   | 27.9                      | 8                  | 80        |
| •        | 2.PD.05200.170                   | 5.20                           | 10.4                       | 8.0                   | 28.0                      | 8                  | 80        |
| -        | 2.PD.05300.170                   | 5.30                           | 10.6                       | 8.0                   | 28.1                      | 8                  | 80        |
| •        | 2.PD.05400.170                   | 5.40                           | 10.8                       | 8.0                   | 28.3                      | 8                  | 80        |
| •        | 2.PD.05500.170                   | 5.50                           | 11.0                       | 8.0                   | 28.4                      | 8                  | 80        |
| •        | 2.PD.05600.170                   | 5.60                           | 11.2                       | 8.0                   | 28.6                      | 8                  | 80        |
| •        | 2.PD.05700.170                   | 5.70                           | 11.4                       | 8.0                   | 28.7                      | 8                  | 80        |
| •        | 2.PD.05800.170                   | 5.80                           | 11.6                       | 8.0                   | 28.9                      | 8                  | 80        |
|          | 2.PD.05900.170                   | 5.90                           | 11.8                       | 8.0                   | 29.0                      | 8                  | 80        |
|          | 2.PD.06000.170                   | 6.00                           | 12.0                       | 8.0                   | 29.1                      | 8                  | 80        |
|          |                                  |                                |                            |                       |                           |                    |           |

# CrazyDrill Crosspilot - 2 x d (nominal)

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                    | Werkstoff-<br>gruppe  | Werkstoff                                     | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |
|--------------------|-----------------------|-----------------------------------------------|--------|--------------------|-------------------------|----------------------------------|
|                    |                       |                                               | 1.0301 | C10                | AISI 1010               |                                  |
|                    | D                     |                                               | 1.0401 | C15                | AISI 1015               |                                  |
| $\bigcap \searrow$ | P                     | Stähle unlegiert                              | 1.1191 | C45E/CK45          | AISI 1045               | 80                               |
|                    |                       | Rm < 800 N/mm <sup>2</sup>                    | 1.0044 | S275JR             | AISI 1020               | 80                               |
| \/{                |                       |                                               | 1.0044 | 11SMn30            | AISI 1215               |                                  |
| ( <i>)</i> ///     |                       |                                               |        |                    |                         |                                  |
| YD"                |                       |                                               | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |
|                    |                       | Stähle niedriglegiert                         | 1.7131 | 16MnCr5            | AISI 5115               |                                  |
|                    |                       | Rm > 900 N/mm <sup>2</sup>                    | 1.3505 | 100Cr6             | AISI 52100              | 60                               |
|                    |                       |                                               | 1.7225 | 42CrMo4            | AISI 4140               |                                  |
| . d <sub>1</sub> . |                       |                                               | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |
|                    |                       | Werkzeugstähle                                | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |
| 2 x d1             |                       | hochlegiert                                   | 1.2436 | X210CrW12          | AISI D4/D6              | 50                               |
|                    |                       | Rm < 1200 N/mm <sup>2</sup>                   | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 30                               |
|                    |                       |                                               | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |
|                    |                       | Rostfreie Stähle-                             | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |
|                    | R/I                   | ferritisch                                    | 1.4105 | X6CrMoS17          | AISI 430F               | 40                               |
|                    | M                     | Rostfreie Stähle-                             | 1.4034 | X46Cr13            | AISI 420C               |                                  |
|                    |                       | martensitisch                                 | 1.4112 | X90CrMoV18         | AISI 440B               | 50                               |
|                    |                       | Rostfreie Stähle-                             | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |
|                    |                       | martensitisch – PH                            | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |
|                    |                       | martensitisen in                              |        | X5CrNi 18-10       | AISI 304                | 30                               |
|                    |                       | B of the could                                | 1.4301 |                    |                         | 30                               |
|                    |                       | Rostfreie Stähle-<br>austenitisch             | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |
|                    |                       | dusteriitiscri                                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |
|                    |                       |                                               | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |
|                    |                       | Gusseisen                                     | 0.6020 | GG20               | ASTM 30                 |                                  |
|                    | K                     |                                               | 0.6030 | GG30               | ASTM 40B                | 80                               |
|                    |                       |                                               | 0.7040 | GGG40              | ASTM 60-40-18           | 80                               |
|                    |                       |                                               | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |
|                    |                       | Aluminium                                     | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |
|                    | IN I                  | Knetlegierungen                               | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 125                              |
|                    | N                     | Aluminium                                     | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |
|                    |                       | Druckgusslegierungen                          | 3.2381 | GD-AlSi10Mg        | UNS A03590              | 125                              |
|                    |                       |                                               | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                  |
|                    |                       | Kupfer                                        | 2.004  | Cu-ETP / CW000A    | UNS C11000              | 80                               |
|                    |                       |                                               | 2.0003 | CuZn37 CW508L      | UNS C27400              |                                  |
|                    |                       | Messing bleifrei                              |        |                    |                         | 80                               |
|                    |                       |                                               | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |
|                    |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401 | CuZn39Pb3 / CW614N |                         | 100                              |
|                    |                       |                                               | 2.102  | CuSn6              | UNS C51900              |                                  |
|                    |                       | Bronze                                        | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 80                               |
|                    |                       | Rm < 600 N/mm <sup>2</sup>                    | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |
|                    |                       |                                               | 2.4856 |                    | Inconel 625             |                                  |
|                    | C                     | Hitzebeständige                               | 2.4668 |                    | Inconel 718             |                                  |
|                    | $S_1$                 | Stähle                                        | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |
|                    |                       |                                               | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |
|                    |                       |                                               | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |
|                    | C                     | Titan rein                                    | 3.7065 | Gr.4               | ASTM B348 / F68         | 25                               |
|                    | <b>S</b> <sub>2</sub> |                                               | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |
|                    |                       | Titan Legierungen                             | 9.9367 | TiAl6Nb7           | ASTM F1295              | 25                               |
|                    | C                     |                                               | 2.4964 |                    |                         |                                  |
|                    | <b>S</b> <sub>3</sub> | CrCo-Legierungen                              | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |
|                    |                       |                                               |        | CrCoMo28           | ASTM F1537              |                                  |
|                    | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                   | 1.2510 | 100MnCrMoW4        | AISI O1                 | 20                               |
|                    | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC                   | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |

## PILOTBOHREN UND KURZBOHREN

CRAZYDR/LL<sup>TM</sup>
Crosspilot

ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



| <b>f</b> [mm/U] |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
|                 | <b>Ød1</b><br>0.4 mm | <b>Ød1</b><br>0.8 mm | <b>Ød1</b><br>1.0 mm | <b>Ød1</b><br>1.5 mm | <b>Ød1</b><br>2.0 mm | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0 mm | <b>Ød1</b><br>5.0 mm | <b>Ød1</b><br>6.0 mm |  |
|                 | f                    | f                    | f                    | f                    | f                    | f                    | f                    | f                    | f                    |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.005                | 0.011                | 0.013                | 0.020                | 0.027                | 0.040                | 0.053                | 0.067                | 0.080                |  |
|                 | 0.003                | 0.011                | 0.013                | 0.020                | 0.027                | 0.040                | 0.033                | 0.007                | 0.000                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 0.004                | 0.008                | 0.010                | 0.013                | 0.020                | 0.030                | 0.040                | 0.030                | 0.000                |  |
|                 | 0.002                | 0.004                | 0.005                | 0.008                | 0.010                | 0.015                | 0.020                | 0.025                | 0.030                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.002                | 0.004                | 0.005                | 0.008                | 0.010                | 0.015                | 0.020                | 0.025                | 0.030                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 0.001                | 0.000                | 0.010                | 0.015                | 0.020                | 0.050                | 0.0.10               | 0.050                | 0.000                |  |
|                 | 0.008                | 0.016                | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.120                |  |
|                 | 0.008                | 0.016                | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.120                |  |
|                 | 0.008                | 0.010                | 0.020                | 0.030                | 0.040                | 0.000                | 0.080                | 0.100                | 0.120                |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 0.008                | 0.016                | 0.020                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                | 0.120                |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 0.004                | 0.008                | 0.010                | 0.015                | 0.020                | 0.030                | 0.040                | 0.050                | 0.060                |  |
|                 | 1122                 |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 | 0.001                | 0.003                | 0.003                | 0.005                | 0.007                | 0.010                | 0.013                | 0.017                | 0.020                |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |
|                 |                      |                      |                      |                      |                      |                      |                      |                      |                      |  |



#### KURZBOHRUNG AUF SCHRÄGEN OBERFLÄCHEN BIS ZU 60°

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

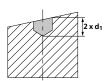
Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

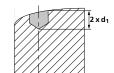
#### Pilotbohrung und Kurzbohrung

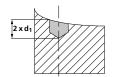
Der Bohrer CrazyDrill Crosspilot bildet mit den Tieflochbohrern der Familie CrazyDrill ein perfektes Paar, wenn es um die Bearbeitung auf schrägen, konkaven oder konvexen Oberflächen geht.

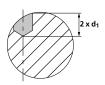
Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.

CrazyDrill Crosspilot ist nicht nur die ideale Vorbereitung von tiefen Folgebohrungen. Er ist gleichzeitig ein Kurzbohrer für hochpräzise und schnelle Bohrungen auf konkaven, konvexen oder auf schrägen Oberflächen bis zu einem Neigungswinkel von 60°.





05


#### **BOHRPROZESS**

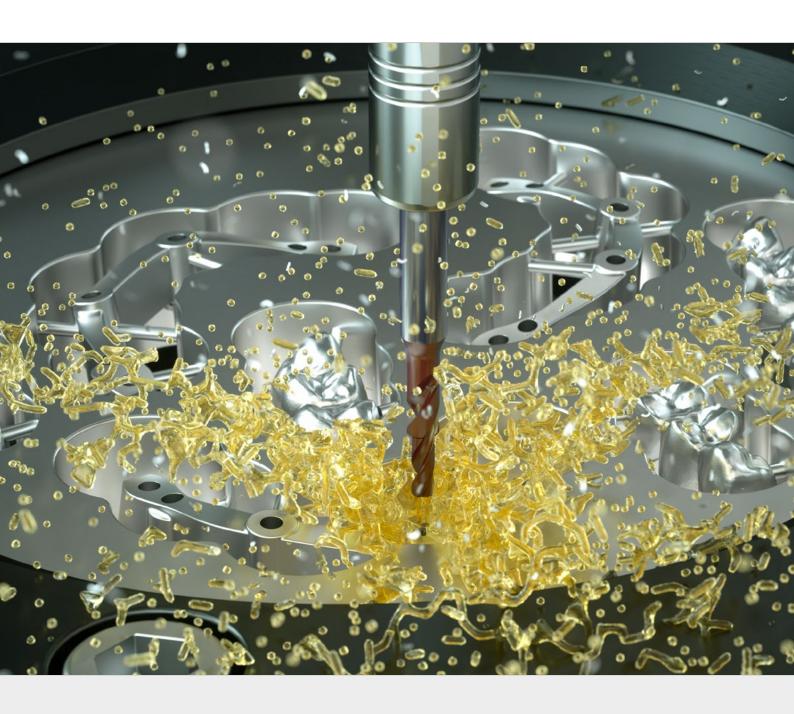

### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

Bohren in einem Bohrstoss mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit (siehe Schnittdatentabelle).










#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.

# NEW

# CrazyDrill Coolpilot





Mit CrazyDrill Coolpilot bietet Mikron Tool einen Pilot- und Kurzbohrer für rost-, säure- und hitzebeständige Stähle sowie CrCo-Legierungn an im Durchmesserbereich von 1.0 bis 6.0 mm, für Bohrtiefen bis 3 x d. Alle Kurzbohrer sind beschichtet und mit einer Innenkühlung und 90° Fasenschneide versehen.

Neu ist die Spitzengeometrie, die Form der Kühlkanäle, die bis zu vier Mal mehr Kühlmittelmenge an die Bohrerspitze führen, das Nutenprofil für einen perfekten Spanbruch und die Beschichtung. CrazyDrill Coolpilot ist die perfekte Vorbereitung der tiefen Bohrungen mit CrazyDrill Cool SST-Inox.

## NEW

# Beste Präzision bei schwierigen Materialien

#### **EFFIZIENTES PILOT- UND KURZBOHREN IN EDELSTAHL**

Mit CrazyDrill Coolpilot bietet Mikron Tool einen Pilot- und Kurzbohrer an für rost-, säure- und hitzebeständige Stähle sowie CrCo-Legierungen im Durchmesserbereich von 1 bis 6 mm und für eine Bohrtiefe bis 3 x d.

CrazyDrill Coolpilot, Bohrtiefe 3 x d, mit Innenkühlung, Senkung 90°

05

## CrazyDrill Coolpilot

Beschichtet Innenkühlung







## **NEW**

#### 1 | SCHAFT

Der verstärkte Hartmetallschaft garantiert Stabilität, hohen Rundlauf und damit maximale Bohrpräzision.

#### 2 | NEU: MIT KÜHLKANÄLEN

Dank einer neu konzipierten Form der spiralisierten Kühlkanäle wird eine bis zu vier Mal höhere Kühlmittelmenge an die Spitze des Werkzeuges geführt. Das Resultat ist eine konstante, massive Kühlung der Schneiden sowie eine kontinuierliche, effiziente Späneabfuhr. Für kleinere Durchmesser bis Ø 2.95 mm garantiert zusätzlich eine Powerkammer einen genügend starken Kühlmittelfluss.

### 3 | HARTMETALL

Ein speziell entwickeltes Ultrafeinkorn-Hartmetall ermöglicht das Bearbeiten mit hohen Geschwindigkeiten.

#### **4 | NEUE BESCHICHTUNG**

Die Hochleistungsbeschichtung eXedur SNP ist wärme- und verschleissresistent, verhindert ein Verkleben der Schneiden und fördert den kontinuierlichen Spänetransport. Das Resultat ist eine hohe Standzeit.

#### **5 | FASENSCHNEIDE 90°**

Mit der Bohrung kann gleichzeitig eine Senkung von 90° angebracht werden.

#### **6 | NEUES SPANNUTENPROFIL**

Unterteilt in zwei Zonen:

- Vordere Spannutenzone: eine spezielle Spanbrecherform sorgt für kompakte, kurze und gekrümmte Späne.
- Hintere Spannutenzone: eine erweiterte Nutenform sorgt für eine perfekte Späneabfuhr

### 7 | DOPPELTE FÜHRUNGSFASE

Die vier Führungsfasen ermöglichen höchste Präzision (Geradheit) und Oberflächenqualität.

Bohrerspitze



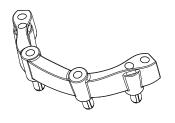


## NEW

# Vorteile und Anwendungen

### FÜR EINE SICHERE, PRÄZISE UND SCHNELLE PILOTBOHRUNG

KÜRZERE BEARBEITUNGSZEIT


Da 3 x d + 90° Senkung in einem Bohrstoss

■ HOHE PROZESSSICHERHEIT

Dank höherem Kühlmittelfluss

HOHE PRÄZISION

Dank doppelter Führungsfase



### TEIL

Zahnbrücke

#### WERKSTOFF

CrCoMo28 / ASTM F1537

#### **BEARBEITUNG**

- Kurzbohren und senken 90°
- d = 4 mm
- Bohrtiefe 12.1 mm

#### WERKZEUG

 ${\sf Mikron\ Tool\ -\ CrazyDrill\ Coolpilot}$ 

| DATEN         | MIKRON TOOL                                                    |
|---------------|----------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Coolpilot - Hartmetall - Beschichtet - Innenkühlung |
| Artikelnummer | 2.PD.04000.090.IC                                              |
| Schnittdaten  | $v_c = 70 \text{ m/min}$<br>f = 0.12 mm/U                      |

### PILOTBOHREN UND KURZBOHREN CRAZYDRILL\*M Coolpilot















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE          |
|-----------------------|-----------------------------------|
| Dentaltechnik         | Zahnimplantat                     |
| Luft- und Raumfahrt   | Motorenkomponente<br>Kugelgelenk  |
| Medizintechnik        | Bauteil für Endoskop              |
| Automobilbau          | Bauteil für<br>Direkteinspritzung |
| Maschinenbau          | Verriegelungsbolzen               |
| Uhren                 | Uhrengehäuse                      |
| Hydraulik / Pneumatik | Hydraulikventil                   |

| MATERIALGRUPPE                             | BEISPIELE |                  |                   |  |  |  |  |
|--------------------------------------------|-----------|------------------|-------------------|--|--|--|--|
|                                            | Wr. Nr.   | DIN              | AISI / ASTM / UNS |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle        | 1.4105    | X6CrMoS17        | 430F              |  |  |  |  |
|                                            | 1.4112    | X90CrMoV18       | 440B              |  |  |  |  |
|                                            | 1.4542    | X5CrNiCuNb 16-4  | 630               |  |  |  |  |
|                                            | 1.4435    | X2CrNiMo 18-14-3 | 316L              |  |  |  |  |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle | 2.4856    |                  | INCONEL 625       |  |  |  |  |
|                                            | 2.4665    | NiCr22Fe18Mo     | HASTELLOY X       |  |  |  |  |
| <b>Gruppe S3</b><br>CrCo-Legierungen       | 2.4964    | CoCr20W15Ni      | HAYNES 25         |  |  |  |  |

## **NEW**

# CrazyDrill Coolpilot - 3 x d - 90° Senkung

#### **BOHREN MIT INNENKÜHLUNG**



CrazyDrill Coolpilot wurde entwickelt als Pilot- und Kurzbohrer mit integrierter Fasenschneide für rost-, säure- und hitzebständige Stähle sowie CrCo-Legierungen. Damit ist er die ideale Ergänzung zu CrazyDrill Cool SST-Inox. Er ist versehen mit spiralisierten Kühlkanälen in Tropfenform bis an die Schneiden sowie einem Spanbrecher-Nutenprofil. Die neue, kupferrote Beschichtung vermeidet Verkleben und unterstützt den effizienten Bohrprozess.

Die Pilotbohrung oder Kurzbohrung bis 3 x d wird in einem Bohrstoss ausgeführt. Durch die Pilotbohrung ist der Folgebohrer optimal geführt, was eine hohe Geradheit der Bohrung garantiert. Dank der integrierten Fasenschneide kann gleichzeitig eine Senkung von 90° angebracht werden. Durch das Einsparen eines Werkzeugwechsels verkürzen sich so die Bearbeitungszeiten.

#### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

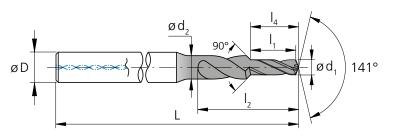
Sie haben nicht die passende Variante von CrazyDrill Coolpilot (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.

05





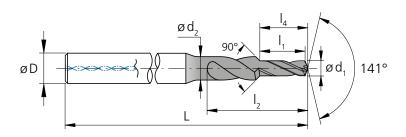





**Z**2








| ab Lager | Artikelnummer     | d₁<br>m5 | I <sub>1</sub> | $\mathbf{d}_{\mathbf{z}}$ | I <sub>2</sub> | I <sub>4</sub> | D<br>(h6) | L    |
|----------|-------------------|----------|----------------|---------------------------|----------------|----------------|-----------|------|
| ■ ab     | , a caterial mile | [mm]     | [mm]           | [mm]                      | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.PD.01000.090.IC | 1.00     | 3.00           | 1.60                      | 6.5            | 3.20           | 4         | 50   |
| -        | 2.PD.01050.090.IC | 1.05     | 3.15           | 1.60                      | 6.8            | 3.30           | 4         | 50   |
| •        | 2.PD.01100.090.IC | 1.10     | 3.30           | 1.60                      | 7.1            | 3.50           | 4         | 50   |
| -        | 2.PD.01150.090.IC | 1.15     | 3.45           | 1.60                      | 7.5            | 3.60           | 4         | 50   |
| •        | 2.PD.01200.090.IC | 1.20     | 3.60           | 1.90                      | 7.8            | 3.80           | 4         | 50   |
| -        | 2.PD.01250.090.IC | 1.25     | 3.75           | 1.90                      | 8.1            | 4.00           | 4         | 50   |
| •        | 2.PD.01300.090.IC | 1.30     | 3.90           | 1.90                      | 8.4            | 4.10           | 4         | 50   |
|          | 2.PD.01350.090.IC | 1.35     | 4.05           | 1.90                      | 8.8            | 4.30           | 4         | 50   |
| •        | 2.PD.01400.090.IC | 1.40     | 4.20           | 1.90                      | 9.1            | 4.40           | 4         | 50   |
| -        | 2.PD.01450.090.IC | 1.45     | 4.35           | 2.25                      | 10.4           | 4.60           | 4         | 50   |
| •        | 2.PD.01500.090.IC | 1.50     | 4.50           | 2.25                      | 10.7           | 4.70           | 4         | 50   |
|          | 2.PD.01550.090.IC | 1.55     | 4.65           | 2.25                      | 10.9           | 4.90           | 4         | 50   |
| •        | 2.PD.01600.090.IC | 1.60     | 4.80           | 2.25                      | 11.2           | 5.10           | 4         | 50   |
| -        | 2.PD.01650.090.IC | 1.65     | 4.95           | 2.25                      | 11.5           | 5.20           | 4         | 50   |
| •        | 2.PD.01700.090.IC | 1.70     | 5.10           | 2.60                      | 11.8           | 5.40           | 4         | 53   |
| -        | 2.PD.01750.090.IC | 1.75     | 5.25           | 2.60                      | 12.1           | 5.50           | 4         | 53   |
| •        | 2.PD.01800.090.IC | 1.80     | 5.40           | 2.60                      | 12.3           | 5.70           | 4         | 53   |
| -        | 2.PD.01850.090.IC | 1.85     | 5.55           | 2.60                      | 12.6           | 5.80           | 4         | 53   |
| •        | 2.PD.01900.090.IC | 1.90     | 5.70           | 2.60                      | 12.8           | 6.00           | 4         | 53   |
|          | 2.PD.01950.090.IC | 1.95     | 5.85           | 2.60                      | 13.1           | 6.20           | 4         | 53   |
| •        | 2.PD.02000.090.IC | 2.00     | 6.00           | 3.10                      | 13.3           | 6.30           | 4         | 55   |
|          | 2.PD.02050.090.IC | 2.05     | 6.15           | 3.10                      | 13.6           | 6.50           | 4         | 55   |
| •        | 2.PD.02100.090.IC | 2.10     | 6.30           | 3.10                      | 13.9           | 6.60           | 4         | 55   |
|          | 2.PD.02150.090.IC | 2.15     | 6.45           | 3.10                      | 14.1           | 6.80           | 4         | 55   |
|          | 2.PD.02200.090.IC | 2.20     | 6.60           | 3.10                      | 14.4           | 7.00           | 4         | 55   |
|          | 2.PD.02250.090.IC | 2.25     | 6.75           | 3.10                      | 14.7           | 7.10           | 4         | 55   |
| •        | 2.PD.02300.090.IC | 2.30     | 6.90           | 3.50                      | 14.9           | 7.30           | 4         | 57   |

## NEW

# CrazyDrill Coolpilot - 3 x d - 90° Senkung

### **BOHREN MIT INNENKÜHLUNG**

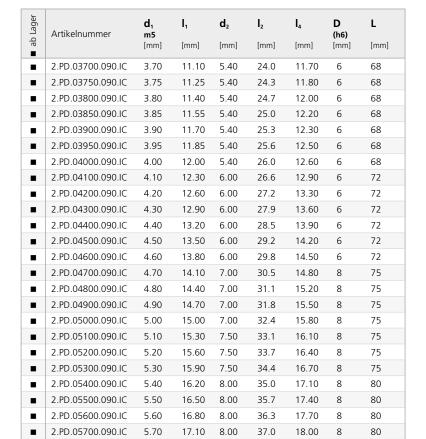


| ab Lager | Artikelnummer     | d₁<br>m5 | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | I <sub>4</sub> | <b>D</b><br>(h6) | L    |
|----------|-------------------|----------|----------------|----------------|----------------|----------------|------------------|------|
| ■ ab     |                   | [mm]     | [mm]           | [mm]           | [mm]           | [mm]           | [mm]             | [mm] |
| •        | 2.PD.02350.090.IC | 2.35     | 7.05           | 3.50           | 15.2           | 7.40           | 4                | 57   |
| -        | 2.PD.02400.090.IC | 2.40     | 7.20           | 3.50           | 15.6           | 7.60           | 4                | 57   |
| -        | 2.PD.02450.090.IC | 2.45     | 7.35           | 3.50           | 15.9           | 7.70           | 4                | 57   |
| -        | 2.PD.02500.090.IC | 2.50     | 7.50           | 3.50           | 16.2           | 7.90           | 4                | 57   |
| •        | 2.PD.02550.090.IC | 2.55     | 7.65           | 3.50           | 16.5           | 8.10           | 4                | 57   |
| -        | 2.PD.02600.090.IC | 2.60     | 7.80           | 4.00           | 16.9           | 8.20           | 4                | 57   |
| -        | 2.PD.02650.090.IC | 2.65     | 7.95           | 4.00           | 17.2           | 8.40           | 4                | 57   |
| •        | 2.PD.02700.090.IC | 2.70     | 8.10           | 4.00           | 17.5           | 8.50           | 4                | 57   |
| •        | 2.PD.02750.090.IC | 2.75     | 8.25           | 4.00           | 17.8           | 8.70           | 4                | 57   |
| -        | 2.PD.02800.090.IC | 2.80     | 8.40           | 4.00           | 18.2           | 8.80           | 4                | 57   |
| •        | 2.PD.02850.090.IC | 2.85     | 8.55           | 4.00           | 18.5           | 9.00           | 4                | 57   |
| -        | 2.PD.02900.090.IC | 2.90     | 8.70           | 4.00           | 18.8           | 9.20           | 4                | 57   |
| •        | 2.PD.02950.090.IC | 2.95     | 8.85           | 4.00           | 19.1           | 9.30           | 4                | 57   |
| -        | 2.PD.03000.090.IC | 3.00     | 9.00           | 4.70           | 19.5           | 9.50           | 6                | 65   |
| •        | 2.PD.03050.090.IC | 3.05     | 9.15           | 4.70           | 19.8           | 9.60           | 6                | 65   |
| •        | 2.PD.03100.090.IC | 3.10     | 9.30           | 4.70           | 20.1           | 9.80           | 6                | 65   |
| •        | 2.PD.03150.090.IC | 3.15     | 9.45           | 4.70           | 20.4           | 10.00          | 6                | 65   |
| •        | 2.PD.03200.090.IC | 3.20     | 9.60           | 4.70           | 20.8           | 10.10          | 6                | 65   |
| •        | 2.PD.03250.090.IC | 3.25     | 9.75           | 4.70           | 21.1           | 10.30          | 6                | 65   |
| -        | 2.PD.03300.090.IC | 3.30     | 9.90           | 4.70           | 21.4           | 10.40          | 6                | 65   |
| •        | 2.PD.03350.090.IC | 3.35     | 10.05          | 4.70           | 21.7           | 10.60          | 6                | 65   |
| -        | 2.PD.03400.090.IC | 3.40     | 10.20          | 4.70           | 22.1           | 10.70          | 6                | 65   |
| •        | 2.PD.03450.090.IC | 3.45     | 10.35          | 4.70           | 22.4           | 10.90          | 6                | 65   |
| •        | 2.PD.03500.090.IC | 3.50     | 10.50          | 5.40           | 22.7           | 11.10          | 6                | 68   |
| •        | 2.PD.03550.090.IC | 3.55     | 10.65          | 5.40           | 23.0           | 11.20          | 6                | 68   |
| -        | 2.PD.03600.090.IC | 3.60     | 10.80          | 5.40           | 23.4           | 11.40          | 6                | 68   |
|          | 2.PD.03650.090.IC | 3.65     | 10.95          | 5.40           | 23.7           | 11.50          | 6                | 68   |










Z2 | \





Coolpilot



2.PD.05800.090.IC

2.PD.05900.090.IC

2.PD.06000.090.IC

5.80

5.90

6.00

17.40

17.70

18.00

8.00

8.00

8.00

37.6

38.3

38.9

18.30

18.60

18.90

8

8

80

80

80

## NEW

# CrazyDrill Coolpilot - 3 x d - 90° Senkung

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-                            | 10/                               | 187 B* | DIN                | ALCU/ACTRA/USIC         | V <sub>c</sub> |         |      |  |  |
|---------------------------------------|-----------------------------------|--------|--------------------|-------------------------|----------------|---------|------|--|--|
| gruppe \                              | Werkstoff                         | Wr.Nr. | DIN                | AISI/ASTM/UNS           |                | [m/min] |      |  |  |
|                                       |                                   |        |                    |                         | Tief           | Mittel  | Hoch |  |  |
|                                       |                                   | 1.0301 | C10                | AISI 1010               |                |         |      |  |  |
| P                                     | Stähle unlegiert                  | 1.0401 | C15                | AISI 1015               |                |         |      |  |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Rm < 800 N/mm <sup>2</sup>        | 1.1191 | C45E/CK45          | AISI 1045               |                |         |      |  |  |
| \%/                                   | 1111 4 000 1 1 1 1 1 1 1 1        | 1.0044 | S275JR             | AISI 1020               |                |         |      |  |  |
|                                       |                                   | 1.0715 | 11SMn30            | AISI 1215               |                |         |      |  |  |
| Ø                                     |                                   | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                |         |      |  |  |
|                                       | Stähle niedriglegiert             | 1.7131 | 16MnCr5            | AISI 5115               |                |         |      |  |  |
|                                       | Rm > 900 N/mm <sup>2</sup>        | 1.3505 | 100Cr6             | AISI 52100              |                |         |      |  |  |
|                                       |                                   | 1.7225 | 42CrMo4            | AISI 4140               |                |         |      |  |  |
|                                       |                                   | 1.2842 | 90MnCrV8           | AISI O2                 |                |         |      |  |  |
| 3xd <sub>1</sub>                      | \ \ \ / =   = = . + #   =   =     | 1.2379 | X153CrMoV12        | AISI D2                 |                |         |      |  |  |
| <del>/ /   '</del>   '                | Werkzeugstähle<br>hochlegiert     | 1.2436 | X210CrW12          | AISI D4/D6              |                |         |      |  |  |
|                                       | Rm < 1200 N/mm <sup>2</sup>       | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                |         |      |  |  |
| // <u> </u>                           |                                   | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                |         |      |  |  |
| ///                                   | Rostfreie Stähle-                 | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 60             | 90      | 100  |  |  |
|                                       | ferritisch                        | 1.4105 | X6CrMoS17          | AISI 430F               | 60             | 80      | 100  |  |  |
| IVI                                   | Rostfreie Stähle-                 | 1.4034 | X46Cr13            | AISI 420C               |                |         | 100  |  |  |
|                                       | martensitisch                     | 1.4112 | X90CrMoV18         | AISI 440B               | 60             | 80      | 100  |  |  |
| F                                     | Rostfreie Stähle-                 | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                |         |      |  |  |
|                                       | martensitisch – PH                | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 60             | 80      | 100  |  |  |
|                                       | Rostfreie Stähle-<br>austenitisch | 1.4301 | X5CrNi 18-10       | AISI 304                |                |         |      |  |  |
|                                       |                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                |         |      |  |  |
|                                       |                                   | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              | 60             | 80      | 100  |  |  |
|                                       |                                   | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                |         |      |  |  |
|                                       |                                   |        |                    |                         |                |         |      |  |  |
| 1/                                    |                                   | 0.6020 | GG20<br>GG30       | ASTM 30<br>ASTM 40B     |                |         |      |  |  |
| K                                     | Gusseisen                         |        |                    |                         |                |         |      |  |  |
|                                       |                                   | 0.7040 | GGG40              | ASTM 60-40-18           |                |         |      |  |  |
|                                       |                                   | 0.7060 | GGG60              | ASTM 80-60-03           |                |         |      |  |  |
|                                       | Aluminium                         | 3.2315 | AlMgSi1            | ASTM 6351               |                |         |      |  |  |
| N E                                   | Knetlegierungen                   | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                |         |      |  |  |
| F                                     | Aluminium                         | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                |         |      |  |  |
| ]                                     | Druckgusslegierungen              | 3.2381 | GD-AlSi10Mg        | UNS A03590              |                |         |      |  |  |
|                                       | Kupfer                            | 2.004  | Cu-OF / CW008A     | UNS C10100              |                |         |      |  |  |
|                                       | Kupiei                            | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                |         |      |  |  |
| , n                                   | Messing bleifrei                  | 2.0321 | CuZn37 CW508L      | UNS C27400              |                |         |      |  |  |
|                                       | iviessing bielitel                | 2.036  | CuZn40 CW509L      | UNS C28000              |                |         |      |  |  |
| 1                                     | Messing, Bronze                   | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              |                |         |      |  |  |
| F                                     | Rm < 400 N/mm <sup>2</sup>        | 2.102  | CuSn6              | UNS C51900              |                |         |      |  |  |
| E                                     | Bronze                            | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                |         |      |  |  |
| F                                     | Rm < 600 N/mm <sup>2</sup>        | 2.096  | CuAl9Mn2           | UNS C63200              |                |         |      |  |  |
|                                       |                                   | 2.4856 |                    | Inconel 625             |                |         | 50   |  |  |
| C .                                   | Hitzebeständige                   | 2.4668 |                    | Inconel 718             | 20             | 40      |      |  |  |
|                                       | Stähle                            | 2.4617 | NiMo28             | Hastelloy B-2           | 30             | 40      | 50   |  |  |
|                                       |                                   | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                |         |      |  |  |
|                                       |                                   | 3.7035 | Gr.2               | ASTM B348 / F67         |                |         |      |  |  |
| [C ]                                  | Titan rein                        | 3.7065 | Gr.4               | ASTM B348 / F68         |                |         |      |  |  |
| $ S_2 $                               |                                   | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                | -       |      |  |  |
| -  1                                  | Titan Legierungen                 | 9.9367 | TiAl6Nb7           | ASTM F1295              |                |         |      |  |  |
|                                       |                                   |        |                    |                         |                |         |      |  |  |
|                                       | CrCo-Legierungen                  | 2.4964 | CoCr20W15Ni        | Haynes 25               | 50             | 70      | 90   |  |  |
|                                       |                                   |        | CrCoMo28           | ASTM F1537              |                |         |      |  |  |
| 3                                     |                                   |        |                    |                         |                |         |      |  |  |
|                                       | Stähle gehärtet<br>< 55 HRC       | 1.2510 | 100MnCrMoW4        | AISI O1                 |                |         |      |  |  |

## PILOTBOHREN UND KURZBOHREN



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



|       |        |       |       |        |       |       |        |       |       |        |       | f     | [mm/l  | J]    |       |        |       |       |        |       |       |        |       |       |        | <b>⊠</b> I |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|------------|
|       | Ød1    |       |       | Ød1    |       |       | Ød1    |       |       | Ød1    |       |       | Ød1    | -     |       | Ød1    |       |       | Ød1    |       |       | Ød1    |       |       | Ød1    |            |
|       | 1.0 mm |       | 1     | .25 mn | n     |       | 1.5 mm |       |       | 2.0 mm |       | :     | 2.5 mm |       | ı     | 3.0 mm | 1     |       | 4.0 mm |       |       | 5.0 mm |       |       | 6.0 mm |            |
| Tief  | Mittel | Hoch       |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
| 0.010 | 0.020  | 0.030 | 0.013 | 0.025  | 0.038 | 0.015 | 0.030  | 0.045 | 0.020 | 0.040  | 0.060 | 0.025 | 0.050  | 0.075 | 0.030 | 0.060  | 0.090 | 0.040 | 0.080  | 0.120 | 0.050 | 0.100  | 0.150 | 0.060 | 0.120  | 0.18       |
| 0.030 | 0.040  | 0.050 | 0.038 | 0.050  | 0.063 | 0.045 | 0.060  | 0.075 | 0.060 | 0.080  | 0.100 | 0.075 | 0.100  | 0.125 | 0.090 | 0.120  | 0.150 | 0.120 | 0.160  | 0.200 | 0.150 | 0.200  | 0.250 | 0.180 | 0.240  | 0.30       |
| 0.020 | 0.030  | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045  | 0.060 | 0.040 | 0.060  | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120  | 0.160 | 0.100 | 0.150  | 0.200 | 0.120 | 0.180  | 0.24       |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
| 0.020 | 0.030  | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045  | 0.060 | 0.040 | 0.060  | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120  | 0.160 | 0.100 | 0.150  | 0.200 | 0.120 | 0.180  | 0.24       |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
| 0.010 | 0.015  | 0.020 | 0.013 | 0.019  | 0.025 | 0.015 | 0.023  | 0.030 | 0.020 | 0.030  | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045  | 0.060 | 0.040 | 0.060  | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.12       |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
| 0.020 | U.U30  | U.U40 | 0.025 | U.U38  | U.U50 | 0.030 | 0.045  | U.U60 | 0.040 | U.U60  | 0.080 | 0.050 | 0.075  | U.100 | U.060 | U.U90  | 0.120 | 0.080 | U.120  | U.160 | U.100 | U.150  | 0.200 | U.120 | U.180  | υ.24       |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |            |
|       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       |       |        |       | I     |        |            |

#### **KURZBOHRUNG 3 X D MIT ZUSÄTZLICHER SENKUNG 90°**

#### Kühlschmierstoff, Filter und Druck

#### Kühlen mit innerer Kühlmittelzufuhr

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen. Speziell bei kleinen Durchmessern müssen folgende Filterqualitäten eingehalten werden:

- Bohrer mit Ø < 2 mm Filterqualität ≤ 0.010 mm.
- Bohrer mit Ø < 3 mm Filterqualität ≤ 0.020 mm.
- Bohrer mit Ø < 6 mm Filterqualität ≤ 0.050 mm.

**Kühlmitteldruck:** Für CrazyDrill Coolpilot wird mindestens der in der Tabelle angegebene Kühlmitteldruck benötigt, um prozesssicher zu bohren. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

| Ø d₁ Werkzeug                | [mm]  | 1.0 mm - 2.0 mm | 2.0 mm - 4.0 mm | 4.0 mm - 6.0 mm |  |
|------------------------------|-------|-----------------|-----------------|-----------------|--|
| Minimaler<br>Kühlmitteldruck | [bar] | 50              | 40              | 25              |  |

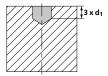
#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

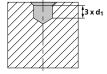
#### Pilotbohrung und Kurzbohrung

Die Pilotbohrung mit CrazyDrill Coolpilot ist der perfekte Ausgangspunkt für eine präzise Bohrungsposition mit hoher Fluchtungsgenauigkeit.

Dank perfekt abgestimmter Bohrertoleranz entsteht kein messbarer Übergang vom Pilotbohrer zum Folgebohrer. Eine durchgehend hohe Qualität der Bohrung ist gewährleistet.


CrazyDrill Coolpilot kann ideal auch als Kurzbohrer verwendet werden für eine äusserst präzise und schnelle Bohrung bis zu einer Tiefe 3 x d mit einer Senkung von 90°.

05


#### **BOHRPROZESS**

### 1 | PILOTBOHRUNG ODER KURZBOHRUNG

- Interne Kühlung einschalten.
- Bohren in einem Bohrstoss mit der empfohlenen Schnitt- und Vorschubgeschwindigkeit (siehe Schnittdatentabelle).

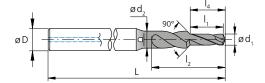


Bei Bedarf kann nach dem Erreichen der maximalen Bohrtiefe von 3 x d eine Senkung von 90° angebracht werden.



#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.


# Kundenspezifische Kurz- / Pilotbohrer



### Mikron Tool produziert Hartmetall - Kurz- und Pilotbohrer gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

#### **MERKMALE**

- Durchmesser min.: 0.1 mm,
- Durchmesser max.: 32.0 mm, grösser nach Abklärung
- Maximale Werkzeuglänge: 415 mm
- Werkzeugdurchmesser Toleranz max.: ± 0.5 µm
- Fase und Spitzenwinkel: nach Bedarf
- Stufenbohrer: siehe kundenspezifische Stufenbohrer
- Konzentrizität zwischen Schaft und Werkzeugdurchmesser: ≤ 2 µm
- Schneiden Anzahl: 1, 2 oder 3
- Schneidenrichtung: Bohrer rechtsschneidend oder Bohrer linksschneidend
- Konische und zylindrische Bohrer
- Material Bohrer: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



#### **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung.

#### KÜHLUNG

- Bohrer mit Innenkühlung spiralisiert bis an Bohrerspitze
- Bohrer mit Innenkühlung gerade im Schaft
- Bohrer für äussere Kühlmittelzufuhr

#### **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HE (Whistle Notch)
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch

#### **MATERIAL ANWENDUNG**

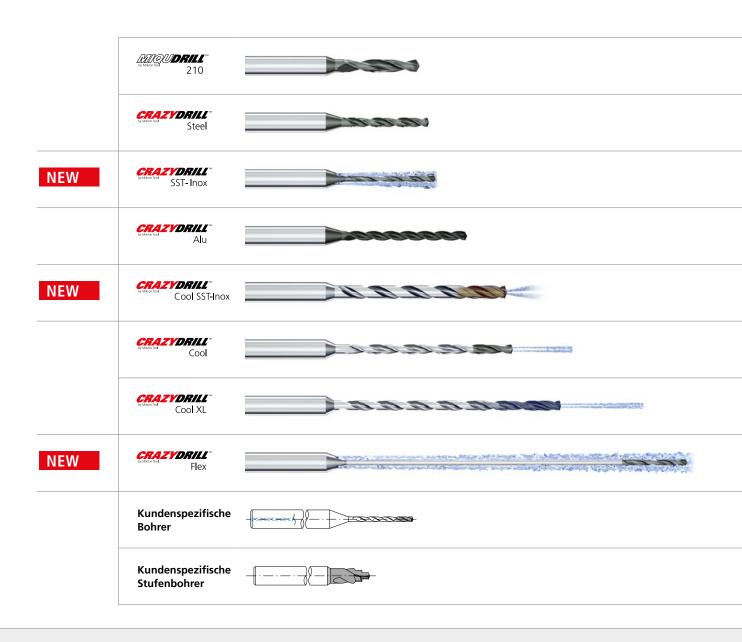
Bohrer für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe usw.

#### **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten.

# crazy about drilling

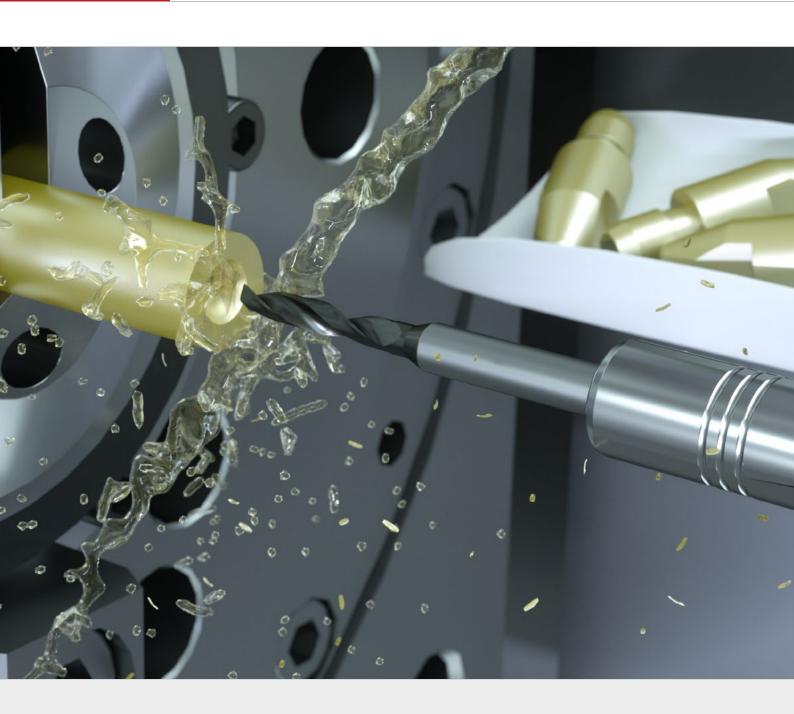



BOHREN

06

| ÜBERSICHT                      | 210 |    |
|--------------------------------|-----|----|
| MIQUDRILL 210                  | 212 |    |
| CRAZYDRILL STEEL               | 232 |    |
| CRAZYDRILL SST-INOX IK / IN    | 254 | 06 |
| CRAZYDRILL ALU                 | 280 | 06 |
| CRAZYDRILL COOL SST-INOX       | 302 |    |
| CRAZYDRILL COOL                | 322 |    |
| CRAZYDRILL COOL XL             | 368 |    |
| CRAZYDRILL FLEX                | 402 |    |
| KUNDENSPEZIFISCHE BOHRER       | 474 |    |
| KUNDENSPEZIFISCHE STUFENBOHRER | 476 |    |

## Übersicht


#### ZERSPANUNGSLÖSUNGEN



| _                   | -sbu                                 |         | Р                                   | M                   | K         | N                      | S <sub>1</sub>                 | S₂                                    | S₃                   | H₁                            | H₂                            |       |  |
|---------------------|--------------------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|-------|--|
| ø - Bereich<br>[mm] | max.<br>Bearbeitungs-<br>tiefe       | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitzebe-<br>ständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC | Seite |  |
| 0.1-3.0             | bis zu<br>8 x d                      |         | •                                   | Ø                   | •         | •                      | Ø                              | ×                                     | Ø                    | •                             | Ø                             | 212   |  |
| 0.4-6.0             | 4 x d<br>6 - 7 x d                   |         | •                                   | ×                   | •         | •                      | 0                              | 0                                     | 0                    | •                             | ×                             | 232   |  |
| 0.3-2.0             | 8 x d<br>12 x d                      |         | ×                                   | •                   | Ø         | •                      | •                              | ×                                     | •                    | ×                             | ×                             | 254   |  |
| 0.4-3.0             | 5 x d<br>10 x d                      |         | ×                                   | ×                   | Ø         | •                      | ×                              | ×                                     | ×                    | ×                             | ×                             | 280   |  |
| 1.0-6.0             | 6 x d<br>10 x d                      |         | ×                                   | •                   | Ø         | ×                      | •                              | ×                                     | •                    | ×                             | ×                             | 302   |  |
| 0.75-6.0            | 6 x d<br>10 x d<br>15 x d            |         | •                                   | 0                   | •         | •                      | 0                              | 0                                     | •                    | •                             | ×                             | 322   |  |
| 1.0-6.0             | 15 x d<br>20 x d<br>30 x d<br>40 x d |         | •                                   | 0                   | •         | •                      | ×                              | •                                     | •                    | •                             | ×                             | 368   |  |
| 0.1-1.2             | 20 x d<br>30 x d<br>50 x d           |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | ×                             | ×                             | 402   |  |
| 0.1-32.0            | nach<br>Bedarf                       |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | •                             | 474   |  |
| 0.1-32.0            | nach<br>Bedarf                       |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | •                             | 476   |  |



# MiquDrill 210



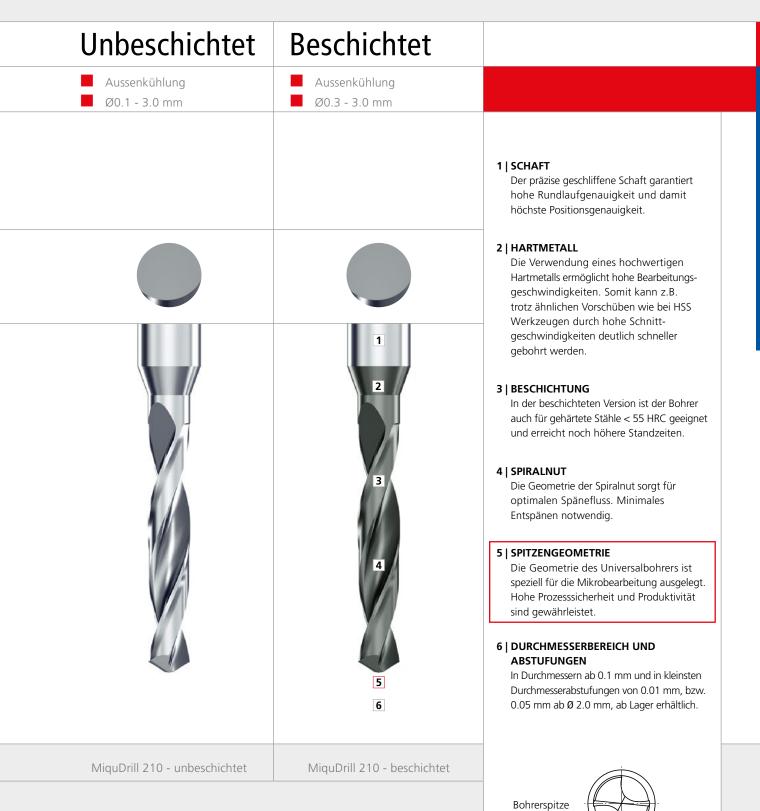




unbeschichtet in Durchmessern von 0.1 mm bis 3.0 mm, beschichtet von 0.3 mm bis 3.0 mm. Seine Nutzlängen liegen je nach Durchmesser zwischen 2.4 x d und 8 x d. Beide Versionen sind in kleinsten Abstufungen von 0.01 mm bis Ø2.0 mm und 0.05 mm bis Ø3.0 mm ab Lager erhältlich.

Dieser Präzisionsbohrer für die Mikrobearbeitung ist die optimale Lösung, wenn es um die Fertigung von kleinen und mittleren Losgrössen oder grosse Variantenvielfalt geht. Erstklassige Qualität und Prozesssicherheit wird garantiert. Er ist universell einsetzbar für Stähle (legiert und unlegiert), Gusseisen, Nichteisenmetalle und mit der beschichteten Version auch für gehärteten Stahl < 55 HRC.




# Präzise Mikrobearbeitung

#### FÜR KLEINE SERIEN UND VARIANTENVIELFALT

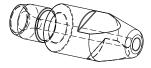
Mit MiquDrill 210 bietet Mikron Tool einen Bohrer für die Mikrobearbeitung an. Verfügbar ist er unbeschichtet in Durchmessern von 0.1 mm bis 3.0 mm, beschichtet von 0.3 mm bis 3.0 mm. Seine Nutzlängen liegen je nach Durchmesser zwischen 2.4 x d und 8 x d. Beide Versionen sind in kleinsten Abstufungen von 0.01 mm bis Ø2.0 mm und 0.05 mm bis Ø3.0 mm ab Lager erhältlich.

MiquDrill 210, Nutzlänge 2.4 - 8 x d, beschichtet und unbeschichtet








# Vorteile und Anwendungen

### PASST FÜR JEDE ANWENDUNG

HOHE PROZESSSICHERHEIT | Dank höherer Qualität

HOHE PRÄZISION | Dank enger Toleranzen

TIEFE PRODUKTIONSKOSTEN Dank geringer Werkzeugkosten



### TEIL

Schweissdüse

#### WERKSTOFF

CuZn39Pb3 / 2.0401 / UNS 38500

#### BEARBEITUNG

- Bohren
- d = 2 mm
- Bohrtiefe 6 mm

#### WERKZEUG

Mikron Tool - MiquDrill 210 - beschichtet

| DATEN         | MIKRON TOOL                                                                                 |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| Moulemannton  | MiquDrill 210<br>- Hartmetall                                                               |  |  |  |  |  |
| Werkzeugtyp   | - Beschichtet<br>- Aussenkühlung                                                            |  |  |  |  |  |
| Artikelnummer | 2.MD.210200.1                                                                               |  |  |  |  |  |
| Schnittdaten  | $v_c = 80 \text{ m/min}$ $f = 0.048 \text{ mm/U}$ $Q_1 = 4 \text{ mm}$ $Q_x = 2 \text{ mm}$ |  |  |  |  |  |







| ANWENDUNGSBEREICHE | KOMPONENTEN<br>BEISPIELE       |
|--------------------|--------------------------------|
| Automobilbau       | Bauteil für Direkteinspritzung |
| Maschinenbau       | Kugellager                     |

| MATERIALGRUPPE                              | JPPE BEISPIELE |                |                   |  |  |  |
|---------------------------------------------|----------------|----------------|-------------------|--|--|--|
|                                             | Wr. Nr.        | DIN            | AISI / ASTM / UNS |  |  |  |
| Gruppe P<br>Unlegierte u.                   | 1.0401         | C15            | 1015              |  |  |  |
| legierte Stähle                             | 1.3505         | 100Cr6         | 52100             |  |  |  |
|                                             | 1.2436         | X210CrW12      | D4 / D6           |  |  |  |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040         | GGG40          | 60-40-18          |  |  |  |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315         | AlMgSi1        | 6351              |  |  |  |
|                                             | 3.2163         | GD-AlSi9Cu3    | A380              |  |  |  |
|                                             | 2.004          | Cu-OF / CW008A | C10100            |  |  |  |
|                                             | 2.0321         | CuZn37 CW508L  | C27400            |  |  |  |
|                                             | 2.102          | CuSn6          | C51900            |  |  |  |
|                                             | 2.096          | CuAl9Mn2       | C63200            |  |  |  |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510         | 100MnCrMoW4    | 01                |  |  |  |



## MiquDrill 210 - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die beschichtete Variante von MiquDrill 210 ist universell einsetzbar für Stähle (legiert, unlegiert, gehärtet < 55 HRC), Gusseisen und Nichteisenmetalle (z.B. Alu mit hohem Siliziumanteil). Sein Durchmesserbereich geht von 0.3 mm bis 3.0 mm. Sehr kleine Durchmesserbstufungen von 0.01 mm im Durchmesserbereich 0.3 mm -2.0 mm und von 0.05 mm im Durchmesserbereich von 2.0 mm -3.0 mm sind ab Lager erhältlich.

Er ist im Vergleich zum "MiquDrill 210 unbeschichtet" die Lösung für höhere Anforderungen, z.B. höhere Standzeiten und/oder kürzere Bearbeitungszeiten, auch bei schwierigen Materialien. Die Geometrie ist speziell ausgelegt für die Mikrobearbeitung von Bohrtiefen zwischen 2.4 und 8.0 x d. Diese werden mittels wenigen Entspänzyklen erzielt.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von MiquDrill 210 - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







**Z**2



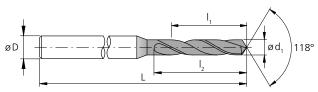




| øD - | d <sub>1</sub> 118° |
|------|---------------------|
| Ť    |                     |

| ab Lager | Artikelnummer | <b>d</b> <sub>1</sub><br><b>h5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b> [mm] |
|----------|---------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|---------------|
|          | 2.MD.210030.1 | 0.30                                       | 1.20                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210031.1 | 0.31                                       | 1.19                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210032.1 | 0.32                                       | 1.18                       | 1.5                          | 1.0                      | 30            |
|          | 2.MD.210033.1 | 0.33                                       | 1.17                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210034.1 | 0.34                                       | 1.16                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210035.1 | 0.35                                       | 1.15                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210036.1 | 0.36                                       | 1.14                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210037.1 | 0.37                                       | 1.13                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210038.1 | 0.38                                       | 1.12                       | 1.5                          | 1.0                      | 30            |
| -        | 2.MD.210039.1 | 0.39                                       | 1.11                       | 1.5                          | 1.0                      | 30            |
| •        | 2.MD.210040.1 | 0.40                                       | 1.60                       | 2.0                          | 1.0                      | 30            |
| •        | 2.MD.210041.1 | 0.41                                       | 1.59                       | 2.0                          | 1.0                      | 30            |
|          | 2.MD.210042.1 | 0.42                                       | 1.58                       | 2.0                          | 1.0                      | 30            |
| -        | 2.MD.210043.1 | 0.43                                       | 1.57                       | 2.0                          | 1.0                      | 30            |
| •        | 2.MD.210044.1 | 0.44                                       | 1.56                       | 2.0                          | 1.0                      | 30            |
| •        | 2.MD.210045.1 | 0.45                                       | 3.05                       | 3.5                          | 1.0                      | 30            |
| •        | 2.MD.210046.1 | 0.46                                       | 3.04                       | 3.5                          | 1.0                      | 30            |
| •        | 2.MD.210047.1 | 0.47                                       | 3.03                       | 3.5                          | 1.0                      | 30            |
| •        | 2.MD.210048.1 | 0.48                                       | 3.02                       | 3.5                          | 1.0                      | 30            |
| •        | 2.MD.210049.1 | 0.49                                       | 3.51                       | 4.0                          | 1.0                      | 30            |
| •        | 2.MD.210050.1 | 0.50                                       | 3.50                       | 4.0                          | 1.0                      | 30            |
| •        | 2.MD.210051.1 | 0.51                                       | 3.49                       | 4.0                          | 1.0                      | 30            |
| •        | 2.MD.210052.1 | 0.52                                       | 3.48                       | 4.0                          | 1.0                      | 30            |
| •        | 2.MD.210053.1 | 0.53                                       | 3.47                       | 4.0                          | 1.0                      | 30            |
| •        | 2.MD.210054.1 | 0.54                                       | 3.96                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210055.1 | 0.55                                       | 3.95                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210056.1 | 0.56                                       | 3.94                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210057.1 | 0.57                                       | 3.93                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210058.1 | 0.58                                       | 3.92                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210059.1 | 0.59                                       | 3.91                       | 4.5                          | 1.0                      | 30            |
| •        | 2.MD.210060.1 | 0.60                                       | 3.90                       | 4.5                          | 1.0                      | 30            |
| -        | 2.MD.210061.1 | 0.61                                       | 4.39                       | 5.0                          | 1.0                      | 30            |
| •        | 2.MD.210062.1 | 0.62                                       | 4.38                       | 5.0                          | 1.0                      | 30            |
| •        | 2.MD.210063.1 | 0.63                                       | 4.37                       | 5.0                          | 1.0                      | 30            |
| •        | 2.MD.210064.1 | 0.64                                       | 4.36                       | 5.0                          | 1.0                      | 30            |

| Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|       | 2.MD.210065.1 | 0.65     | 4.35           | 5.0            | 1.0       | 30   |
|       | 2.MD.210066.1 | 0.66     | 4.34           | 5.0            | 1.0       | 30   |
|       | 2.MD.210067.1 | 0.67     | 4.33           | 5.0            | 1.0       | 30   |
|       | 2.MD.210068.1 | 0.68     | 4.92           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210069.1 | 0.69     | 4.91           | 5.6            | 1.0       | 30   |
|       | 2.MD.210070.1 | 0.70     | 4.90           | 5.6            | 1.0       | 30   |
|       | 2.MD.210071.1 | 0.71     | 4.89           | 5.6            | 1.0       | 30   |
|       | 2.MD.210072.1 | 0.72     | 4.88           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210073.1 | 0.73     | 4.87           | 5.6            | 1.0       | 30   |
|       | 2.MD.210074.1 | 0.74     | 4.86           | 5.6            | 1.0       | 30   |
|       | 2.MD.210075.1 | 0.75     | 4.85           | 5.6            | 1.0       | 30   |
|       | 2.MD.210076.1 | 0.76     | 5.74           | 6.5            | 1.0       | 30   |
| •     | 2.MD.210077.1 | 0.77     | 5.73           | 6.5            | 1.0       | 30   |
|       | 2.MD.210078.1 | 0.78     | 5.72           | 6.5            | 1.0       | 30   |
|       | 2.MD.210079.1 | 0.79     | 5.71           | 6.5            | 1.0       | 30   |
|       | 2.MD.210080.1 | 0.80     | 5.70           | 6.5            | 1.5       | 30   |
|       | 2.MD.210081.1 | 0.81     | 5.69           | 6.5            | 1.5       | 30   |
|       | 2.MD.210082.1 | 0.82     | 5.68           | 6.5            | 1.5       | 30   |
|       | 2.MD.210083.1 | 0.83     | 5.67           | 6.5            | 1.5       | 30   |
|       | 2.MD.210084.1 | 0.84     | 5.66           | 6.5            | 1.5       | 30   |
|       | 2.MD.210085.1 | 0.85     | 5.65           | 6.5            | 1.5       | 30   |
|       | 2.MD.210086.1 | 0.86     | 6.14           | 7.0            | 1.5       | 30   |
|       | 2.MD.210087.1 | 0.87     | 6.13           | 7.0            | 1.5       | 30   |
|       | 2.MD.210088.1 | 0.88     | 6.12           | 7.0            | 1.5       | 30   |
|       | 2.MD.210089.1 | 0.89     | 6.11           | 7.0            | 1.5       | 30   |
|       | 2.MD.210090.1 | 0.90     | 6.10           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210091.1 | 0.91     | 6.09           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210092.1 | 0.92     | 6.08           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210093.1 | 0.93     | 6.07           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210094.1 | 0.94     | 6.06           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210095.1 | 0.95     | 6.05           | 7.0            | 1.5       | 30   |
| •     | 2.MD.210096.1 | 0.96     | 7.04           | 8.0            | 1.5       | 30   |
| •     | 2.MD.210097.1 | 0.97     | 7.03           | 8.0            | 1.5       | 30   |
| •     | 2.MD.210098.1 | 0.98     | 7.02           | 8.0            | 1.5       | 30   |
|       | 2.MD.210099.1 | 0.99     | 7.01           | 8.0            | 1.5       | 30   |


| Ergänzende | Produkte |
|------------|----------|
|            |          |

MiquDrill Centro MiquDrill 200



## MiquDrill 210 - beschichtet

### **BOHREN MIT AUSSENKÜHLUNG**



| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> <b>h5</b> [mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|------------|---------------|--------------------------------------|----------------------------|----------------------------|--------------------|-----------|
| •          | 2.MD.210100.1 | 1.00                                 | 8.00                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210101.1 | 1.01                                 | 7.99                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210102.1 | 1.02                                 | 7.98                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210103.1 | 1.03                                 | 7.97                       | 9.0                        | 1.5                | 30        |
| -          | 2.MD.210104.1 | 1.04                                 | 7.96                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210105.1 | 1.05                                 | 7.95                       | 9.0                        | 1.5                | 30        |
| -          | 2.MD.210106.1 | 1.06                                 | 7.94                       | 9.0                        | 1.5                | 30        |
| -          | 2.MD.210107.1 | 1.07                                 | 7.93                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210108.1 | 1.08                                 | 7.92                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210109.1 | 1.09                                 | 7.91                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210110.1 | 1.10                                 | 7.90                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210111.1 | 1.11                                 | 7.89                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210112.1 | 1.12                                 | 7.88                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210113.1 | 1.13                                 | 7.87                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210114.1 | 1.14                                 | 7.86                       | 9.0                        | 1.5                | 30        |
|            | 2.MD.210115.1 | 1.15                                 | 7.85                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210116.1 | 1.16                                 | 7.84                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210117.1 | 1.17                                 | 7.83                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210118.1 | 1.18                                 | 7.82                       | 9.0                        | 1.5                | 30        |
| •          | 2.MD.210119.1 | 1.19                                 | 8.81                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210120.1 | 1.20                                 | 8.80                       | 10.0                       | 1.5                | 30        |
| -          | 2.MD.210121.1 | 1.21                                 | 8.79                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210122.1 | 1.22                                 | 8.78                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210123.1 | 1.23                                 | 8.77                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210124.1 | 1.24                                 | 8.76                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210125.1 | 1.25                                 | 8.75                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210126.1 | 1.26                                 | 8.74                       | 10.0                       | 1.5                | 30        |
|            | 2.MD.210127.1 | 1.27                                 | 8.73                       | 10.0                       | 1.5                | 30        |
|            | 2.MD.210128.1 | 1.28                                 | 8.72                       | 10.0                       | 1.5                | 30        |
|            | 2.MD.210129.1 | 1.29                                 | 8.71                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210130.1 | 1.30                                 | 8.70                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210131.1 | 1.31                                 | 8.69                       | 10.0                       | 1.5                | 30        |
| •          | 2.MD.210132.1 | 1.32                                 | 8.68                       | 10.0                       | 1.5                | 30        |
| -          | 2.MD.210133.1 | 1.33                                 | 10.17                      | 11.5                       | 1.5                | 30        |
| •          | 2.MD.210134.1 | 1.34                                 | 10.16                      | 11.5                       | 1.5                | 30        |

|  | Αb | Lager | verfügbar, | Mindestbestellmenge | 5 | Stk. |
|--|----|-------|------------|---------------------|---|------|
|--|----|-------|------------|---------------------|---|------|

| ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> <b>h5</b> [mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b> [mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|----------|---------------|--------------------------------------|----------------------------|---------------------------|--------------------|-----------|
|          | 2.MD.210135.1 | 1.35                                 | 10.15                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210136.1 | 1.36                                 | 10.14                      | 11.5                      | 1.5                | 30        |
|          | 2.MD.210137.1 | 1.37                                 | 10.13                      | 11.5                      | 1.5                | 30        |
|          | 2.MD.210138.1 | 1.38                                 | 10.12                      | 11.5                      | 1.5                | 30        |
|          | 2.MD.210139.1 | 1.39                                 | 10.11                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210140.1 | 1.40                                 | 10.10                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210141.1 | 1.41                                 | 10.09                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210142.1 | 1.42                                 | 10.08                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210143.1 | 1.43                                 | 10.07                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210144.1 | 1.44                                 | 10.06                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210145.1 | 1.45                                 | 10.05                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210146.1 | 1.46                                 | 10.04                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210147.1 | 1.47                                 | 10.03                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210148.1 | 1.48                                 | 10.02                      | 11.5                      | 1.5                | 30        |
|          | 2.MD.210149.1 | 1.49                                 | 10.01                      | 11.5                      | 1.5                | 30        |
| •        | 2.MD.210150.1 | 1.50                                 | 10.50                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210151.1 | 1.51                                 | 10.49                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210152.1 | 1.52                                 | 10.48                      | 12.0                      | 2.0                | 38        |
|          | 2.MD.210153.1 | 1.53                                 | 10.47                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210154.1 | 1.54                                 | 10.46                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210155.1 | 1.55                                 | 10.45                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210156.1 | 1.56                                 | 10.44                      | 12.0                      | 2.0                | 38        |
|          | 2.MD.210157.1 | 1.57                                 | 10.43                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210158.1 | 1.58                                 | 10.42                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210159.1 | 1.59                                 | 10.41                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210160.1 | 1.60                                 | 10.40                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210161.1 | 1.61                                 | 10.39                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210162.1 | 1.62                                 | 10.38                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210163.1 | 1.63                                 | 10.37                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210164.1 | 1.64                                 | 10.36                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210165.1 | 1.65                                 | 10.35                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210166.1 | 1.66                                 | 10.34                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210167.1 | 1.67                                 | 10.33                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210168.1 | 1.68                                 | 10.32                      | 12.0                      | 2.0                | 38        |
| •        | 2.MD.210169.1 | 1.69                                 | 10.31                      | 12.0                      | 2.0                | 38        |





**Z**2





| Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | I <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| de =  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •     | 2.MD.210170.1 | 1.70     | 10.30          | 12.0           | 2.0       | 38   |
|       | 2.MD.210171.1 | 1.71     | 10.29          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210172.1 | 1.72     | 10.28          | 12.0           | 2.0       | 38   |
|       | 2.MD.210173.1 | 1.73     | 10.27          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210174.1 | 1.74     | 10.26          | 12.0           | 2.0       | 38   |
| -     | 2.MD.210175.1 | 1.75     | 10.25          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210176.1 | 1.76     | 10.24          | 12.0           | 2.0       | 38   |
|       | 2.MD.210177.1 | 1.77     | 10.23          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210178.1 | 1.78     | 10.22          | 12.0           | 2.0       | 38   |
| -     | 2.MD.210179.1 | 1.79     | 10.21          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210180.1 | 1.80     | 10.20          | 12.0           | 2.0       | 38   |
|       | 2.MD.210181.1 | 1.81     | 10.19          | 12.0           | 2.0       | 38   |
|       | 2.MD.210182.1 | 1.82     | 10.18          | 12.0           | 2.0       | 38   |
| -     | 2.MD.210183.1 | 1.83     | 10.17          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210184.1 | 1.84     | 10.16          | 12.0           | 2.0       | 38   |
|       | 2.MD.210185.1 | 1.85     | 10.15          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210186.1 | 1.86     | 10.14          | 12.0           | 2.0       | 38   |
|       | 2.MD.210187.1 | 1.87     | 10.13          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210188.1 | 1.88     | 10.12          | 12.0           | 2.0       | 38   |
|       | 2.MD.210189.1 | 1.89     | 10.11          | 12.0           | 2.0       | 38   |
|       | 2.MD.210190.1 | 1.90     | 10.10          | 12.0           | 2.0       | 38   |
|       | 2.MD.210191.1 | 1.91     | 10.09          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210192.1 | 1.92     | 10.08          | 12.0           | 2.0       | 38   |
|       | 2.MD.210193.1 | 1.93     | 10.07          | 12.0           | 2.0       | 38   |
|       | 2.MD.210194.1 | 1.94     | 10.06          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210195.1 | 1.95     | 10.05          | 12.0           | 2.0       | 38   |
| •     | 2.MD.210196.1 | 1.96     | 10.04          | 12.0           | 2.0       | 38   |
| -     | 2.MD.210197.1 | 1.97     | 10.03          | 12.0           | 2.0       | 38   |
|       | 2.MD.210198.1 | 1.98     | 10.02          | 12.0           | 2.0       | 38   |
|       | 2.MD.210199.1 | 1.99     | 10.01          | 12.0           | 2.0       | 38   |
|       | 2.MD.210200.1 | 2.00     | 10.00          | 12.0           | 3.0       | 38   |
|       | 2.MD.210205.1 | 2.05     | 9.95           | 12.0           | 3.0       | 38   |
|       | 2.MD.210210.1 | 2.10     | 9.90           | 12.0           | 3.0       | 38   |
|       |               |          |                |                |           |      |

2.MD.210215.1 2.15 9.85 12.0 3.0 38 2.MD.210220.1 2.20 9.80 12.0 3.0 38

| ) Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|---------|---------------|----------|----------------|----------------|-----------|------|
| ■ ab    |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •       | 2.MD.210225.1 | 2.25     | 9.75           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210230.1 | 2.30     | 9.70           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210235.1 | 2.35     | 9.65           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210240.1 | 2.40     | 9.60           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210245.1 | 2.45     | 9.55           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210250.1 | 2.50     | 9.50           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210255.1 | 2.55     | 9.45           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210260.1 | 2.60     | 9.40           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210265.1 | 2.65     | 9.35           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210270.1 | 2.70     | 9.30           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210275.1 | 2.75     | 9.25           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210280.1 | 2.80     | 9.20           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210285.1 | 2.85     | 9.15           | 12.0           | 3.0       | 38   |
| -       | 2.MD.210290.1 | 2.90     | 9.10           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210295.1 | 2.95     | 9.05           | 12.0           | 3.0       | 38   |
| •       | 2.MD.210300.1 | 3.00     | 9.00           | 12.0           | 3.0       | 38   |

| Ergänzende Produkte |
|---------------------|
| MiquDrill Centro    |
| MiquDrill 200       |



# MiquDrill 210 - beschichtet

## BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                        | Werkstoff-<br>gruppe | Werkstoff                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$  | Q <sub>x</sub> |   |
|----------------------------------------|----------------------|-----------------------------|--------|--------------------|-------------------------|----------------------------------|--------|----------------|---|
|                                        |                      |                             | 1.0301 | C10                | AISI 1010               |                                  |        |                |   |
|                                        | D                    |                             | 1.0401 | C15                | AISI 1015               |                                  |        |                |   |
|                                        | P                    | Stähle unlegiert            | 1.1191 | C45E/CK45          | AISI 1045               | 40 – 70                          | 2xd1   | 1xd1           |   |
|                                        |                      | Rm < 800 N/mm <sup>2</sup>  | 1.0044 | S275JR             | AISI 1045               | 40 – 70                          | ZXUT   | IXUI           |   |
| \/( //                                 |                      |                             | 1.0044 | 11SMn30            | AISI 1020<br>AISI 1215  |                                  |        |                |   |
| \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                      |                             |        | 15NiCr13           |                         |                                  |        |                |   |
| ξΔ"                                    |                      |                             | 1.5752 | 16MnCr5            | ASTM 3415 / AISI 3310   |                                  |        |                |   |
|                                        |                      | Stähle niedriglegiert       |        | 100Cr6             | AISI 5115               | 30 – 40                          | 2xd1   | 1xd1           |   |
| <b>J</b> .                             |                      | Rm > 900 N/mm <sup>2</sup>  | 1.3505 |                    | AISI 52100              | 30 – 40                          | ZXUT   | IXUI           |   |
|                                        |                      |                             | 1.7225 | 42CrMo4            | AISI 4140               |                                  |        |                |   |
| <del>d1</del>                          |                      |                             | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |        |                |   |
| 0.                                     |                      | Werkzeugstähle              | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |   |
|                                        |                      | hochlegiert                 | 1.2436 | X210CrW12          | AISI D4/D6              | 30 – 60                          | 2xd1   | 1xd1           |   |
| Q <sub>x</sub>                         |                      | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |        |                |   |
| ĮQ <sub>x</sub>                        |                      |                             | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |        |                |   |
|                                        |                      | Rostfreie Stähle-           | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |        |                |   |
|                                        | M                    | ferritisch                  | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |        |                |   |
|                                        | IVI                  | Rostfreie Stähle-           | 1.4034 | X46Cr13            | AISI 420C               |                                  |        |                |   |
|                                        |                      | martensitisch               | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |        |                |   |
|                                        |                      | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |        |                |   |
|                                        |                      | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |        |                |   |
|                                        |                      |                             | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |        |                |   |
|                                        |                      | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |        |                |   |
|                                        |                      | austenitisch                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |        |                |   |
|                                        |                      |                             | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |        |                |   |
|                                        |                      |                             | 0.6020 | GG20               | ASTM 30                 |                                  |        |                |   |
|                                        | K                    |                             | 0.6020 | GG30               | ASTM 40B                | 30 – 70                          | 2xd1   |                |   |
|                                        |                      | Gusseisen                   |        | GGG40              | ASTM 60-40-18           |                                  |        | 1xd1           |   |
|                                        |                      |                             | 0.7040 |                    |                         |                                  |        |                |   |
|                                        |                      |                             | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |        |                |   |
|                                        |                      | Aluminium                   | 3.2315 | AlMgSi1            | ASTM 6351               | 80 – 150 2xi                     | 2xd1   | 1xd1           |   |
|                                        | N                    | Knetlegierungen             | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |        |                |   |
|                                        |                      | Aluminium                   | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 60 – 100                         | 2xd1   | 1xd1           |   |
|                                        |                      | Druckgusslegierungen        | 3.2381 | GD-AlSi10Mg        | UNS A03590              |                                  |        |                |   |
|                                        |                      | Kupfer                      | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40 – 70                          | 2xd1   | 1xd1           |   |
|                                        |                      | Rupici                      | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 40 70                            | ZAGT   | IXGI           |   |
|                                        |                      | Messing bleifrei            | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40 – 70                          | 2xd1   | 1xd1           |   |
|                                        |                      | iviessing bienrei           | 2.036  | CuZn40 CW509L      | UNS C28000              | 40 - 70                          | 2,401  | IXUI           |   |
|                                        |                      | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 40 – 150                         | 2vd1   | 1xd1           |   |
|                                        |                      | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6              | UNS C51900              | 40 - 150                         | 2xd1   | IXUI           |   |
|                                        |                      | Bronze                      | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 30 – 40                          | 2xd1   | 11             |   |
|                                        |                      | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2           | UNS C63200              | 30 – 40                          | ZXUT   | 1xd1           |   |
|                                        |                      |                             | 2.4856 |                    | Inconel 625             |                                  |        |                |   |
|                                        | C                    | Hitzebeständige             | 2.4668 |                    | Inconel 718             |                                  |        |                |   |
|                                        | $S_1$                | Stähle                      | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |        |                |   |
|                                        | _                    |                             | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |        |                |   |
|                                        |                      |                             | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |        |                |   |
|                                        | C                    | Titan rein                  | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |        |                |   |
|                                        | S <sub>2</sub>       |                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |        |                |   |
|                                        |                      | Titan Legierungen           | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |        |                |   |
|                                        | C                    |                             | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |        |                |   |
|                                        | $S_3$                | CrCo-Legierungen            | 2.4904 | CrCoMo28           | ASTM F1537              |                                  |        |                |   |
|                                        |                      |                             |        | CICUIVIOZO         | עררו וואויכע            |                                  |        |                | - |
|                                        | H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC | 1.2510 | 100MnCrMoW4        | AISI O1                 | 20 – 40                          | 0.5xd1 | 0.5xd1         |   |
|                                        | H <sub>2</sub>       | Stähle gehärtet<br>≥ 55 HRC | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |   |
|                                        |                      |                             |        |                    |                         |                                  |        |                |   |



ANWENDUNGSEMPFEHLUNG

● Sehr gut geeignet | ● Gut geeignet | ○ bedingt geeignet | ☒ Nicht empfohlen



|                               |                                      | <b>f</b> [mm/U]                      |                                 |                               |
|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------|
| Ød1<br>0.3-0.6 mm<br><b>f</b> | <b>Ød1</b><br>0.6–1.0 mm<br><b>f</b> | <b>Ød1</b><br>1.0–1.5 mm<br><b>f</b> | Ød1<br>1.5 – 2.0 mm<br><b>f</b> | Ød1<br>2.0-3.0 mm<br><b>f</b> |
|                               |                                      |                                      |                                 |                               |
| 0.009                         | 0.016                                | 0.023                                | 0.033                           | 0.045                         |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
| 0.007                         | 0.011                                | 0.015                                | 0.023                           | 0.035                         |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
| 0.004                         | 0.009                                | 0.014                                | 0.020                           | 0.028                         |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
| 0.007                         | 0.013                                | 0.023                                | 0.030                           | 0.045                         |
|                               |                                      |                                      |                                 |                               |
| 0.01                          | 0.023                                | 0.038                                | 0.050                           | 0.070                         |
| 0.008                         | 0.019                                | 0.030                                | 0.045                           | 0.060                         |
| 0.008                         | 0.014                                | 0.023                                | 0.030                           | 0.045                         |
| 0.008                         | 0.014                                | 0.023                                | 0.030                           | 0.045                         |
| 0.008                         | 0.017                                | 0.030                                | 0.045                           | 0.065                         |
| 0.007                         | 0.011                                | 0.015                                | 0.023                           | 0.035                         |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
|                               |                                      |                                      |                                 |                               |
| 0.003                         | 0.004                                | 0.007                                | 0.009                           | 0.009                         |
| 1                             |                                      |                                      |                                 |                               |



## MiquDrill 210 - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Die unbeschichtete Variante von MiquDrill 210 ist universell einsetzbar für Stähle (legiert, unlegiert), Gusseisen und andere Nichteisenmetalle (z.B. Kupfer, Messing). Sein Durchmesserbereich geht von 0.1 mm bis 3.0 mm. Sehr kleine Durchmesserabstufungen von 0.01 mm im Durchmesserbereich 0.1 mm – 2.0 mm und von 0.05 mm im Durchmesserbereich von 2.0 mm – 3.0 mm sind ab Lager erhältlich.

Die Geometrie des kostengünstigen Kleinbohrers MiquDrill 210 ist speziell ausgelegt für die Mikrobearbeitung von Bohrtiefen zwischen 2.4 und 8.0 x d. Diese werden mittels wenigen Entspänzyklen erzielt.

#### Kühlschmierstoff, Filter und Druck

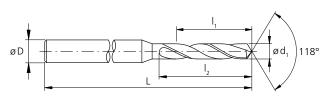
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von MiquDrill 210 - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.








**Z**2

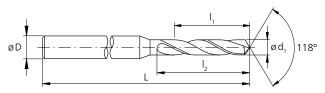


Nicht beschichtet



| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> <b>h5</b> [mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|------------|---------------|--------------------------------------|----------------------------|------------------------------|--------------------|-----------|
| •          | 2.MD.210010.0 | 0.10                                 | 0.50                       | 0.6                          | 1.0                | 30        |
| •          | 2.MD.210011.0 | 0.11                                 | 0.49                       | 0.6                          | 1.0                | 30        |
| •          | 2.MD.210012.0 | 0.12                                 | 0.48                       | 0.6                          | 1.0                | 30        |
| •          | 2.MD.210013.0 | 0.13                                 | 0.67                       | 8.0                          | 1.0                | 30        |
| •          | 2.MD.210014.0 | 0.14                                 | 0.66                       | 8.0                          | 1.0                | 30        |
| •          | 2.MD.210015.0 | 0.15                                 | 0.65                       | 8.0                          | 1.0                | 30        |
| •          | 2.MD.210016.0 | 0.16                                 | 0.84                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210017.0 | 0.17                                 | 0.83                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210018.0 | 0.18                                 | 0.82                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210019.0 | 0.19                                 | 0.81                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210020.0 | 0.20                                 | 0.80                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210021.0 | 0.21                                 | 0.79                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210022.0 | 0.22                                 | 0.78                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210023.0 | 0.23                                 | 0.77                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210024.0 | 0.24                                 | 0.76                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210025.0 | 0.25                                 | 0.75                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210026.0 | 0.26                                 | 0.74                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210027.0 | 0.27                                 | 0.73                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210028.0 | 0.28                                 | 0.72                       | 1.0                          | 1.0                | 30        |
| -          | 2.MD.210029.0 | 0.29                                 | 0.71                       | 1.0                          | 1.0                | 30        |
| •          | 2.MD.210030.0 | 0.30                                 | 1.20                       | 1.5                          | 1.0                | 30        |
| -          | 2.MD.210031.0 | 0.31                                 | 1.19                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210032.0 | 0.32                                 | 1.18                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210033.0 | 0.33                                 | 1.17                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210034.0 | 0.34                                 | 1.16                       | 1.5                          | 1.0                | 30        |
| -          | 2.MD.210035.0 | 0.35                                 | 1.15                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210036.0 | 0.36                                 | 1.14                       | 1.5                          | 1.0                | 30        |
| -          | 2.MD.210037.0 | 0.37                                 | 1.13                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210038.0 | 0.38                                 | 1.12                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210039.0 | 0.39                                 | 1.11                       | 1.5                          | 1.0                | 30        |
| •          | 2.MD.210040.0 | 0.40                                 | 1.60                       | 2.0                          | 1.0                | 30        |
| •          | 2.MD.210041.0 | 0.41                                 | 1.59                       | 2.0                          | 1.0                | 30        |
| •          | 2.MD.210042.0 | 0.42                                 | 1.58                       | 2.0                          | 1.0                | 30        |
| •          | 2.MD.210043.0 | 0.43                                 | 1.57                       | 2.0                          | 1.0                | 30        |
| •          | 2.MD.210044.0 | 0.44                                 | 1.56                       | 2.0                          | 1.0                | 30        |

■ Ab Lager verfügbar, Mindestbestellmenge 5 Stk.


| Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| ab    |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|       | 2.MD.210045.0 | 0.45     | 3.05           | 3.5            | 1.0       | 30   |
|       | 2.MD.210046.0 | 0.46     | 3.04           | 3.5            | 1.0       | 30   |
|       | 2.MD.210047.0 | 0.47     | 3.03           | 3.5            | 1.0       | 30   |
|       | 2.MD.210048.0 | 0.48     | 3.02           | 3.5            | 1.0       | 30   |
| •     | 2.MD.210049.0 | 0.49     | 3.51           | 4.0            | 1.0       | 30   |
|       | 2.MD.210050.0 | 0.50     | 3.50           | 4.0            | 1.0       | 30   |
|       | 2.MD.210051.0 | 0.51     | 3.49           | 4.0            | 1.0       | 30   |
|       | 2.MD.210052.0 | 0.52     | 3.48           | 4.0            | 1.0       | 30   |
| •     | 2.MD.210053.0 | 0.53     | 3.47           | 4.0            | 1.0       | 30   |
|       | 2.MD.210054.0 | 0.54     | 3.96           | 4.5            | 1.0       | 30   |
|       | 2.MD.210055.0 | 0.55     | 3.95           | 4.5            | 1.0       | 30   |
|       | 2.MD.210056.0 | 0.56     | 3.94           | 4.5            | 1.0       | 30   |
| •     | 2.MD.210057.0 | 0.57     | 3.93           | 4.5            | 1.0       | 30   |
|       | 2.MD.210058.0 | 0.58     | 3.92           | 4.5            | 1.0       | 30   |
|       | 2.MD.210059.0 | 0.59     | 3.91           | 4.5            | 1.0       | 30   |
|       | 2.MD.210060.0 | 0.60     | 3.90           | 4.5            | 1.0       | 30   |
|       | 2.MD.210061.0 | 0.61     | 4.39           | 5.0            | 1.0       | 30   |
|       | 2.MD.210062.0 | 0.62     | 4.38           | 5.0            | 1.0       | 30   |
|       | 2.MD.210063.0 | 0.63     | 4.37           | 5.0            | 1.0       | 30   |
|       | 2.MD.210064.0 | 0.64     | 4.36           | 5.0            | 1.0       | 30   |
|       | 2.MD.210065.0 | 0.65     | 4.35           | 5.0            | 1.0       | 30   |
|       | 2.MD.210066.0 | 0.66     | 4.34           | 5.0            | 1.0       | 30   |
|       | 2.MD.210067.0 | 0.67     | 4.33           | 5.0            | 1.0       | 30   |
|       | 2.MD.210068.0 | 0.68     | 4.92           | 5.6            | 1.0       | 30   |
|       | 2.MD.210069.0 | 0.69     | 4.91           | 5.6            | 1.0       | 30   |
|       | 2.MD.210070.0 | 0.70     | 4.90           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210071.0 | 0.71     | 4.89           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210072.0 | 0.72     | 4.88           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210073.0 | 0.73     | 4.87           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210074.0 | 0.74     | 4.86           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210075.0 | 0.75     | 4.85           | 5.6            | 1.0       | 30   |
| •     | 2.MD.210076.0 | 0.76     | 5.74           | 6.5            | 1.0       | 30   |
| •     | 2.MD.210077.0 | 0.77     | 5.73           | 6.5            | 1.0       | 30   |
| •     | 2.MD.210078.0 | 0.78     | 5.72           | 6.5            | 1.0       | 30   |
|       | 2.MD.210079.0 | 0.79     | 5.71           | 6.5            | 1.0       | 30   |

Ergänzende Produkte MiquDrill Centro MiquDrill 200



## MiquDrill 210 - unbeschichtet

### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager   | Artikelnummer | <b>d</b> <sub>1</sub> | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|------------|---------------|-----------------------|----------------|----------------|-----------|------|
| _ <b>E</b> |               | [mm]                  | [mm]           | [mm]           | [mm]      | [mm] |
| •          | 2.MD.210080.0 | 0.80                  | 5.70           | 6.5            | 1.5       | 30   |
|            | 2.MD.210081.0 | 0.81                  | 5.69           | 6.5            | 1.5       | 30   |
| •          | 2.MD.210082.0 | 0.82                  | 5.68           | 6.5            | 1.5       | 30   |
| -          | 2.MD.210083.0 | 0.83                  | 5.67           | 6.5            | 1.5       | 30   |
| •          | 2.MD.210084.0 | 0.84                  | 5.66           | 6.5            | 1.5       | 30   |
|            | 2.MD.210085.0 | 0.85                  | 5.65           | 6.5            | 1.5       | 30   |
| -          | 2.MD.210086.0 | 0.86                  | 6.14           | 7.0            | 1.5       | 30   |
|            | 2.MD.210087.0 | 0.87                  | 6.13           | 7.0            | 1.5       | 30   |
|            | 2.MD.210088.0 | 0.88                  | 6.12           | 7.0            | 1.5       | 30   |
| -          | 2.MD.210089.0 | 0.89                  | 6.11           | 7.0            | 1.5       | 30   |
| •          | 2.MD.210090.0 | 0.90                  | 6.10           | 7.0            | 1.5       | 30   |
|            | 2.MD.210091.0 | 0.91                  | 6.09           | 7.0            | 1.5       | 30   |
| -          | 2.MD.210092.0 | 0.92                  | 6.08           | 7.0            | 1.5       | 30   |
|            | 2.MD.210093.0 | 0.93                  | 6.07           | 7.0            | 1.5       | 30   |
| •          | 2.MD.210094.0 | 0.94                  | 6.06           | 7.0            | 1.5       | 30   |
|            | 2.MD.210095.0 | 0.95                  | 6.05           | 7.0            | 1.5       | 30   |
|            | 2.MD.210096.0 | 0.96                  | 7.04           | 8.0            | 1.5       | 30   |
|            | 2.MD.210097.0 | 0.97                  | 7.03           | 8.0            | 1.5       | 30   |
| -          | 2.MD.210098.0 | 0.98                  | 7.02           | 8.0            | 1.5       | 30   |
|            | 2.MD.210099.0 | 0.99                  | 7.01           | 8.0            | 1.5       | 30   |
| •          | 2.MD.210100.0 | 1.00                  | 8.00           | 9.0            | 1.5       | 30   |
|            | 2.MD.210101.0 | 1.01                  | 7.99           | 9.0            | 1.5       | 30   |
| -          | 2.MD.210102.0 | 1.02                  | 7.98           | 9.0            | 1.5       | 30   |
|            | 2.MD.210103.0 | 1.03                  | 7.97           | 9.0            | 1.5       | 30   |
|            | 2.MD.210104.0 | 1.04                  | 7.96           | 9.0            | 1.5       | 30   |
|            | 2.MD.210105.0 | 1.05                  | 7.95           | 9.0            | 1.5       | 30   |
| -          | 2.MD.210106.0 | 1.06                  | 7.94           | 9.0            | 1.5       | 30   |
|            | 2.MD.210107.0 | 1.07                  | 7.93           | 9.0            | 1.5       | 30   |
|            | 2.MD.210108.0 | 1.08                  | 7.92           | 9.0            | 1.5       | 30   |
|            | 2.MD.210109.0 | 1.09                  | 7.91           | 9.0            | 1.5       | 30   |
| -          | 2.MD.210110.0 | 1.10                  | 7.90           | 9.0            | 1.5       | 30   |
|            | 2.MD.210111.0 | 1.11                  | 7.89           | 9.0            | 1.5       | 30   |
|            | 2.MD.210112.0 | 1.12                  | 7.88           | 9.0            | 1.5       | 30   |
|            | 2.MD.210113.0 | 1.13                  | 7.87           | 9.0            | 1.5       | 30   |
|            | 2.MD.210114.0 | 1.14                  | 7.86           | 9.0            | 1.5       | 30   |
|            | 2.MD.210115.0 | 1.15                  | 7.85           | 9.0            | 1.5       | 30   |

|  | Ab | Lager | verfügbar, | Mindestbestellmenge | 5 | Stk. |
|--|----|-------|------------|---------------------|---|------|
|--|----|-------|------------|---------------------|---|------|

| ab Lager | Artikelnummer | <b>d</b> <sub>1</sub> <b>h5</b> [mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|----------|---------------|--------------------------------------|----------------------------|----------------------------|--------------------|-----------|
| •        | 2.MD.210116.0 | 1.16                                 | 7.84                       | 9.0                        | 1.5                | 30        |
| •        | 2.MD.210117.0 | 1.17                                 | 7.83                       | 9.0                        | 1.5                | 30        |
|          | 2.MD.210118.0 | 1.18                                 | 7.82                       | 9.0                        | 1.5                | 30        |
| •        | 2.MD.210119.0 | 1.19                                 | 8.81                       | 10.0                       | 1.5                | 30        |
|          | 2.MD.210120.0 | 1.20                                 | 8.80                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210121.0 | 1.21                                 | 8.79                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210122.0 | 1.22                                 | 8.78                       | 10.0                       | 1.5                | 30        |
|          | 2.MD.210123.0 | 1.23                                 | 8.77                       | 10.0                       | 1.5                | 30        |
|          | 2.MD.210124.0 | 1.24                                 | 8.76                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210125.0 | 1.25                                 | 8.75                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210126.0 | 1.26                                 | 8.74                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210127.0 | 1.27                                 | 8.73                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210128.0 | 1.28                                 | 8.72                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210129.0 | 1.29                                 | 8.71                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210130.0 | 1.30                                 | 8.70                       | 10.0                       | 1.5                | 30        |
|          | 2.MD.210131.0 | 1.31                                 | 8.69                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210132.0 | 1.32                                 | 8.68                       | 10.0                       | 1.5                | 30        |
| •        | 2.MD.210133.0 | 1.33                                 | 10.17                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210134.0 | 1.34                                 | 10.16                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210135.0 | 1.35                                 | 10.15                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210136.0 | 1.36                                 | 10.14                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210137.0 | 1.37                                 | 10.13                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210138.0 | 1.38                                 | 10.12                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210139.0 | 1.39                                 | 10.11                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210140.0 | 1.40                                 | 10.10                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210141.0 | 1.41                                 | 10.09                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210142.0 | 1.42                                 | 10.08                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210143.0 | 1.43                                 | 10.07                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210144.0 | 1.44                                 | 10.06                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210145.0 | 1.45                                 | 10.05                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210146.0 | 1.46                                 | 10.04                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210147.0 | 1.47                                 | 10.03                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210148.0 | 1.48                                 | 10.02                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210149.0 | 1.49                                 | 10.01                      | 11.5                       | 1.5                | 30        |
| •        | 2.MD.210150.0 | 1.50                                 | 10.50                      | 12.0                       | 2.0                | 38        |
| •        | 2.MD.210151.0 | 1.51                                 | 10.49                      | 12.0                       | 2.0                | 38        |





**Z**2



Nicht beschichtet



| ab Lager | Artikelnummer    | <b>d</b> ₁ | I <sub>1</sub> | <b>I</b> <sub>2</sub> | D<br>(h6) | L    |
|----------|------------------|------------|----------------|-----------------------|-----------|------|
| e<br>=   |                  | [mm]       | [mm]           | [mm]                  | [mm]      | [mm] |
| •        | 2.MD.210188.0    | 1.88       | 10.12          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210189.0    | 1.89       | 10.11          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210190.0    | 1.90       | 10.10          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210191.0    | 1.91       | 10.09          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210192.0    | 1.92       | 10.08          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210193.0    | 1.93       | 10.07          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210194.0    | 1.94       | 10.06          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210195.0    | 1.95       | 10.05          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210196.0    | 1.96       | 10.04          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210197.0    | 1.97       | 10.03          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210198.0    | 1.98       | 10.02          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210199.0    | 1.99       | 10.01          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210200.0    | 2.00       | 10.00          | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210205.0    | 2.05       | 9.95           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210210.0    | 2.10       | 9.90           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210215.0    | 2.15       | 9.85           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210220.0    | 2.20       | 9.80           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210225.0    | 2.25       | 9.75           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210230.0    | 2.30       | 9.70           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210235.0    | 2.35       | 9.65           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210240.0    | 2.40       | 9.60           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210245.0    | 2.45       | 9.55           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210250.0    | 2.50       | 9.50           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210255.0    | 2.55       | 9.45           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210260.0    | 2.60       | 9.40           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210265.0    | 2.65       | 9.35           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210270.0    | 2.70       | 9.30           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210275.0    | 2.75       | 9.25           | 12.0                  | 3.0       | 38   |
| •        | 2.MD.210280.0    | 2.80       | 9.20           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210285.0    | 2.85       | 9.15           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210290.0    | 2.90       | 9.10           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210295.0    | 2.95       | 9.05           | 12.0                  | 3.0       | 38   |
| -        | 2.MD.210300.0    | 3.00       | 9.00           | 12.0                  | 3.0       | 38   |
| Era"     | nzondo Produkta  |            | -              |                       |           |      |
|          | inzende Produkte |            |                |                       |           |      |

| Ergänzende Produkte |
|---------------------|
| MiquDrill Centro    |

MiquDrill 200

| ab Lager | Artikelnummer | d₁<br>h5 | I <sub>1</sub> | <b>l</b> <sub>2</sub> | D<br>(h6) | L    |
|----------|---------------|----------|----------------|-----------------------|-----------|------|
| - TO     |               | [mm]     | [mm]           | [mm]                  | [mm]      | [mm] |
| •        | 2.MD.210152.0 | 1.52     | 10.48          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210153.0 | 1.53     | 10.47          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210154.0 | 1.54     | 10.46          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210155.0 | 1.55     | 10.45          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210156.0 | 1.56     | 10.44          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210157.0 | 1.57     | 10.43          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210158.0 | 1.58     | 10.42          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210159.0 | 1.59     | 10.41          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210160.0 | 1.60     | 10.40          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210161.0 | 1.61     | 10.39          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210162.0 | 1.62     | 10.38          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210163.0 | 1.63     | 10.37          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210164.0 | 1.64     | 10.36          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210165.0 | 1.65     | 10.35          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210166.0 | 1.66     | 10.34          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210167.0 | 1.67     | 10.33          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210168.0 | 1.68     | 10.32          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210169.0 | 1.69     | 10.31          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210170.0 | 1.70     | 10.30          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210171.0 | 1.71     | 10.29          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210172.0 | 1.72     | 10.28          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210173.0 | 1.73     | 10.27          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210174.0 | 1.74     | 10.26          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210175.0 | 1.75     | 10.25          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210176.0 | 1.76     | 10.24          | 12.0                  | 2.0       | 38   |
| •        | 2.MD.210177.0 | 1.77     | 10.23          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210178.0 | 1.78     | 10.22          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210179.0 | 1.79     | 10.21          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210180.0 | 1.80     | 10.20          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210181.0 | 1.81     | 10.19          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210182.0 | 1.82     | 10.18          | 12.0                  | 2.0       | 38   |
|          | 2.MD.210183.0 | 1.83     | 10.17          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210184.0 | 1.84     | 10.16          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210185.0 | 1.85     | 10.15          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210186.0 | 1.86     | 10.14          | 12.0                  | 2.0       | 38   |
| -        | 2.MD.210187.0 | 1.87     | 10.13          | 12.0                  | 2.0       | 38   |

lacktriangle Ab Lager verfügbar, Mindestbestellmenge 5 Stk.



# MiquDrill 210 - unbeschichtet

## BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                 | Werkstoff-<br>gruppe  | Werkstoff                                        | Wr.Nr.           | DIN                                 | AISI/ASTM/UNS              | <b>V</b> <sub>c</sub><br>[m/min] | Q <sub>1</sub> | Q <sub>x</sub> |  |
|---------------------------------|-----------------------|--------------------------------------------------|------------------|-------------------------------------|----------------------------|----------------------------------|----------------|----------------|--|
|                                 | Р                     |                                                  | 1.0301<br>1.0401 | C10<br>C15                          | AISI 1010<br>AISI 1015     |                                  |                |                |  |
|                                 |                       | Stähle unlegiert<br>Rm < 800 N/mm²               | 1.1191<br>1.0044 | C45E/CK45<br>S275JR                 | AISI 1045<br>AISI 1020     | 30-60                            | 2xd1           | 1xd1           |  |
| /////                           |                       |                                                  | 1.0715           | 11SMn30                             | AISI 1215                  |                                  |                |                |  |
|                                 |                       |                                                  | 1.5752           | 15NiCr13                            | ASTM 3415 / AISI 3310      |                                  |                |                |  |
| $\mathcal{U}^{\mathbb{F}}$      |                       |                                                  | 1.7131           | 16MnCr5                             | AISI 5115                  |                                  |                |                |  |
|                                 |                       | C+able piedrialegiert                            | 1.3505           | 100Cr6                              | AISI 52100                 | 25-40                            | 2xd1           | 1xd1           |  |
|                                 |                       | KIII > 900 IV/IIIII1"                            | 1.7225           | 42CrMo4                             | AISI 4140                  |                                  |                |                |  |
| <sub> -</sub> d <sub>1 - </sub> |                       |                                                  | 1.2842           | 90MnCrV8                            | AISI O2                    |                                  |                |                |  |
|                                 |                       | Werkzeugstähle<br>hochlegiert<br>Rm < 1200 N/mm² | 1.2379           | X153CrMoV12                         | AISI D2                    |                                  |                |                |  |
| Q1                              |                       |                                                  | 1.2436           | X210CrW12                           | AISI D4/D6                 | 25-40                            | 2xd1           | 1xd1           |  |
| ĮQ <sub>x</sub>                 |                       |                                                  | 1.3343           | HS6-5-2C                            | AISI M2 / UNS T11302       | 25 40                            |                | IXGI           |  |
| ĮQ <sub>x</sub>                 |                       |                                                  | 1.3355           | HS18-0-1                            | AISI T1 / UNS T12001       |                                  |                |                |  |
|                                 |                       | Rostfreie Stähle-                                | 1.4016           | X6Cr17                              | AISI 430 / UNS S43000      |                                  |                |                |  |
|                                 | M                     | ferritisch                                       | 1.4105           | X6CrMoS17                           | AISI 430F                  |                                  |                |                |  |
|                                 | IVI                   | Rostfreie Stähle-                                | 1.4034           | X46Cr13                             | AISI 420C                  |                                  |                |                |  |
|                                 |                       | martensitisch                                    | 1.4112           | X90CrMoV18                          | AISI 440B                  |                                  |                |                |  |
|                                 |                       | Rostfreie Stähle-                                | 1.4542           | X5CrNiCuNb 16-4                     | AISI 630 / ASTM 17-4 PH    |                                  |                |                |  |
|                                 |                       | martensitisch – PH                               | 1.4545           | X5CrNiCuNb 15-5                     | ASTM 15-5 PH               |                                  |                |                |  |
|                                 |                       |                                                  | 1.4301           | X5CrNi 18-10                        | AISI 304                   |                                  |                |                |  |
|                                 |                       | Rostfreie Stähle-                                | 1.4435           | X2CrNiMo 18-14-3                    | AISI 316L                  |                                  |                |                |  |
|                                 |                       | austenitisch                                     | 1.4441           | X2CrNiMo 18-15-3                    | AISI 316LM                 |                                  |                |                |  |
|                                 |                       |                                                  | 1.4539           | X1NiCrMoCu 25-20-5                  | AISI 904L                  |                                  |                |                |  |
|                                 | K                     |                                                  | 0.6020           | GG20                                | ASTM 30                    |                                  |                |                |  |
|                                 |                       | 0.7040 GGG40 ASIM 60-40-18                       |                  |                                     |                            | 25-60                            | 2xd1           | 1xd1           |  |
|                                 |                       |                                                  |                  |                                     |                            |                                  |                |                |  |
|                                 |                       |                                                  | 0.7060           | GGG60                               | ASTM 80-60-03              |                                  |                |                |  |
|                                 |                       | Aluminium                                        | 3.2315           | AlMgSi1                             | ASTM 6351                  | 50-100 2xd1                      | 2xd1           |                |  |
|                                 | N                     | Knetlegierungen                                  | 3.4365           | AlZnMgCu1.5                         | ASTM 7075                  |                                  |                |                |  |
|                                 |                       | Aluminium                                        | 3.2163           | GD-AlSi9Cu3                         | ASTM A380                  | 40-80                            | 2xd1           |                |  |
|                                 |                       | Druckgusslegierungen                             |                  | GD-AlSi10Mg                         | UNS A03590                 |                                  | 2xd1           |                |  |
|                                 |                       | Kupfer                                           | 2.004            | Cu-OF / CW008A                      | UNS C10100                 | 30-50                            |                | 1xd1           |  |
|                                 |                       |                                                  | 2.0065           | Cu-ETP / CW004A                     | UNS C11000                 |                                  |                |                |  |
|                                 |                       | Messing bleifrei                                 | 2.0321           | CuZn37 CW508L                       | UNS C27400                 | 30-50                            | 2xd1           | 1xd1           |  |
|                                 |                       | Mossing Brazes                                   | 2.036            | CuZn40 CW509L<br>CuZn39Pb3 / CW614N | UNS C28000<br>UNS C38500   |                                  |                |                |  |
|                                 |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup>    | 2.102            | CuSn6                               | UNS C51900                 | 30-80                            | 2xd1           | 1xd1           |  |
|                                 |                       | Bronze                                           | 2.102            | CuAl10Ni5Fe4                        | UNS C63000                 |                                  |                |                |  |
|                                 |                       | Rm < 600 N/mm <sup>2</sup>                       | 2.096            | CuAl9Mn2                            | UNS C63200                 | 25-40                            | 2xd1           | 1xd1           |  |
|                                 |                       |                                                  |                  | CUAISIVIIIZ                         |                            |                                  |                |                |  |
|                                 | <u></u>               | 100 1 00 10                                      | 2.4856<br>2.4668 |                                     | Inconel 625<br>Inconel 718 |                                  |                |                |  |
|                                 | $S_1$                 | Hitzebeständige<br>Stähle                        | 2.4608           | NiMo28                              | Hastelloy B-2              |                                  |                |                |  |
|                                 |                       | Starile                                          | 2.4617           | NiCr22Fe18Mo                        | Hastelloy X                |                                  |                |                |  |
|                                 |                       |                                                  | 3.7035           | Gr.2                                | ASTM B348 / F67            |                                  |                |                |  |
|                                 | C                     | Titan rein                                       | 3.7065           | Gr.4                                | ASTM B348 / F68            |                                  |                |                |  |
|                                 | S <sub>2</sub>        |                                                  | 3.7065           | TiAl6V4                             | ASTM B348 / F136           |                                  |                |                |  |
|                                 |                       | Titan Legierungen                                | 9.9367           | TiAl6Nb7                            | ASTM F1295                 |                                  |                |                |  |
|                                 | C                     |                                                  | 2.4964           | CoCr20W15Ni                         | Haynes 25                  |                                  |                |                |  |
|                                 | <b>S</b> <sub>3</sub> | CrCo-Legierungen                                 | 2.7304           | CrCoMo28                            | ASTM F1537                 |                                  |                |                |  |
|                                 | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                      | 1.2510           | 100MnCrMoW4                         | AISI O1                    |                                  |                |                |  |
|                                 | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC                      | 1.2379           | X153CrMoV12                         | AISI D2                    |                                  |                |                |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U]               |                               |                                      |                               |                                |                               |  |  |  |  |
|-------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------|--|--|--|--|
| Ød1<br>0.1-0.3 mm<br><b>f</b> | Ød1<br>0.3-0.6 mm<br><b>f</b> | <b>Ød1</b><br>0.6–1.0 mm<br><b>f</b> | Ød1<br>1.0-1.5 mm<br><b>f</b> | Ød1<br>1.5 –2.0 mm<br><b>f</b> | Ød1<br>2.0-3.0 mm<br><b>f</b> |  |  |  |  |
| 0.003                         | 0.009                         | 0.016                                | 0.023                         | 0.033                          | 0.045                         |  |  |  |  |
| 0.003                         | 0.007                         | 0.011                                | 0.015                         | 0.023                          | 0.035                         |  |  |  |  |
| 0.002                         | 0.004                         | 0.009                                | 0.014                         | 0.020                          | 0.028                         |  |  |  |  |
| 0.002                         | 0.004                         | 0.003                                | 0.014                         | 0.020                          | 0.020                         |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
| 0.003                         | 0.007                         | 0.013                                | 0.023                         | 0.030                          | 0.045                         |  |  |  |  |
| 0.006                         | 0.010                         | 0.023                                | 0.038                         | 0.050                          | 0.070                         |  |  |  |  |
| 0.005                         | 0.008                         | 0.019                                | 0.030                         | 0.045                          | 0.060                         |  |  |  |  |
| 0.004                         | 0.008                         | 0.014                                | 0.023                         | 0.030                          | 0.045                         |  |  |  |  |
| 0.004                         | 0.008                         | 0.014                                | 0.023                         | 0.030                          | 0.045                         |  |  |  |  |
| 0.005                         | 0.008                         | 0.017                                | 0.030                         | 0.045                          | 0.065                         |  |  |  |  |
| <br>0.003                     | 0.007                         | 0.011                                | 0.015                         | 0.023                          | 0.035                         |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |
|                               |                               | Empfohlen: MiquDi                    | rill 210 - beschichtet        |                                |                               |  |  |  |  |
|                               |                               |                                      |                               |                                |                               |  |  |  |  |



#### PRÄZISE UND SCHNELLE BOHRUNG 2.4 - 8 X D

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### **Spannmittel**

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

#### MiquDrill 210

Dank der hervorragenden Selbstzentrierung von MiquDrill 210 ist die Verwendung eines Zentrieroder Pilotbohrers auf regelmässigen und geraden Oberflächen nicht zwingend notwendig.

#### Zentrieren / Pilotbohren und Bohren

**Höhere Anforderungen:** Bei unregelmässigen bzw. rauen oder auch schrägen Oberflächen oder für höchste Positionsgenauigkeit sowie generell bei Bohrungen empfiehlt Mikron Tool:

- MiquDrill Centro 90° / 120° als Zentrierbohrer
- MiquDrill 200 als Pilotbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen (ab Ø 0.4 mm)

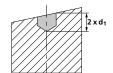
Die Pilotbohrung mit MiquDrill 200 oder das Zentrum mit MiquDrill Centro ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.

Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit und ein stabiler Bearbeitungsprozess) sind gewährleistet.

06

#### **BOHRPROZESS**

#### Bohrung gemäss DIN 66025 / PAL


G83 Tiefbohrzyklus mit Spanbruch und Entspänen Q = Tiefe des jeweiligen Bohrstosses

### 1 | ZENTRIER- ODER PILOTBOHRUNG (NUR FALLS NOTWENDIG)

Mit MiquDrill Centro 90° / 120° oder MiquDrill 200 (unregelmässige, raue Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).







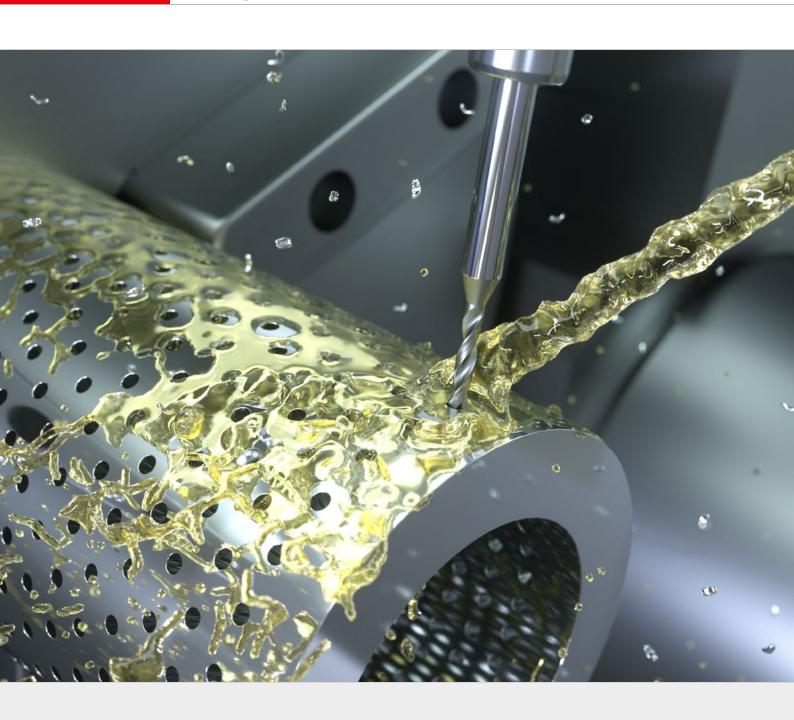
### 2 | BOHRUNG

Mit MiquDrill 210 bis maximale Bohrtiefe Q<sub>1</sub> (siehe Schnittdatentabelle) in einem einzigen Bohrstoss, danach entspänen.

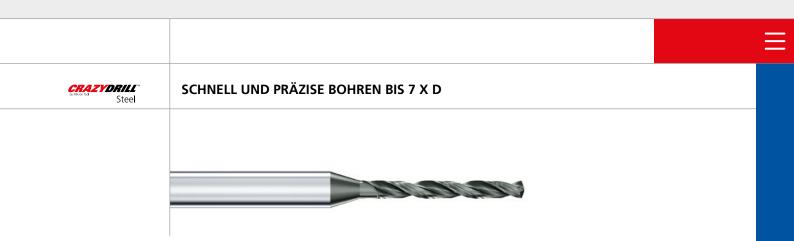


Weitere Bohrstösse Q<sub>X</sub> gemäss Schnittdatentabelle, anschliessend entspänen.




#### Bemerkung:

Zwischen den Bohrstössen komplett aus der Bohrung fahren.


Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



# CrazyDrill Steel







Mit CrazyDrill Steel bietet Mikron Tool einen Kleinbohrer für Bohrungen in Stahl bis zu einer maximalen Bohrtiefe von 7 x d im Durchmesserbereich von 0.4 bis 6.0 mm an.

Schneller und tiefer, das sind tatsächlich die typischen Attribute für diesen VHM-Bohrer. CrazyDrill Steel erzeugt kleine Bohrungen mit einer Leistung und Genauigkeit, die jeden Anwender ins Staunen versetzen. Durch die Kombination von S-Ausspitzung und einem Spitzenwinkel von 140° ist er selbstzentrierend und erreicht höchste Bohrgeschwindigkeiten. Seine hervorragende Standzeit, die hohe Bohrungs- und Oberflächenqualität sowie die Rundheit der Bohrung machen ihn zu einem prozesssicheren Partner.

Kein Wunder, wurde für diesen Bohrer der Begriff "Bohrstanzen" erfunden. Er durchbohrt das Material in höchsten Vorschubgeschwindigkeiten, ein Entspänen ist in den meisten Fällen nicht notwendig.



## Schnell und präzise

### EIN KLEINBOHRER FÜR HÖCHSTE ANSPRÜCHE IN STAHL

Mit CrazyDrill Steel bietet Mikron Tool einen Kleinbohrer für Bohrungen in Stahl bis zu einer maximalen Bohrtiefe von 7 x d im Durchmesserbereich von 0.4 bis 6.0 mm an.

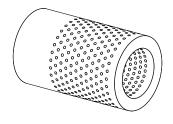
CrazyDrill Steel, Bohrtiefen 4 x d / 6 - 7 x d



| 4 x d                     | 6 - 7 x d                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aussenkühlung Beschichtet | Aussenkühlung Beschichtet  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | 1<br>2                     | 1   SCHAFT Ein robuster Hartmetallschaft garantiert hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.  2   HARTMETALL Die Verwendung eines Hartmetalls der neuesten Generation ermöglicht hohe Bearbeitungsgeschwindigkeiten.  3   BESCHICHTUNG Die Hochleistungsbeschichtung eXedur RI / RIP gewährleistet eine lange Standzeit bei einer guten Oberflächenqualität.  4   SPIRALNUT Die Geometrie der Spiralnut sorgt für optimalen Spänefluss, kein oder nur minimales Entspänen notwendig.  5   SCHNEIDENGEOMETRIE |
| CrazyDrill Steel 4 x d    | CrazyDrill Steel 6 - 7 x d | Bohrerspitze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



## Vorteile und Anwendungen


### KLEINBOHRER FÜR HÖCHSTE LEISTUNG UND WIRTSCHAFTLICHKEIT

KÜRZERE BEARBEITUNGSZEIT | Dank hoher Vorschübe

**ERHÖHTE STANDZEIT** | 10 bis 20 Mal mehr als HSS-Bohrer

HOHE PROZESSSICHERHEIT | Dank hoher Qualität

HOHE PRÄZISION Dank hoher Selbstzentrierung



### TEIL

Filtersieb

#### WERKSTOFF

90MnCrV8 / 1.2842 / AISI O2

#### **BEARBEITUNG**

- 500 Bohrungen
- d = 0.8 mm
- Bohrtiefe 4.5 mm

#### WERKZEUG

Mikron Tool - CrazyDrill Steel -  $6 \times d$ 

| DATEN         | MIKRON TOOL                                                              |
|---------------|--------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Steel - Hartmetall - Beschichtet - Aussenkühlung              |
| Artikelnummer | 2.CD.070080.S                                                            |
| Schnittdaten  | $v_c = 80 \text{ m/min}$ $f = 0.030 \text{ mm/U}$ $Q_1 = 4.5 \text{ mm}$ |













| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE                |
|-----------------------|-----------------------------------------|
| Automobilbau          | Bauteil für Direkteinspritzung          |
| Maschinenbau          | Motorenkomponente<br>Befestigungsplatte |
| Uhren                 | Uhrengehäuse                            |
| Hydraulik / Pneumatik | Elektromagnetisches Ventil              |

| MATERIALGRUPPE                              |         | BEISPIELE      |                   |
|---------------------------------------------|---------|----------------|-------------------|
|                                             | Wr. Nr. | DIN            | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.                   | 1.0401  | C15            | 1015              |
| legierte Stähle                             | 1.3505  | 100Cr6         | 52100             |
|                                             | 1.2436  | X210CrW12      | D4 / D6           |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040  | GGG40          | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315  | AlMgSi1        | 6351              |
|                                             | 3.2163  | GD-AlSi9Cu3    | A380              |
|                                             | 2.004   | Cu-OF / CW008A | C10100            |
|                                             | 2.0321  | CuZn37 CW508L  | C27400            |
|                                             | 2.102   | CuSn6          | C51900            |
|                                             | 2.096   | CuAl9Mn2       | C63200            |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4    | 01                |



## CrazyDrill Steel 4 x d

#### **BOHREN MIT AUSSENKÜHLUNG**



Stahl bohren mit Höchstgeschwindigkeit, höchster Prozesssicherheit und Bohrpräzision. Das sind die typischen Merkmale des beschichteten VHM-Bohrers CrazyDrill Steel. Er eignet sich genauso für unlegierte und legierte Stähle, für Gusseisen, Aluminium und Messing sowie für andere Metalle. In den meisten Fällen erreicht er die volle Bohrtiefe in einem Bohrstoss. Lediglich bei langspanigen Materialien ist für ein prozesssicheres Bohren minimales Entspänen notwendig.

Bei der kurzen Version bis Bohrtiefe 4 x d erübrigt sich eine vorgehende Zentrierung, mit seinem Spitzenwinkel von 140° und seiner S-Ausspitzung hat der Bohrer eine perfekte Selbstzentrierung. Empfohlen ist eine Pilotbohrung nur auf schrägen Oberflächen. Dafür eignet sich CrazyDrill Crosspilot bis zu einer Neigung von 60°. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

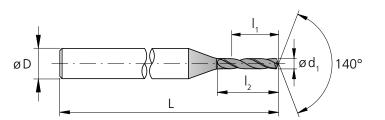
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Steel (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.





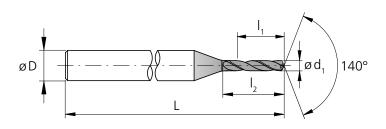



**Z**2








| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b> (h6) [mm] | <b>L</b><br>[mm] |
|------------|---------------|--------------------------------------------|----------------------------|----------------------------|--------------------|------------------|
|            | 2.CD.040040.S | 0.40                                       | 1.60                       | 2.3                        | 3                  | 42.0             |
|            | 2.CD.040045.S | 0.45                                       | 1.80                       | 2.6                        | 3                  | 42.0             |
|            | 2.CD.040050.S | 0.50                                       | 2.00                       | 2.9                        | 3                  | 42.0             |
|            | 2.CD.040055.S | 0.55                                       | 2.20                       | 3.2                        | 3                  | 42.0             |
| •          | 2.CD.040060.S | 0.60                                       | 2.40                       | 3.5                        | 3                  | 43.5             |
|            | 2.CD.040065.S | 0.65                                       | 2.60                       | 3.8                        | 3                  | 43.5             |
|            | 2.CD.040070.S | 0.70                                       | 2.80                       | 4.1                        | 3                  | 43.5             |
|            | 2.CD.040075.S | 0.75                                       | 3.00                       | 4.4                        | 3                  | 43.5             |
|            | 2.CD.040080.S | 0.80                                       | 3.20                       | 4.6                        | 3                  | 43.5             |
|            | 2.CD.040085.S | 0.85                                       | 3.40                       | 4.9                        | 3                  | 43.5             |
|            | 2.CD.040090.S | 0.90                                       | 3.60                       | 5.2                        | 3                  | 43.5             |
|            | 2.CD.040095.S | 0.95                                       | 3.80                       | 5.5                        | 3                  | 43.5             |
| •          | 2.CD.040100.S | 1.00                                       | 4.00                       | 5.8                        | 3                  | 44.0             |
|            | 2.CD.040105.S | 1.05                                       | 4.20                       | 6.1                        | 3                  | 44.0             |
|            | 2.CD.040110.S | 1.10                                       | 4.40                       | 6.3                        | 3                  | 44.0             |
|            | 2.CD.040115.S | 1.15                                       | 4.60                       | 6.6                        | 3                  | 44.0             |
|            | 2.CD.040120.S | 1.20                                       | 4.80                       | 7.0                        | 3                  | 45.0             |
|            | 2.CD.040125.S | 1.25                                       | 5.00                       | 7.3                        | 3                  | 45.0             |
|            | 2.CD.040130.S | 1.30                                       | 5.20                       | 7.6                        | 3                  | 45.0             |
|            | 2.CD.040135.S | 1.35                                       | 5.40                       | 7.9                        | 3                  | 45.0             |
|            | 2.CD.040140.S | 1.40                                       | 5.60                       | 8.2                        | 3                  | 46.0             |
|            | 2.CD.040145.S | 1.45                                       | 5.80                       | 8.6                        | 3                  | 46.0             |
| •          | 2.CD.040150.S | 1.50                                       | 6.00                       | 8.7                        | 3                  | 46.0             |
|            | 2.CD.040155.S | 1.55                                       | 6.20                       | 9.1                        | 3                  | 46.0             |
| •          | 2.CD.040160.S | 1.60                                       | 6.40                       | 9.5                        | 3                  | 47.0             |
|            | 2.CD.040165.S | 1.65                                       | 6.60                       | 9.7                        | 3                  | 47.0             |
| •          | 2.CD.040170.S | 1.70                                       | 6.80                       | 10.0                       | 3                  | 47.0             |
| •          | 2.CD.040175.S | 1.75                                       | 7.00                       | 10.3                       | 3                  | 47.0             |
| •          | 2.CD.040180.S | 1.80                                       | 7.20                       | 10.8                       | 3                  | 48.0             |
| •          | 2.CD.040185.S | 1.85                                       | 7.40                       | 11.0                       | 3                  | 48.0             |
|            | 2.CD.040190.S | 1.90                                       | 7.60                       | 11.2                       | 3                  | 48.0             |

Ergänzende Produkte CrazyDrill Crosspilot



## CrazyDrill Steel 4 x d

### **BOHREN MIT AUSSENKÜHLUNG**



| Lager | Artikelnummer | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|---------------|----------|----------------|----------------|-----------|------|
| de ■  |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|       | 2.CD.040195.S | 1.95     | 7.80           | 11.4           | 3         | 48.0 |
|       | 2.CD.040200.S | 2.00     | 8.00           | 11.9           | 4         | 55.0 |
| •     | 2.CD.040205.S | 2.05     | 8.20           | 12.1           | 4         | 55.0 |
| -     | 2.CD.040210.S | 2.10     | 8.40           | 12.3           | 4         | 55.0 |
| •     | 2.CD.040215.S | 2.15     | 8.60           | 12.6           | 4         | 55.0 |
| -     | 2.CD.040220.S | 2.20     | 8.80           | 13.0           | 4         | 56.0 |
| -     | 2.CD.040225.S | 2.25     | 9.00           | 13.3           | 4         | 56.0 |
|       | 2.CD.040230.S | 2.30     | 9.20           | 13.6           | 4         | 56.0 |
|       | 2.CD.040235.S | 2.35     | 9.40           | 13.9           | 4         | 56.0 |
| -     | 2.CD.040240.S | 2.40     | 9.60           | 14.2           | 4         | 57.0 |
| •     | 2.CD.040245.S | 2.45     | 9.80           | 14.6           | 4         | 57.0 |
|       | 2.CD.040250.S | 2.50     | 10.00          | 14.7           | 4         | 57.0 |
|       | 2.CD.040255.S | 2.55     | 10.20          | 15.1           | 4         | 57.0 |
| -     | 2.CD.040260.S | 2.60     | 10.40          | 15.5           | 4         | 58.0 |
| •     | 2.CD.040265.S | 2.65     | 10.60          | 15.7           | 4         | 58.0 |
| -     | 2.CD.040270.S | 2.70     | 10.80          | 16.0           | 4         | 58.0 |
| •     | 2.CD.040275.S | 2.75     | 11.00          | 16.3           | 4         | 58.0 |
| •     | 2.CD.040280.S | 2.80     | 11.20          | 16.8           | 4         | 59.0 |
| •     | 2.CD.040285.S | 2.85     | 11.40          | 17.0           | 4         | 59.0 |
|       | 2.CD.040290.S | 2.90     | 11.60          | 17.2           | 4         | 59.0 |
| •     | 2.CD.040295.S | 2.95     | 11.80          | 17.4           | 4         | 59.0 |
| -     | 2.CD.040300.S | 3.00     | 12.00          | 17.6           | 4         | 59.0 |
| •     | 2.CD.040305.S | 3.05     | 12.20          | 17.8           | 4         | 60.0 |
|       | 2.CD.040310.S | 3.10     | 12.40          | 18.1           | 4         | 60.0 |
| •     | 2.CD.040315.S | 3.15     | 12.60          | 18.4           | 4         | 60.0 |
|       | 2.CD.040320.S | 3.20     | 12.80          | 18.7           | 4         | 60.0 |
|       | 2.CD.040325.S | 3.25     | 13.00          | 19.0           | 4         | 60.0 |
|       | 2.CD.040330.S | 3.30     | 13.20          | 19.3           | 4         | 60.0 |
|       | 2.CD.040335.S | 3.35     | 13.40          | 19.6           | 4         | 60.0 |
|       | 2.CD.040340.S | 3.40     | 13.60          | 19.9           | 4         | 60.0 |
|       | 2.CD.040345.S | 3.45     | 13.80          | 20.2           | 4         | 60.0 |







**Z**2







Ergänzende Produkte CrazyDrill Crosspilot



# CrazyDrill Steel 4 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                                                                            | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$   | Q <sub>x</sub> |    |   |
|----------------------|--------------------------------------------------------------------------------------|--------|--------------------|-------------------------|----------------------------------|---------|----------------|----|---|
|                      |                                                                                      | 1.0301 | C10                | AISI 1010               |                                  |         |                |    |   |
| - B                  |                                                                                      | 1.0401 | C15                | AISI 1015               |                                  |         |                |    |   |
| P                    | Stähle unlegiert                                                                     | 1.1191 | C45E/CK45          | AISI 1015               | 120                              | 4       | _              |    |   |
|                      | Rm < 800 N/mm <sup>2</sup>                                                           |        |                    |                         | 120                              | 4xd1    | _              |    |   |
| /                    |                                                                                      | 1.0044 | S275JR             | AISI 1020               |                                  |         |                |    |   |
| <sup>′</sup>         |                                                                                      | 1.0715 | 11SMn30            | AISI 1215               |                                  |         |                |    |   |
|                      |                                                                                      | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |         |                |    |   |
|                      | Stähle niedriglegiert                                                                | 1.7131 | 16MnCr5            | AISI 5115               |                                  |         |                |    |   |
|                      | Rm > 900 N/mm <sup>2</sup>                                                           | 1.3505 | 100Cr6             | AISI 52100              | 80 4xd1                          | 8U 4xd1 | 80 4xc         | 80 | _ |
|                      |                                                                                      | 1.7225 | 42CrMo4            | AISI 4140               |                                  |         |                |    |   |
|                      |                                                                                      | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |         |                |    |   |
| iT_                  | \                                                                                    | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |         |                |    |   |
| Q <sub>1</sub>       | Werkzeugstähle<br>hochlegiert                                                        | 1.2436 | X210CrW12          | AISI D4/D6              | 60                               | 4xd1    | _              |    |   |
| Q <sub>x</sub>       | Rm < 1200 N/mm <sup>2</sup>                                                          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 60                               | 4801    | _              |    |   |
| Qx                   | 1411 4 1200 14111111                                                                 | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |         |                |    |   |
| 1                    | Rostfreie Stähle-                                                                    | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |         |                |    |   |
|                      | ferritisch                                                                           | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |         |                |    |   |
| M                    | Rostfreie Stähle-                                                                    | 1.4034 | X46Cr13            | AISI 420C               |                                  |         |                |    |   |
|                      | martensitisch                                                                        | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |         |                |    |   |
|                      |                                                                                      |        | X5CrNiCuNb 16-4    |                         |                                  |         |                |    |   |
|                      | Rostfreie Stähle-<br>martensitisch – PH                                              | 1.4542 |                    | AISI 630 / ASTM 17-4 PH |                                  |         |                |    |   |
|                      | IIIai terisitiscii – FH                                                              | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |         |                |    |   |
|                      |                                                                                      | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |         |                |    |   |
|                      | Rostfreie Stähle-                                                                    | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |         |                |    |   |
|                      | austenitisch                                                                         | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |         |                |    |   |
|                      |                                                                                      | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |         |                |    |   |
|                      |                                                                                      | 0.6020 | GG20               | ASTM 30                 |                                  |         |                |    |   |
| K                    | Gusseisen 0.6030 GG30 ASTM 40B 0.7040 GGG40 ASTM 60-40-18 0.7060 GGG60 ASTM 80-60-03 | 450    | 150 4xd1           | _                       |                                  |         |                |    |   |
|                      |                                                                                      | 0.7040 | GGG40              | ASTM 60-40-18           | 150                              | 4xd1    | _              |    |   |
|                      |                                                                                      | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |         |                |    |   |
|                      | Aluminium                                                                            | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |         |                |    |   |
| IN I                 | Knetlegierungen                                                                      | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 220                              | 4xd1    | _              |    |   |
| N                    | Aluminium                                                                            | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |         |                |    |   |
|                      | Druckgusslegierungen                                                                 |        | GD-AlSi10Mg        | UNS A03590              | 200                              | 4xd1    | -              |    |   |
|                      | Druckgussiegierungen                                                                 |        |                    |                         |                                  |         |                |    |   |
|                      | Kupfer                                                                               | 2.004  | Cu-OF / CW008A     | UNS C10100              | 120                              | 1.5xd1  | 1xd1           |    |   |
|                      |                                                                                      | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |         |                |    |   |
|                      | Messing bleifrei                                                                     | 2.0321 | CuZn37 CW508L      | UNS C27400              | 150                              | 1.5xd1  | 1xd1           |    |   |
|                      |                                                                                      | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |         |                |    |   |
|                      | Messing, Bronze                                                                      | 2.0401 | CuZn39Pb3 / CW614N |                         | 100                              | 1.5xd1  | 1xd1           |    |   |
|                      | Rm < 400 N/mm <sup>2</sup>                                                           | 2.102  | CuSn6              | UNS C51900              | . 30                             |         |                |    |   |
|                      | Bronze                                                                               | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 100                              | 4xd1    | _              |    |   |
|                      | Rm < 600 N/mm <sup>2</sup>                                                           | 2.096  | CuAl9Mn2           | UNS C63200              | 100                              | 47.01   |                |    |   |
|                      |                                                                                      | 2.4856 |                    | Inconel 625             |                                  |         |                |    |   |
| C                    | Hitzebeständige                                                                      | 2.4668 |                    | Inconel 718             |                                  |         |                |    |   |
| $S_1$                | Stähle                                                                               | 2.4617 | NiMo28             | Hastelloy B-2           | 40                               | 1xd1    | 0.25xd1        |    |   |
|                      |                                                                                      | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |         |                |    |   |
|                      |                                                                                      | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |         |                |    |   |
| C                    | Titan rein                                                                           | 3.7065 | Gr.4               | ASTM B348 / F68         | 40                               | 1xd1    | 0.25xd1        |    |   |
| $S_2$                |                                                                                      | 3.7165 | TiAl6V4            |                         |                                  |         |                |    |   |
| _                    | Titan Legierungen                                                                    |        |                    | ASTM B348 / F136        | 20                               | 1xd1    | 0.3xd1         |    |   |
|                      |                                                                                      | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |         |                |    |   |
| $S_3$                | CrCo-Legierungen                                                                     | 2.4964 | CoCr20W15Ni        | Haynes 25               | 30                               | 4xd1    | _              |    |   |
| - 3                  |                                                                                      |        | CrCoMo28           | ASTM F1537              |                                  |         |                |    |   |
| H <sub>1</sub>       | Stähle gehärtet                                                                      | 1.2510 | 100MnCrMoW4        | AISI O1                 | 30                               | 4xd1    | _              |    |   |
|                      | ∠ 55 HRC                                                                             |        |                    |                         |                                  |         |                |    |   |
| H <sub>1</sub>       | < 55 HRC<br>Stähle gehärtet                                                          |        |                    |                         |                                  |         |                |    |   |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



| <b>f</b> [mm/U] |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|-----------------|----------------------|---------------|----------------------|-----------------------|----------------------|---------------|----------------------|----------------------|----------------------|---------------|---------------|
|                 | <b>Ød1</b><br>0.4 mm | Ød1<br>0.8 mm | <b>Ød1</b><br>1.0 mm | <b>Ød1</b><br>1.25 mm | <b>Ød1</b><br>1.5 mm | Ød1<br>2.0 mm | <b>Ød1</b><br>2.5 mm | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0 mm | Ød1<br>5.0 mm | Ød1<br>6.0 mm |
|                 | f                    | f             | f                    | f                     | f                    | f             | f                    | f                    | f                    | f             | f             |
|                 | 0.040                | 0.100         | 0.120                | 0.150                 | 0.200                | 0.250         | 0.270                | 0.350                | 0.370                | 0.390         | 0.400         |
|                 | 0.015                | 0.030         | 0.080                | 0.120                 | 0.160                | 0.200         | 0.230                | 0.250                | 0.270                | 0.300         | 0.320         |
|                 | 0.020                | 0.070         | 0.120                | 0.150                 | 0.200                | 0.250         | 0.280                | 0.300                | 0.320                | 0.340         | 0.350         |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|                 | 0.040                | 0.150         | 0.200                | 0.250                 | 0.300                | 0.350         | 0.400                | 0.450                | 0.470                | 0.490         | 0.500         |
|                 | 0.045                | 0.060         | 0.080                | 0.095                 | 0.110                | 0.130         | 0.150                | 0.180                | 0.190                | 0.210         | 0.250         |
|                 | 0.040                | 0.055         | 0.075                | 0.085                 | 0.100                | 0.120         | 0.140                | 0.170                | 0.180                | 0.200         | 0.240         |
|                 | 0.030                | 0.050         | 0.060                | 0.065                 | 0.075                | 0.080         | 0.095                | 0.110                | 0.130                | 0.160         | 0.200         |
|                 | 0.030                | 0.050         | 0.065                | 0.070                 | 0.075                | 0.090         | 0.110                | 0.140                | 0.160                | 0.200         | 0.220         |
|                 | 0.035                | 0.055         | 0.070                | 0.080                 | 0.090                | 0.110         | 0.130                | 0.150                | 0.180                | 0.220         | 0.240         |
|                 | 0.015                | 0.025         | 0.035                | 0.050                 | 0.060                | 0.075         | 0.095                | 0.110                | 0.130                | 0.160         | 0.220         |
|                 | 0.002                | 0.004         | 0.005                | 0.006                 | 0.007                | 0.010         | 0.012                | 0.015                | 0.020                | 0.025         | 0.030         |
|                 | 0.012                | 0.024         | 0.030                | 0.040                 | 0.045                | 0.060         | 0.075                | 0.090                | 0.120                | 0.150         | 0.180         |
|                 | 0.020                | 0.030         | 0.040                | 0.050                 | 0.055                | 0.070         | 0.080                | 0.100                | 0.140                | 0.160         | 0.200         |
|                 | 0.006                | 0.012         | 0.015                | 0.020                 | 0.025                | 0.030         | 0.035                | 0.045                | 0.060                | 0.075         | 0.090         |
|                 | 0.005                | 0.007         | 0.010                | 0.011                 | 0.012                | 0.015         | 0.020                | 0.025                | 0.030                | 0.035         | 0.040         |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |
|                 |                      |               |                      |                       |                      |               |                      |                      |                      |               |               |



## CrazyDrill Steel 6 x d / 7 x d

#### **BOHREN MIT AUSSENKÜHLUNG**



Stahl bohren mit Höchstgeschwindigkeit, höchster Prozesssicherheit und Bohrpräzision. Das sind die typischen Merkmale des beschichteten VHM-Bohrers CrazyDrill Steel. Er eignet sich genauso für unlegierte und legierte Stähle, für Gusseisen, Aluminium und Messing sowie für andere Metalle. Bei legierten Stählen erreicht er die volle Bohrtiefe von 6 x d / 7 x d in einem Bohrstoss. Bei langspanigen Materialien ist für prozesssicheres Bohren ein minimales Entspänen notwendig.

Bei der langen Version bis Bohrtiefe 6 x d / 7 x d erübrigt sich eine vorgehende Zentrierung auf geraden Oberflächen. Mit seinem Spitzenwinkel von  $140^{\circ}$  und seiner S-Ausspitzung hat der Bohrer eine gute Selbstzentrierung. Das Pilotbohren oder auch Zentrieren wird empfohlen bei unregelmässiger, rauer oder schräger Materialoberfläche, bei Bedarf an hoher Positionsgenauigkeit sowie bei Bohrerdurchmessern unter  $\emptyset$  0.8 mm. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

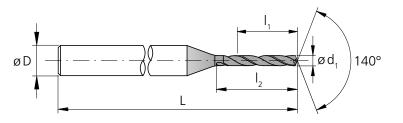
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Steel (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.








**Z**2



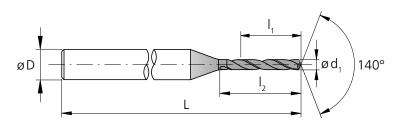






| ab Lager | Artikelnummer | <b>d</b> ₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | <b>D</b> (h6) | L    |
|----------|---------------|------------------|----------------|----------------|---------------|------|
| <i>a</i> |               | [mm]             | [mm]           | [mm]           | [mm]          | [mm] |
|          | 2.CD.070040.S | 0.40             | 2.40           | 3.1            | 3             | 42.0 |
| •        | 2.CD.070045.S | 0.45             | 2.70           | 3.5            | 3             | 42.0 |
| •        | 2.CD.070050.S | 0.50             | 3.00           | 3.9            | 3             | 42.0 |
|          | 2.CD.070055.S | 0.55             | 3.30           | 4.3            | 3             | 42.0 |
| -        | 2.CD.070060.S | 0.60             | 3.60           | 4.7            | 3             | 43.5 |
| •        | 2.CD.070065.S | 0.65             | 3.90           | 5.0            | 3             | 43.5 |
|          | 2.CD.070070.S | 0.70             | 4.20           | 5.4            | 3             | 43.5 |
| -        | 2.CD.070075.S | 0.75             | 4.50           | 5.8            | 3             | 43.5 |
| -        | 2.CD.070080.S | 0.80             | 4.80           | 6.2            | 3             | 45.0 |
|          | 2.CD.070085.S | 0.85             | 5.10           | 6.6            | 3             | 45.0 |
| •        | 2.CD.070090.S | 0.90             | 5.40           | 7.0            | 3             | 45.0 |
|          | 2.CD.070095.S | 0.95             | 5.70           | 7.4            | 3             | 45.0 |
| -        | 2.CD.070100.S | 1.00             | 6.00           | 7.8            | 3             | 46.0 |
| -        | 2.CD.070105.S | 1.05             | 6.30           | 8.1            | 3             | 46.0 |
| •        | 2.CD.070110.S | 1.10             | 6.60           | 8.6            | 3             | 46.0 |
| -        | 2.CD.070115.S | 1.15             | 6.90           | 8.7            | 3             | 46.0 |




| ab Lager |               | d <sub>1</sub>    | I <sub>1</sub> | l <sub>2</sub> | D            | L    |
|----------|---------------|-------------------|----------------|----------------|--------------|------|
| de ■     | Artikelnummer | <b>k5</b><br>[mm] | [mm]           | [mm]           | (h6)<br>[mm] | [mm] |
|          | 2.CD.070120.S | 1.20              | 8.40           | 10.9           | 3            | 49.0 |
| -        | 2.CD.070125.S | 1.25              | 8.75           | 11.1           | 3            | 49.0 |
| •        | 2.CD.070130.S | 1.30              | 9.10           | 11.5           | 3            | 49.0 |
| -        | 2.CD.070135.S | 1.35              | 9.45           | 11.9           | 3            | 49.0 |
| •        | 2.CD.070140.S | 1.40              | 9.80           | 12.7           | 3            | 50.5 |
| -        | 2.CD.070145.S | 1.45              | 10.15          | 12.9           | 3            | 50.5 |
| •        | 2.CD.070150.S | 1.50              | 10.50          | 13.4           | 3            | 50.5 |
| -        | 2.CD.070155.S | 1.55              | 10.85          | 13.7           | 3            | 50.5 |
| •        | 2.CD.070160.S | 1.60              | 11.20          | 14.5           | 3            | 52.0 |
| -        | 2.CD.070165.S | 1.65              | 11.55          | 14.7           | 3            | 52.0 |
| •        | 2.CD.070170.S | 1.70              | 11.90          | 15.0           | 3            | 52.0 |
| -        | 2.CD.070175.S | 1.75              | 12.25          | 15.3           | 3            | 52.0 |
| •        | 2.CD.070180.S | 1.80              | 12.60          | 16.3           | 3            | 53.5 |

Ergänzende Produkte CrazyDrill Pilot CrazyDrill Crosspilot



## CrazyDrill Steel 6 x d / 7 x d

## **BOHREN MIT AUSSENKÜHLUNG**





| Lager | Artikelnummer   | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------|-----------------|----------|----------------|----------------|-----------|------|
| ■ ab  | 7 trancariamina | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|       | 2.CD.070185.S   | 1.85     | 12.95          | 16.5           | 3         | 53.5 |
|       | 2.CD.070190.S   | 1.90     | 13.30          | 16.9           | 3         | 53.5 |
|       | 2.CD.070195.S   | 1.95     | 13.65          | 17.1           | 3         | 53.5 |
|       | 2.CD.070200.S   | 2.00     | 14.00          | 18.0           | 4         | 61.5 |
| •     | 2.CD.070205.S   | 2.05     | 14.35          | 18.3           | 4         | 61.5 |
|       | 2.CD.070210.S   | 2.10     | 14.70          | 18.7           | 4         | 61.5 |
|       | 2.CD.070215.S   | 2.15     | 15.05          | 19.1           | 4         | 61.5 |
|       | 2.CD.070220.S   | 2.20     | 15.40          | 20.0           | 4         | 63.0 |
| •     | 2.CD.070225.S   | 2.25     | 15.75          | 20.3           | 4         | 63.0 |
|       | 2.CD.070230.S   | 2.30     | 16.10          | 20.6           | 4         | 63.0 |
|       | 2.CD.070235.S   | 2.35     | 16.45          | 20.9           | 4         | 63.0 |
|       | 2.CD.070240.S   | 2.40     | 16.80          | 21.7           | 4         | 64.5 |
|       | 2.CD.070245.S   | 2.45     | 17.15          | 22.1           | 4         | 64.5 |
|       | 2.CD.070250.S   | 2.50     | 17.50          | 22.2           | 4         | 64.5 |
|       | 2.CD.070255.S   | 2.55     | 17.85          | 22.6           | 4         | 64.5 |
|       | 2.CD.070260.S   | 2.60     | 18.20          | 23.5           | 4         | 66.0 |
| •     | 2.CD.070265.S   | 2.65     | 18.55          | 23.7           | 4         | 66.0 |
| •     | 2.CD.070270.S   | 2.70     | 18.90          | 24.0           | 4         | 66.0 |
|       | 2.CD.070275.S   | 2.75     | 19.25          | 24.3           | 4         | 66.0 |
|       | 2.CD.070280.S   | 2.80     | 19.60          | 25.3           | 4         | 67.5 |
| •     | 2.CD.070285.S   | 2.85     | 19.95          | 25.5           | 4         | 67.5 |
|       | 2.CD.070290.S   | 2.90     | 20.30          | 25.7           | 4         | 67.5 |
|       | 2.CD.070295.S   | 2.95     | 20.65          | 25.9           | 4         | 67.5 |
|       | 2.CD.070300.S   | 3.00     | 21.00          | 26.2           | 4         | 67.5 |
|       | 2.CD.070305.S   | 3.05     | 21.35          | 27.5           | 4         | 70.0 |
|       | 2.CD.070310.S   | 3.10     | 21.70          | 27.9           | 4         | 70.0 |
|       | 2.CD.070315.S   | 3.15     | 22.05          | 28.4           | 4         | 70.0 |
|       | 2.CD.070320.S   | 3.20     | 22.40          | 28.8           | 4         | 70.0 |
|       | 2.CD.070325.S   | 3.25     | 22.75          | 29.3           | 4         | 70.0 |
|       | 2.CD.070330.S   | 3.30     | 23.10          | 29.7           | 4         | 70.0 |
|       | 2.CD.070335.S   | 3.35     | 23.45          | 30.2           | 4         | 70.0 |
|       | 2.CD.070340.S   | 3.40     | 23.80          | 30.6           | 4         | 70.0 |







**Z**2







| ab Lager | Artikelnummer | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|---------------|----------|----------------|----------------|-----------|------|
| = ag     |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|          | 2.CD.070345.S | 3.45     | 24.15          | 31.1           | 4         | 75.0 |
|          | 2.CD.070350.S | 3.50     | 24.50          | 31.5           | 4         | 75.0 |
|          | 2.CD.070355.S | 3.55     | 24.85          | 32.0           | 4         | 75.0 |
|          | 2.CD.070360.S | 3.60     | 25.20          | 32.4           | 4         | 75.0 |
|          | 2.CD.070365.S | 3.65     | 25.55          | 32.9           | 4         | 75.0 |
|          | 2.CD.070370.S | 3.70     | 25.90          | 33.3           | 4         | 75.0 |
|          | 2.CD.070375.S | 3.75     | 26.25          | 33.8           | 4         | 75.0 |
|          | 2.CD.070380.S | 3.80     | 26.60          | 34.2           | 4         | 75.0 |
|          | 2.CD.070385.S | 3.85     | 26.95          | 34.7           | 4         | 75.0 |
|          | 2.CD.070390.S | 3.90     | 27.30          | 35.1           | 4         | 75.0 |
|          | 2.CD.070395.S | 3.95     | 27.65          | 35.6           | 4         | 75.0 |
|          | 2.CD.070400.S | 4.00     | 28.00          | 36.0           | 6         | 80.0 |
|          | 2.CD.070410.S | 4.10     | 28.70          | 36.9           | 6         | 80.0 |
|          | 2.CD.070420.S | 4.20     | 29.40          | 37.8           | 6         | 80.0 |
|          | 2.CD.070430.S | 4.30     | 30.10          | 38.7           | 6         | 80.0 |
|          | 2.CD.070440.S | 4.40     | 30.80          | 39.6           | 6         | 80.0 |
|          | 2.CD.070450.S | 4.50     | 31.50          | 40.5           | 6         | 85.0 |
|          | 2.CD.070460.S | 4.60     | 32.20          | 41.4           | 6         | 85.0 |
|          | 2.CD.070470.S | 4.70     | 32.90          | 42.3           | 6         | 85.0 |
|          | 2.CD.070480.S | 4.80     | 33.60          | 43.2           | 6         | 85.0 |
|          | 2.CD.070490.S | 4.90     | 34.30          | 44.1           | 6         | 85.0 |
|          | 2.CD.070500.S | 5.00     | 35.00          | 45.0           | 6         | 85.0 |
|          | 2.CD.070510.S | 5.10     | 35.70          | 45.9           | 6         | 90.0 |
|          | 2.CD.070520.S | 5.20     | 36.40          | 46.8           | 6         | 90.0 |
|          | 2.CD.070530.S | 5.30     | 37.10          | 47.7           | 6         | 90.0 |
|          | 2.CD.070540.S | 5.40     | 37.80          | 48.6           | 6         | 90.0 |
|          | 2.CD.070550.S | 5.50     | 38.50          | 49.5           | 6         | 90.0 |
|          | 2.CD.070560.S | 5.60     | 39.20          | 50.4           | 6         | 90.0 |
|          | 2.CD.070570.S | 5.70     | 39.90          | 51.3           | 6         | 95.0 |
|          | 2.CD.070580.S | 5.80     | 40.60          | 52.2           | 6         | 95.0 |
|          | 2.CD.070590.S | 5.90     | 41.30          | 53.1           | 6         | 95.0 |
|          | 2.CD.070600.S | 6.00     | 42.00          | 54.0           | 6         | 95.0 |



# CrazyDrill Steel 6 x d / 7 x d

## BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff<br>gruppe | -<br>Werkstoff                             | Wr.Nr. | DIN                     | AISI/ASTM/UNS                  | <b>ν</b> <sub>c</sub><br>[m/min] | Q <sub>1</sub> | Q <sub>x</sub>    | $\mathbf{Q}_1$ | Q <sub>x</sub> |  |
|---------------------|--------------------------------------------|--------|-------------------------|--------------------------------|----------------------------------|----------------|-------------------|----------------|----------------|--|
| 9.4550              |                                            |        |                         |                                |                                  | 6              | xd                | 7xd            |                |  |
|                     |                                            | 1.0301 | C10                     | AISI 1010                      |                                  |                |                   |                |                |  |
|                     |                                            | 1.0401 | C15                     | AISI 1015                      |                                  |                |                   |                |                |  |
| P                   | Stähle unlegiert                           | 1.1191 | C45E/CK45               | AISI 1045                      | 120                              | 6xd1           | _                 | 7xd1           | -              |  |
| \                   | Rm < 800 N/mm <sup>2</sup>                 | 1.0044 | S275JR                  | AISI 1020                      | 120                              | OXUI           | _                 | 7,01           |                |  |
| )/(///              |                                            | 1.0715 | 11SMn30                 | AISI 1215                      |                                  |                |                   |                |                |  |
|                     |                                            | 1.5752 | 15NiCr13                | ASTM 3415 / AISI 3310          |                                  |                |                   |                |                |  |
| Ψ.                  |                                            | 1.7131 | 16MnCr5                 | AISI 5115                      |                                  | 6xd1           | -                 | 7xd1           | -              |  |
|                     | Stähle niedriglegiert                      | 1.3505 | 100Cr6                  | AISI 52100                     | 80                               |                |                   |                |                |  |
|                     | Rm > 900 N/mm <sup>2</sup>                 | 1.7225 | 42CrMo4                 | AISI 4140                      |                                  |                |                   |                |                |  |
| . d <sub>1</sub> .  |                                            | 1.2842 | 90MnCrV8                | AISI O2                        |                                  |                |                   |                |                |  |
|                     |                                            | 1.2379 | X153CrMoV12             | AISI D2                        |                                  |                |                   | 7xd1           |                |  |
| 01                  | Werkzeugstähle                             | 1.2436 | X210CrW12               | AISI D4/D6                     |                                  |                |                   |                |                |  |
|                     | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C                | AISI M2 / UNS T11302           | 60                               | 6xd1           | -                 |                | _              |  |
| Qx                  | NIII < 1200 N/IIIII12                      | 1.3355 | HS18-0-1                | AISI T1 / UNS T12001           |                                  |                |                   |                |                |  |
| Qx                  | Rostfreie Stähle-                          | 1.4016 | X6Cr17                  | AISI 430 / UNS S43000          |                                  |                |                   |                |                |  |
|                     | ferritisch                                 | 1.4105 | X6CrMoS17               | AISI 430F                      |                                  |                |                   |                |                |  |
| M                   | Rostfreie Stähle-                          | 1.4034 | X46Cr13                 | AISI 420C                      |                                  |                |                   |                |                |  |
|                     | martensitisch                              | 1.4112 | X90CrMoV18              | AISI 440B                      |                                  |                |                   |                |                |  |
|                     | Rostfreie Stähle-                          | 1.4542 | X5CrNiCuNb 16-4         | AISI 630 / ASTM 17-4 PH        |                                  |                |                   |                |                |  |
|                     | martensitisch – PH                         | 1.4545 | X5CrNiCuNb 15-5         | ASTM 15-5 PH                   |                                  |                |                   |                |                |  |
|                     | That terisitiseit 111                      | 1.4301 | X5CrNi 18-10            | AISI 304                       |                                  |                |                   |                |                |  |
|                     | Rostfreie Stähle-<br>austenitisch          | 1.4435 | X2CrNiMo 18-14-3        | AISI 316L                      |                                  |                |                   |                |                |  |
|                     |                                            | 1.4441 | X2CrNiMo 18-15-3        | AISI 316LM                     |                                  |                |                   |                |                |  |
|                     |                                            | 1.4539 | X1NiCrMoCu 25-20-5      | AISI 904L                      |                                  |                |                   |                |                |  |
|                     |                                            |        |                         |                                |                                  |                |                   | 7xd1           | -              |  |
|                     | Gusseisen                                  | 0.6020 | GG20<br>GG30            | ASTM 40P                       |                                  |                |                   |                |                |  |
| K                   |                                            | 0.6030 |                         | ASTM 40B                       | 150 6x                           | 6xd1           | _                 |                |                |  |
|                     |                                            | 0.7040 | GGG40<br>GGG60          | ASTM 60-40-18<br>ASTM 80-60-03 |                                  |                |                   |                |                |  |
|                     |                                            |        |                         |                                |                                  |                | +                 |                |                |  |
|                     | Aluminium                                  | 3.2315 | AlMgSi1                 | ASTM 6351                      | 220                              | 4xd1           | 2xd1              | 4xd1           | 2xd1           |  |
| N                   | Knetlegierungen                            | 3.4365 | AlZnMgCu1.5             | ASTM 7075                      |                                  |                |                   |                |                |  |
|                     | Aluminium                                  | 3.2163 | GD-AlSi9Cu3             | ASTM A380                      | 200                              | 4xd1           | 2xd1              | 4xd1           | 2xd1           |  |
|                     | Druckgusslegierungen                       |        | GD-AlSi10Mg             | UNS A03590                     |                                  |                |                   |                |                |  |
|                     | Kupfer                                     | 2.004  | Cu-OF / CW008A          | UNS C10100                     | 120                              | 1.5xd1         | 1xd1              | 1.5xd1         | 1xd1           |  |
|                     |                                            | 2.0065 | Cu-ETP / CW004A         | UNS C11000                     |                                  |                |                   |                |                |  |
|                     | Messing bleifrei                           | 2.0321 | CuZn37 CW508L           | UNS C27400                     | 150                              | 1.5xd1         | 1xd1              | 1.5xd1         | 1xd1           |  |
|                     |                                            | 2.036  | CuZn40 CW509L           | UNS C28000                     |                                  |                |                   |                |                |  |
|                     | Messing, Bronze                            | 2.0401 | CuZn39Pb3 / CW614N      |                                | 100                              | 1.5xd1         | 1xd1              | 1.5xd1         | 1xd1           |  |
|                     | Rm < 400 N/mm <sup>2</sup>                 | 2.102  | CuSn6                   | UNS C51900                     |                                  |                |                   |                |                |  |
|                     | Bronze<br>Rm < 600 N/mm <sup>2</sup>       | 2.0966 | CuAl0Ni5Fe4             | UNS C63000                     | 100 4xd1                         |                | 2xd1              | 4xd1           | 3xd1           |  |
|                     | IVIII < OOO IN/IIIIII'                     | 2.096  | CuAl9Mn2                | UNS C63200                     |                                  |                |                   |                |                |  |
|                     |                                            | 2.4856 |                         | Inconel 625                    |                                  |                |                   |                |                |  |
| $S_1$               | Hitzebeständige                            | 2.4668 | N.3.4. DO               | Inconel 718                    | 40                               | 1xd1           | 0.25xd1           | 1xd1           | 0.25xd1        |  |
| -1                  | Stähle                                     | 2.4617 | NiMo28                  | Hastelloy B-2                  |                                  |                |                   |                |                |  |
|                     |                                            | 2.4665 | NiCr22Fe18Mo            | Hastelloy X                    |                                  |                |                   |                |                |  |
|                     | Titan rein                                 | 3.7035 | Gr.2                    | ASTM B348 / F67                | 40                               | 1xd1           | 0.25xd1<br>0.3xd1 | 1xd1<br>1xd1   | 0.25xd1        |  |
| $ S_2 $             |                                            | 3.7065 | Gr.4                    | ASTM B348 / F68                |                                  |                |                   |                |                |  |
| - 2                 | Titan Legierungen                          | 3.7165 | TiAl6V4                 | ASTM B348 / F136               | 20                               | 1xd1           |                   |                | 0.3xd1         |  |
|                     | 3 3 .                                      | 9.9367 | TiAl6Nb7                | ASTM F1295                     |                                  |                |                   |                |                |  |
| $S_3$               | CrCo-Legierungen                           | 2.4964 | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537        | 30                               | 4xd1           | 0.25xd1           | 4xd1           | 0.25xd1        |  |
| H₁                  | Stähle gehärtet<br>< 55 HRC                | 1.2510 | 100MnCrMoW4             | AISI O1                        | 30                               | 4xd1           | 1xd1              | 4xd1           | 1xd1           |  |
| H <sub>2</sub>      | Stähle gehärtet                            | 1.2379 | X153CrMoV12             | AISI D2                        |                                  |                |                   |                |                |  |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



|                      |               |               |                    |               | <b>£</b> [ | m /I I]           |               |               |               |               |                |
|----------------------|---------------|---------------|--------------------|---------------|------------|-------------------|---------------|---------------|---------------|---------------|----------------|
| <b>Ød1</b><br>0.4 mm | Ød1<br>0.8 mm | Ød1<br>1.0 mm | <b>Ød1</b> 1.25 mm | Ød1<br>1.5 mm | Ød1 2.0 mm | <b>Ød1</b> 2.5 mm | Ød1<br>3.0 mm | Ød1<br>4.0 mm | Ød1<br>5.0 mm | Ød1<br>6.0 mm | Ød1<br>6.00 mm |
| f                    | f             | f             | f                  | f             | f          | f                 | f             | f             | f             | f             | f              |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |
| 0.040                | 0.100         | 0.120         | 0.140              | 0.150         | 0.200      | 0.250             | 0.270         | 0.350         | 0.370         | 0.390         | 0.400          |
| 0.015                | 0.030         | 0.080         | 0.110              | 0.120         | 0.160      | 0.200             | 0.230         | 0.250         | 0.270         | 0.300         | 0.320          |
| 0.020                | 0.070         | 0.120         | 0.140              | 0.150         | 0.200      | 0.250             | 0.280         | 0.300         | 0.320         | 0.340         | 0.350          |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |
| 0.040                | 0.150         | 0.200         | 0.240              | 0.250         | 0.300      | 0.350             | 0.400         | 0.450         | 0.470         | 0.490         | 0.500          |
| 0.045                | 0.060         | 0.080         | 0.090              | 0.095         | 0.110      | 0.130             | 0.150         | 0.180         | 0.190         | 0.210         | 0.250          |
| 0.040                | 0.055         | 0.075         | 0.080              | 0.085         | 0.100      | 0.120             | 0.140         | 0.170         | 0.180         | 0.200         | 0.240          |
| 0.030                | 0.050         | 0.060         | 0.063              | 0.065         | 0.075      | 0.080             | 0.095         | 0.110         | 0.130         | 0.160         | 0.200          |
| 0.030                | 0.050         | 0.065         | 0.068              | 0.070         | 0.075      | 0.090             | 0.110         | 0.140         | 0.160         | 0.200         | 0.220          |
| 0.035                | 0.055         | 0.070         | 0.075              | 0.080         | 0.090      | 0.110             | 0.130         | 0.150         | 0.180         | 0.220         | 0.240          |
| <br>0.015            | 0.025         | 0.035         | 0.045              | 0.050         | 0.050      | 0.065             | 0.085         | 0.100         | 0.120         | 0.150         | 0.200          |
| 0.002                | 0.004         | 0.005         | 0.006              | 0.006         | 0.007      | 0.010             | 0.012         | 0.015         | 0.020         | 0.025         | 0.030          |
| 0.012                | 0.024         | 0.030         | 0.035              | 0.040         | 0.045      | 0.060             | 0.075         | 0.090         | 0.120         | 0.150         | 0.180          |
| 0.020                | 0.030         | 0.040         | 0.045              | 0.050         | 0.055      | 0.070             | 0.080         | 0.100         | 0.140         | 0.160         | 0.200          |
| 0.006                | 0.012         | 0.015         | 0.018              | 0.020         | 0.025      | 0.030             | 0.035         | 0.045         | 0.060         | 0.075         | 0.090          |
| <br>0.005            | 0.007         | 0.010         | 0.011              | 0.011         | 0.012      | 0.015             | 0.020         | 0.025         | 0.030         | 0.035         | 0.040          |
|                      |               |               |                    |               |            |                   |               |               |               |               |                |



#### PRÄZISE UND SCHNELLE BOHRUNG BIS 7 X D

#### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und –menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

06

#### CrazyDrill Steel bis 4 x d

Dank der hervorragenden Selbstzentrierung von CrazyDrill Steel ist die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen bis zu einer maximalen Bohrtiefe von 4 x d nicht notwendig.

#### CrazyDrill Steel 6 x d / 7 x d

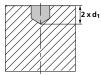
Dank der hervorragenden Selbstzentrierung von CrazyDrill Steel ist die Verwendung eines Zentrier- oder Pilotbohrers bei Bohrerdurchmessern über Ø 0.8 mm auf regelmässigen und geraden Oberflächen bis zu einer maximalen Bohrtiefe von 7 x d nicht notwendig.

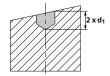
#### Pilotbohren und Bohren

**Höhere Anforderungen:** Bei unregelmässigen bzw. rauen oder auch schrägen Oberflächen oder für höchste Positionsgenauigkeit sowie generell bei Bohrungen (6 x d unter Durchmesser 0.8 mm) empfiehlt Mikron Tool:

- CrazyDrill Pilot als Pilotbohrer
- **CrazyDrill Crosspilot** als Pilotbohrer auf schrägen Oberflächen

Die Pilotbohrung mit CrazyDrill Pilot ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positionsund Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.


Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.




### **BOHRUNG IN EINEM BOHRSTOSS** (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)

#### 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot (unregelmässige bzw. raue Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).





### 2 | BOHRUNG

Mit CrazyDrill Steel bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss.

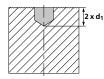


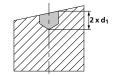
#### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



06


### BOHRUNG GEMÄSS DIN 66025 / PAL (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)


G83 Tiefbohrzyklus mit Spänebruch und Entspänen

Q = Tiefe des jeweiligen Bohrschrittes

### 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot (unregelmässige bzw. raue Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).





### 2 | BOHRUNG

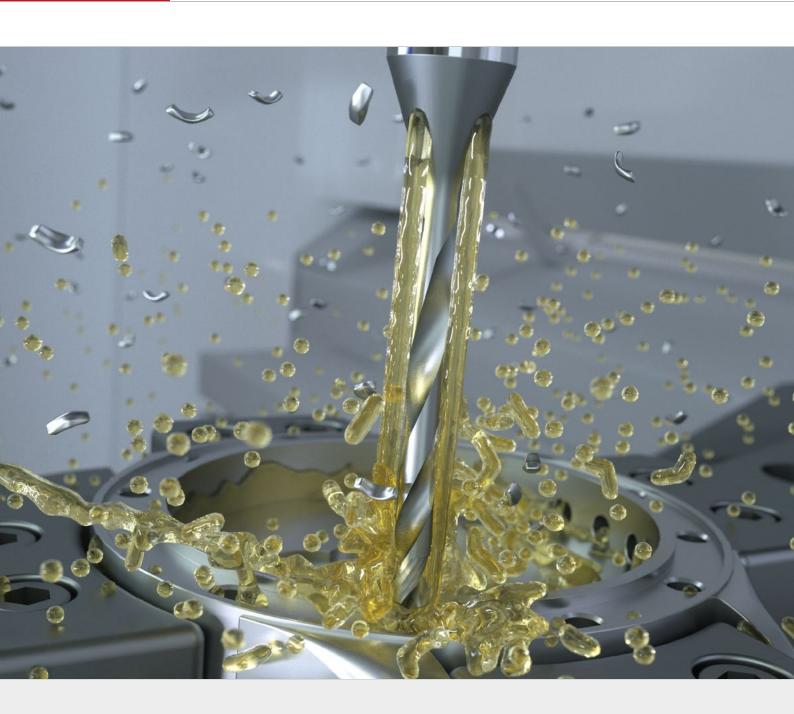
Mit CrazyDrill Steel bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss, danach entspänen.



Weitere Bohrstösse Q<sub>X</sub> gemäss Schnittdatentabelle, anschliessend entspänen.



### Bemerkung:


Zwischen den Bohrstössen komplett aus der Bohrung fahren.

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



## **PATENTED**

# CrazyDrill SST-Inox





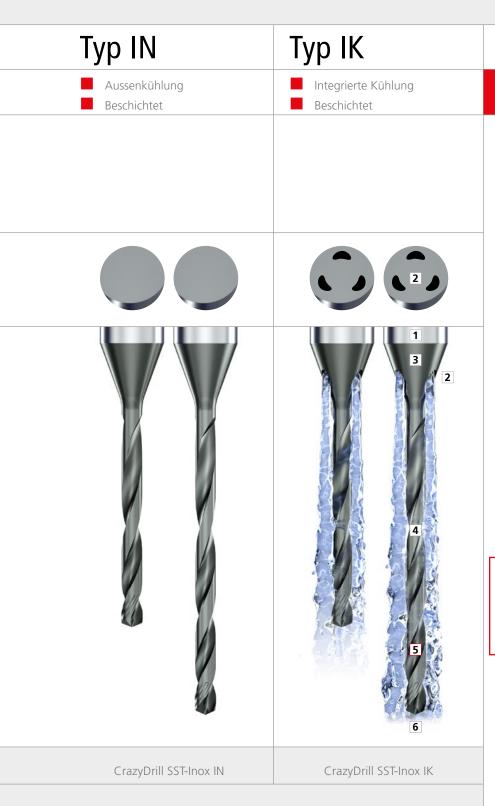


Mit CrazyDrill SST-Inox bietet Mikron Tool zwei exklusive Bohrer an für das Bohren in Edelstahl bis 12 x d im Durchmesserbereich von 0.3 mm bis 2.0 mm.

Diese Bohrer meistern die Herausforderung hervorragend, welche das Bearbeiten von rost-, säure- und hitzebeständigen Stählen sowie CrCo-Legierungen darstellt. Ihre Geometrie unterscheidet sich wesentlich von den anderen heute im Markt erhältlichen Produkten und garantiert kurze Bearbeitungszeit bei einer hohen Prozesssicherheit. Nochmals verbessert werden die Schnittleistungen mit der effizienten Kühlung durch den Schaft.



### **PATENTED**


# Revolutionär: Bohren von Edelstahl und Co.

### 2 LÖSUNGEN FÜR ROST-, SÄURE- UND HITZEBESTÄNDIGE STÄHLE

Mit CrazyDrill SST-Inox bietet Mikron Tool zwei exklusive Bohrer an für das Bohren in Edelstahl bis 12 x d im Durchmesserbereich von 0.3 mm bis 2.0 mm.

- CrazyDrill SST-Inox IK, Bohrtiefe 8 x d / 12 x d, integrierter Kühlung im Schaft.
- CrazyDrill SST-Inox IN, Bohrtiefe 8 x d / 12 x d, mit Aussenkühlung.





## **NEW**

### 1 | SCHAFT

Der robuste Hartmetallschaft unterstützt ein stabiles, schwingungsfreies Bohren.

#### 2 | NEUES KÜHLKONZEPT

Die im Schaft integrierten Kühlkanäle garantieren schon ab 15 bar eine kontinuierliche, massive Kühlung der Schneiden. Das Resultat ist eine erhöhte Prozesssicherheit und Produktivität.

### 3 | HARTMETALL

Dank hoher Zähigkeit und Wärmeschockresistenz erfüllt das speziell für CrazyDrill SST-Inox entwickelte Hartmetall perfekt die Anforderungen für das Zerspanen von rostund hitzebeständigen Stählen.

### 4 | BESCHICHTUNG

Die Hochleistungsbeschichtung eXedur RIP ist verschleiss- und hitzeresistent. Sie verhindert ein Verkleben der Schneiden und unterstützt den Spänetransport. Das Ergebnis ist eine hohe Standzeit des Werkzeuges.

### **5 | DEGRESSIVE SPIRALNUT - PATENTIERT**

Die degressive Spiralnut, mit einer neuen und patentierten Geometrie, garantiert eine hohe Werkzeugstabilität. Sie sorgt im vorderen Teil für einen guten Spanbruch, im hinteren für eine rasche Späneabfuhr.

### 6 | SPITZENGEOMETRIE

Die Spitzengeometrie ist speziell entwickelt für rost-, säure- und hitzebeständige Stähle:

- Hohe Schneideckenstabilität
- Selbstzentrierung
- Kurze Späne

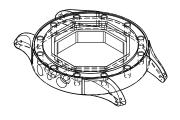




### NEW

# Vorteile und Anwendungen

### FÜR MEHR LEISTUNG IN ROST-, SÄURE- UND HITZEBESTÄNDIGEN STÄHLEN


KÜRZERE BEARBEITUNGSZEIT | Bis zu 10 Mal schneller

■ ERHÖHTE STANDZEIT | Bis zu 15 Mal höhere Standzeit

HOHE PROZESSSICHERHEIT | Dank guter Späneabfuhr

HOHE PRÄZISION | Hohe Fluchtungsgenauigkeit

TIEFE FERTIGUNGSKOSTEN | Schnelle und sichere Prozesse



### TEIL

Uhrengehäuse

### WERKSTOFF

X2CrNiMo 18-14-3 / 1.4435 / AISI 316L

#### **BEARBEITUNG**

- Bohren
- d = 0.6 mm
- Bohrtiefe 3 mm auf BAZ

### WERKZEUG

Mikron Tool - CrazyDrill SST-Inox IK -  $8 \times d$ 

| DATEN         | MIKRON TOOL                         |
|---------------|-------------------------------------|
|               | CrazyDrill SST-Inox<br>- Hartmetall |
| Werkzeugtyp   | - Beschichtet                       |
|               | - Innenkühlung                      |
| Artikelnummer | 2.CD.080060.IK                      |
|               | v <sub>c</sub> = 40 m/min           |
| Schnittdaten  | f = 0.025  mm/U                     |
| Jamiltaatell  | $Q_1 = 1.2 \text{ mm}$              |
|               | $Q_x = 0.9 \text{ mm}$              |























| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE         |
|-----------------------|----------------------------------|
| Dentaltechnik         | Zahnimplantat                    |
| Luft- und Raumfahrt   | Motorenkomponente<br>Kugelgelenk |
| Medizintechnik        | Bauteil für Endoskop             |
| Automobilbau          | Bauteil für Direkteinspritzung   |
| Maschinenbau          | Verriegelungsbolzen              |
| Uhren                 | Uhrengehäuse                     |
| Hydraulik / Pneumatik | Hydraulikventil                  |
| Elektronik / Elektrik | Neon Pin                         |
| Lebensmittelindustrie | Düse                             |
| Energie               | Turbinenschaufel                 |

| MATERIALGRUPPE                            |         | BEISPIELE        |                   |
|-------------------------------------------|---------|------------------|-------------------|
|                                           | Wr. Nr. | DIN              | AISI / ASTM / UNS |
| <b>Gruppe M</b><br>Rostfreie Stähle       | 1.4105  | X6CrMoS17        | 430F              |
|                                           | 1.4112  | X90CrMoV18       | 440B              |
|                                           | 1.4542  | X5CrNiCuNb 16-4  | 630               |
|                                           | 1.4305  | X8CrNiS 18-9     | 303               |
|                                           | 1.4435  | X2CrNiMo 18-14-3 | 316L              |
| Gruppe N<br>Kupfer und<br>Messig bleifrei | 2.004   | Cu-OF / CW008A   | C10100            |
| iviessig bierrier                         | 2.0321  | CuZn37 CW508L    | C27400            |
| <b>Gruppe S1</b> Hitzebeständige Stähle   | 2.4856  |                  | INCONEL 625       |
|                                           | 2.4665  | NiCr22Fe18Mo     | HASTELLOY X       |
| <b>Gruppe S3</b><br>CrCo-Legierungen      | 2.4964  | CoCr20W15Ni      | HAYNES 25         |



# CrazyDrill SST-Inox IK 8 x d

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



Die Variante CrazyDrill SST-Inox Typ IK bis zu 8 x d verfügt über 3 - 4 im Schaft integrierte Kühlkanäle, die für einen effizienten Kühlmittelstrahl sorgen. So wird die Temperatur konstant unter Kontrolle gehalten, die Späne aus der Bohrung gespült und eine verbesserte Standzeit erreicht. Die Schnittparameter dieser Bohrervariante erhöhen sich um 20 – 30 % im Vergleich zur Version mit Kühlmittelzufuhr von aussen.

Die Geometrie dieses Hartmetallbohrers unterscheidet sich wesentlich von heutigen Standards. Die kleinen Querschneiden der Bohrspitze reduzieren die Vorschubkraft und verleihen dem Bohrer gute Zentriereigenschaften. Die besondere Spitzengeometrie generiert sogar in langspanigen Materialien kurze Späne und vermeidet Schneidenausbrüche. Verantwortlich für die gute Späneabfuhr ist eine degressive Spiralnut.

Dank der hervorragenden Selbstzentrierung von CrazyDrill SST-Inox erübrigt sich die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen für Bohrtiefen bis 8 x d.

Nur bei höheren Anforderungen: Für eine hochpräzise Positionsgenauigkeit oder bei unregelmässigen Oberflächen empfiehlt Mikron Tool die Verwendung des Zentrierbohrers CrazyDrill Twicenter bzw. den Pilotbohrer CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

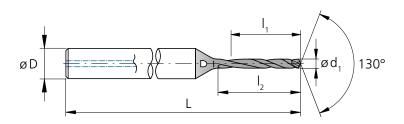
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill SST-Inox IK (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall






**Z**2







| ab Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|----------------|-----------|------|
| ■ ab     |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|          | 2.CD.080030.IK | 0.30     | 2.4            | 2.9            | 3         | 38   |
|          | 2.CD.080035.IK | 0.35     | 2.8            | 3.4            | 3         | 38   |
| •        | 2.CD.080040.IK | 0.40     | 3.2            | 3.9            | 3         | 38   |
|          | 2.CD.080045.IK | 0.45     | 3.6            | 4.4            | 3         | 42   |
|          | 2.CD.080050.IK | 0.50     | 4.0            | 4.9            | 3         | 42   |
|          | 2.CD.080055.IK | 0.55     | 4.4            | 5.4            | 3         | 42   |
| •        | 2.CD.080060.IK | 0.60     | 4.8            | 5.9            | 3         | 42   |
|          | 2.CD.080065.IK | 0.65     | 5.2            | 6.4            | 3         | 45   |
|          | 2.CD.080070.IK | 0.70     | 5.6            | 6.9            | 3         | 45   |
|          | 2.CD.080075.IK | 0.75     | 6.0            | 7.4            | 3         | 45   |
|          | 2.CD.080080.IK | 0.80     | 6.4            | 7.8            | 3         | 45   |
|          | 2.CD.080085.IK | 0.85     | 6.8            | 8.3            | 3         | 45   |
|          | 2.CD.080090.IK | 0.90     | 7.2            | 8.8            | 3         | 45   |
|          | 2.CD.080095.IK | 0.95     | 7.6            | 9.3            | 3         | 48   |
|          | 2.CD.080100.IK | 1.00     | 8.0            | 9.8            | 3         | 48   |
|          | 2.CD.080105.IK | 1.05     | 8.4            | 10.3           | 3         | 48   |
|          | 2.CD.080110.IK | 1.10     | 8.8            | 10.8           | 3         | 48   |
|          | 2.CD.080115.IK | 1.15     | 9.2            | 11.3           | 3         | 48   |

| Lager   | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | <b>D</b> (h6) | L    |
|---------|----------------|----------|----------------|----------------|---------------|------|
| ge<br>■ |                | [mm]     | [mm]           | [mm]           | [mm]          | [mm] |
| •       | 2.CD.080120.IK | 1.20     | 9.6            | 11.8           | 3             | 48   |
| •       | 2.CD.080125.IK | 1.25     | 10.0           | 12.3           | 4             | 52   |
| •       | 2.CD.080130.IK | 1.30     | 10.4           | 12.7           | 4             | 52   |
| •       | 2.CD.080135.IK | 1.35     | 10.8           | 13.2           | 4             | 52   |
| •       | 2.CD.080140.IK | 1.40     | 11.2           | 13.7           | 4             | 52   |
| •       | 2.CD.080145.IK | 1.45     | 11.6           | 14.2           | 4             | 52   |
| •       | 2.CD.080150.IK | 1.50     | 12.0           | 14.7           | 4             | 52   |
| -       | 2.CD.080155.IK | 1.55     | 12.4           | 15.2           | 4             | 55   |
| •       | 2.CD.080160.IK | 1.60     | 12.8           | 15.7           | 4             | 55   |
| •       | 2.CD.080165.IK | 1.65     | 13.2           | 16.2           | 4             | 55   |
| •       | 2.CD.080170.IK | 1.70     | 13.6           | 16.7           | 4             | 55   |
| -       | 2.CD.080175.IK | 1.75     | 14.0           | 17.2           | 4             | 55   |
| •       | 2.CD.080180.IK | 1.80     | 14.4           | 17.6           | 4             | 55   |
| •       | 2.CD.080185.IK | 1.85     | 14.8           | 18.1           | 4             | 55   |
| •       | 2.CD.080190.IK | 1.90     | 15.2           | 18.6           | 4             | 55   |
| •       | 2.CD.080195.IK | 1.95     | 15.6           | 19.1           | 4             | 55   |
| •       | 2.CD.080200.IK | 2.00     | 16.0           | 19.6           | 4             | 55   |

| Ergänzende Produkte       |
|---------------------------|
| CrazyDrill Twicenter      |
| CrazyDrill Pilot SST-Inox |
| CrazyDrill Crosspilot     |



# CrazyDrill SST-Inox IK 8 x d

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                    | Werkstoff-<br>gruppe  | Werkstoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wr.Nr.           | DIN                        | AISI/ASTM/UNS              | <b>V</b> <sub>c</sub><br>[m/min] | Q <sub>1</sub> |  |
|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|----------------------------|----------------------------------|----------------|--|
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0301           | C10                        | AISI 1010                  |                                  |                |  |
|                    | Р                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0401           | C15                        | AISI 1015                  |                                  |                |  |
|                    |                       | Stähle unlegiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1191           | C45E/CK45                  | AISI 1045                  |                                  |                |  |
| P 9                |                       | Rm < 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0044           | S275JR                     | AISI 1020                  |                                  |                |  |
| M                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0715           | 11SMn30                    | AISI 1215                  |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5752           | 15NiCr13                   | ASTM 3415 / AISI 3310      |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7131           | 16MnCr5                    | AISI 5115                  |                                  |                |  |
|                    |                       | Stähle niedriglegiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3505           | 100Cr6                     | AISI 52100                 |                                  |                |  |
|                    |                       | Rm > 900 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7225           | 42CrMo4                    | AISI 4140                  |                                  |                |  |
| , d <sub>1</sub> , |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2842           | 90MnCrV8                   | AISI O2                    |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2379           | X153CrMoV12                | AISI D2                    |                                  |                |  |
| Q1                 |                       | Werkzeugstähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2436           | X210CrW12                  | AISI D4/D6                 |                                  |                |  |
| ĮQ <sub>x</sub>    |                       | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3343           | HS6-5-2C                   | AISI M2 / UNS T11302       |                                  |                |  |
| Qx                 |                       | KIII < 1200 IV/IIIII12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3355           | HS18-0-1                   | AISI T1 / UNS T12001       |                                  |                |  |
|                    |                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4016           | X6Cr17                     | AISI 430 / UNS S43000      |                                  |                |  |
| (///////           | R.A                   | ferritisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4105           | X6CrMoS17                  | AISI 430F                  | 35-50                            | 1xd1-4xd1      |  |
|                    | M                     | Rostfreie Stähle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4034           | X46Cr13                    | AISI 420C                  |                                  |                |  |
|                    |                       | martensitisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4112           | X90CrMoV18                 | AISI 440B                  | 35-50                            | 1xd1-4xd1      |  |
|                    |                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4542           | X5CrNiCuNb 16-4            | AISI 630 / ASTM 17-4 PH    |                                  |                |  |
|                    |                       | martensitisch – PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4545           | X5CrNiCuNb 15-5            | ASTM 15-5 PH               | 35-50                            | 1xd1-4xd1      |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4301           | X5CrNi 18-10               | AISI 304                   |                                  |                |  |
|                    |                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4435           | X2CrNiMo 18-14-3           | AISI 316L                  |                                  |                |  |
|                    |                       | austenitisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4441           | X2CrNiMo 18-15-3           | AISI 316LM                 | 30-45                            | 1xd1-4xd1      |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4539           | X1NiCrMoCu 25-20-5         | AISI 904L                  |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6020           | GG20                       |                            |                                  |                |  |
|                    | 1/                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6020           | GG30                       | ASTM 30<br>ASTM 40B        |                                  |                |  |
|                    | K                     | Gusseisen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7040           | GGG40                      | ASTM 60-40-18              |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7040           | GGG60                      | ASTM 80-60-03              |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                            |                            |                                  |                |  |
|                    | B. II                 | Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2315<br>3.4365 | AlMgSi1                    | ASTM 6351<br>ASTM 7075     |                                  |                |  |
|                    | N                     | Knetlegierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2163           | AlZnMgCu1.5<br>GD-AlSi9Cu3 | ASTM A380                  |                                  |                |  |
|                    |                       | Aluminium<br>Druckgusslegierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | GD-AlSi10Mg                | UNS A03590                 |                                  |                |  |
|                    |                       | Drackgassiegierangen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.004            | Cu-OF / CW008A             | UNS C10100                 |                                  |                |  |
|                    |                       | Kupfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.004            | Cu-ETP / CW004A            | UNS C11000                 | 40-100                           | 4xd1-8xd1      |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0321           | CuZn37 CW508L              | UNS C27400                 |                                  |                |  |
|                    |                       | Messing bleifrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.036            | CuZn40 CW509L              | UNS C28000                 | 40-100                           | 4xd1-8xd1      |  |
|                    |                       | Messing, Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0401           | CuZn39Pb3 / CW614N         |                            |                                  |                |  |
|                    |                       | Rm < 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.102            | CuSn6                      | UNS C51900                 |                                  |                |  |
|                    |                       | Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0966           | CuAl10Ni5Fe4               | UNS C63000                 |                                  |                |  |
|                    |                       | Rm < 600 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.096            | CuAl9Mn2                   | UNS C63200                 |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4856           |                            |                            |                                  |                |  |
|                    | C                     | 115 1 12 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4658           |                            | Inconel 625<br>Inconel 718 |                                  |                |  |
|                    | $S_1$                 | Hitzebeständige<br>Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4617           | NiMo28                     | Hastelloy B-2              | 15-30                            | 0.5xd1-1xd1    |  |
|                    |                       | Startie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4665           | NiCr22Fe18Mo               | Hastelloy X                |                                  |                |  |
|                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7035           | Gr.2                       | ASTM B348 / F67            |                                  |                |  |
|                    | <b>C</b>              | Titan rein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7065           | Gr.4                       | ASTM B348 / F68            |                                  |                |  |
|                    | <b>S</b> <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7165           | TiAl6V4                    | ASTM B348 / F136           |                                  |                |  |
|                    |                       | Titan Legierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.9367           | TiAl6Nb7                   | ASTM F1295                 |                                  |                |  |
|                    | C                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4964           | CoCr20W15Ni                | Haynes 25                  |                                  |                |  |
|                    | $S_3$                 | CrCo-Legierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | CrCoMo28                   | ASTM F1537                 | 40-50                            | 1xd1-4xd1      |  |
|                    |                       | CUTTIL TO THE CONTRACT OF THE |                  |                            |                            |                                  |                |  |
|                    | lH₄                   | Stähle gehärtet < 55 HRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2510           | 100MnCrMoW4                | AISI O1                    |                                  |                |  |
|                    | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                            |                            |                                  |                |  |
|                    | $ H_2 $               | Stähle gehärtet<br>≥ 55 HRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2379           | X153CrMoV12                | AISI D2                    |                                  |                |  |
|                    | 2                     | = JJ I II/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                            |                            |                                  |                |  |



ANWENDUNGSEMPFEHLUNG





| Tad1-2xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             |             |             |              |              |              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-------------|--------------|--------------|--------------|--|--|
| 1xd1-2xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>f</b> [mm/U] |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 | $Q_{x}$         | 0.3-0.5 mm  | 0.6-0.8 mm  | 0.9-1.1 mm  | 1.2-1.4 mm   | 1.5-1.7 mm   | 1.8-2.0 mm   |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1         0.020-0.030         0.030-0.040         0.050-0.060         0.060-0.070         0.070-0.080         0.080-0.100           1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055 | 1vd1 2vd1       | 0.015 0.030 | 0.020020    | 0.030 0.040 | 0.040, 0.050 | 0.050, 0.060 | 0.060, 0.070 |  |  |
| 1xd1-2xd1         0.015-0.020         0.020-0.025         0.025-0.035         0.040-0.050         0.050-0.060         0.060-0.070           1xd1-2xd1         0.010-0.020         0.015-0.025         0.025-0.035         0.035-0.045         0.045-0.055         0.055-0.060           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           4xd1         0.040-0.060         0.050-0.080         0.060-0.100         0.080-0.120         0.100-0.150         0.120-0.180           0.5xd1         0.010-0.015         0.015-0.020         0.020-0.025         0.025-0.035         0.035-0.040         0.045-0.055                                                                                                                                             | 1xu1-2xu1       | 0.015-0.020 | 0.020-0.030 | 0.030-0.040 | 0.040-0.030  | 0.050-0.060  | 0.060-0.070  |  |  |
| 1xd1-2xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1xd1-2xd1       | 0.020-0.030 | 0.030-0.040 | 0.050-0.060 | 0.060-0.070  | 0.070-0.080  | 0.080-0.100  |  |  |
| 4xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1xd1-2xd1       | 0.015-0.020 | 0.020-0.025 | 0.025-0.035 | 0.040-0.050  | 0.050-0.060  | 0.060-0.070  |  |  |
| 4xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1xd1-2xd1       | 0.010-0.020 | 0.015-0.025 | 0.025-0.035 | 0.035-0.045  | 0.045-0.055  | 0.055-0.060  |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 4xd1     0.040-0.060     0.050-0.080     0.060-0.100     0.080-0.120     0.100-0.150     0.120-0.180       0.5xd1     0.010-0.015     0.015-0.020     0.020-0.025     0.025-0.035     0.035-0.040     0.045-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 0.5xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4xd1            | 0.040-0.060 | 0.050-0.080 | 0.060-0.100 | 0.080-0.120  | 0.100-0.150  | 0.120-0.180  |  |  |
| 0.5xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4xd1            | 0.040-0.060 | 0.050-0.080 | 0.060-0.100 | 0.080-0.120  | 0.100-0.150  | 0.120-0.180  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Mar           | 0.010 0.000 | 0.030 0.000 | 0.000 0.100 | 0.000 0.120  | 0.100 0.150  | 0.120 0.100  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5xd1          | 0.010-0.015 | 0.015-0.020 | 0.020-0.025 | 0.025-0.035  | 0.035-0.040  | 0.045-0.055  |  |  |
| 1xd1-2xd1 0.020-0.030 0.030-0.040 0.050-0.060 0.060-0.070 0.070-0.080 0.080-0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1 0.020-0.030 0.030-0.040 0.050-0.060 0.060-0.070 0.070-0.080 0.080-0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1 0.020-0.030 0.030-0.040 0.050-0.060 0.060-0.070 0.070-0.080 0.080-0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
| 1xd1-2xd1 0.020-0.030 0.030-0.040 0.050-0.060 0.060-0.070 0.070-0.080 0.080-0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1xd1-2xd1       | 0.020-0.030 | 0.030-0.040 | 0.050-0.060 | 0.060-0.070  | 0.070-0.080  | 0.080-0.100  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |             |             |              |              |              |  |  |



## CrazyDrill SST-Inox IN 8 x d

### **BOHREN MIT AUSSENKÜHLUNG**



Die Variante CrazyDrill SST-Inox Typ IN bis zu 8 x d ist vorgesehen für Maschinen, welche nicht über Spindeln mit Innenkühlung verfügen.

Die Geometrie dieses Hartmetallbohrers unterscheidet sich wesentlich von heutigen Standards. Die kleinen Querschneiden der Bohrspitze reduzieren die Vorschubkraft, verleihen dem Bohrer gute Zentriereigenschaften, generieren sogar in langspanigen Materialien kurze Späne und vermeiden Schneidenausbrüche. Verantwortlich für guten Spänebruch und -abfuhr ist eine degressive Spiralnut.

Dank der hervorragenden Selbstzentrierung von CrazyDrill SST-Inox erübrigt sich die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen für Bohrtiefen bis 8 x d.

Nur bei höheren Anforderungen: Für eine hochpräzise Positionsgenauigkeit oder bei unregelmässigen Oberflächen empfiehlt Mikron Tool die Verwendung des Zentrierbohrers CrazyDrill Twicenter bzw. den Pilotbohrer CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

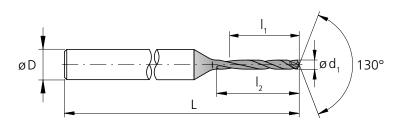
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill SST-Inox IN (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall






**Z**2







| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|------------------------------|--------------------|-----------|
|            | 2.CD.080030.IN | 0.30                                       | 2.4                        | 2.9                          | 3                  | 38        |
|            | 2.CD.080035.IN | 0.35                                       | 2.8                        | 3.4                          | 3                  | 38        |
| •          | 2.CD.080040.IN | 0.40                                       | 3.2                        | 3.9                          | 3                  | 38        |
|            | 2.CD.080045.IN | 0.45                                       | 3.6                        | 4.4                          | 3                  | 42        |
| •          | 2.CD.080050.IN | 0.50                                       | 4.0                        | 4.9                          | 3                  | 42        |
|            | 2.CD.080055.IN | 0.55                                       | 4.4                        | 5.4                          | 3                  | 42        |
| •          | 2.CD.080060.IN | 0.60                                       | 4.8                        | 5.9                          | 3                  | 42        |
|            | 2.CD.080065.IN | 0.65                                       | 5.2                        | 6.4                          | 3                  | 45        |
|            | 2.CD.080070.IN | 0.70                                       | 5.6                        | 6.9                          | 3                  | 45        |
|            | 2.CD.080075.IN | 0.75                                       | 6.0                        | 7.4                          | 3                  | 45        |
| •          | 2.CD.080080.IN | 0.80                                       | 6.4                        | 7.8                          | 3                  | 45        |
|            | 2.CD.080085.IN | 0.85                                       | 6.8                        | 8.3                          | 3                  | 45        |
|            | 2.CD.080090.IN | 0.90                                       | 7.2                        | 8.8                          | 3                  | 45        |
|            | 2.CD.080095.IN | 0.95                                       | 7.6                        | 9.3                          | 3                  | 48        |
|            | 2.CD.080100.IN | 1.00                                       | 8.0                        | 9.8                          | 3                  | 48        |
|            | 2.CD.080105.IN | 1.05                                       | 8.4                        | 10.3                         | 3                  | 48        |
| -          | 2.CD.080110.IN | 1.10                                       | 8.8                        | 10.8                         | 3                  | 48        |
|            | 2.CD.080115.IN | 1.15                                       | 9.2                        | 11.3                         | 3                  | 48        |

| Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | I <sub>2</sub> | D<br>(h6) | L    |
|-------|----------------|----------|----------------|----------------|-----------|------|
| ab =  |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •     | 2.CD.080120.IN | 1.20     | 9.6            | 11.8           | 3         | 48   |
| •     | 2.CD.080125.IN | 1.25     | 10.0           | 12.3           | 3         | 52   |
| •     | 2.CD.080130.IN | 1.30     | 10.4           | 12.7           | 3         | 52   |
| •     | 2.CD.080135.IN | 1.35     | 10.8           | 13.2           | 3         | 52   |
| •     | 2.CD.080140.IN | 1.40     | 11.2           | 13.7           | 3         | 52   |
| •     | 2.CD.080145.IN | 1.45     | 11.6           | 14.2           | 3         | 52   |
| •     | 2.CD.080150.IN | 1.50     | 12.0           | 14.7           | 3         | 52   |
| •     | 2.CD.080155.IN | 1.55     | 12.4           | 15.2           | 3         | 55   |
| •     | 2.CD.080160.IN | 1.60     | 12.8           | 15.7           | 3         | 55   |
| •     | 2.CD.080165.IN | 1.65     | 13.2           | 16.2           | 3         | 55   |
| •     | 2.CD.080170.IN | 1.70     | 13.6           | 16.7           | 3         | 55   |
| •     | 2.CD.080175.IN | 1.75     | 14.0           | 17.2           | 3         | 55   |
| •     | 2.CD.080180.IN | 1.80     | 14.4           | 17.6           | 3         | 55   |
| •     | 2.CD.080185.IN | 1.85     | 14.8           | 18.1           | 3         | 55   |
| •     | 2.CD.080190.IN | 1.90     | 15.2           | 18.6           | 3         | 55   |
|       | 2.CD.080195.IN | 1.95     | 15.6           | 19.1           | 3         | 55   |
|       | 2.CD.080200.IN | 2.00     | 16.0           | 19.6           | 3         | 55   |

| Ergänzende Produkte       |
|---------------------------|
| CrazyDrill Twicenter      |
| CrazyDrill Pilot SST-Inox |
| CrazyDrill Crosspilot     |
|                           |



# CrazyDrill SST-Inox IN 8 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                | Werkstoff-<br>gruppe  | Werkstoff                         | Wr.Nr.           | DIN                | AISI/ASTM/UNS                      | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_1$   |  |
|----------------|-----------------------|-----------------------------------|------------------|--------------------|------------------------------------|----------------------------------|------------------|--|
|                |                       |                                   | 1.0301           | C10                | AISI 1010                          |                                  |                  |  |
|                | D                     |                                   | 1.0401           | C15                | AISI 1015                          |                                  |                  |  |
|                | P                     | Stähle unlegiert                  | 1.1191           | C45E/CK45          | AISI 1045                          |                                  |                  |  |
|                |                       | Rm < 800 N/mm <sup>2</sup>        | 1.0044           | S275JR             | AISI 1020                          |                                  |                  |  |
| //             |                       |                                   | 1.0044           | 11SMn30            | AISI 1020                          |                                  |                  |  |
| ()//           |                       |                                   |                  |                    |                                    |                                  |                  |  |
| Y W            |                       |                                   | 1.5752           | 15NiCr13           | ASTM 3415 / AISI 3310<br>AISI 5115 |                                  |                  |  |
|                |                       | Stähle niedriglegiert             | 1.7131           | 16MnCr5<br>100Cr6  |                                    |                                  |                  |  |
|                |                       | Rm > 900 N/mm <sup>2</sup>        | 1.3505           |                    | AISI 52100                         |                                  |                  |  |
|                |                       |                                   | 1.7225           | 42CrMo4            | AISI 4140                          |                                  |                  |  |
| <del>d1</del>  |                       |                                   | 1.2842           | 90MnCrV8           | AISI O2                            |                                  |                  |  |
| Q <sub>1</sub> |                       | Werkzeugstähle                    | 1.2379           | X153CrMoV12        | AISI D2                            |                                  |                  |  |
|                |                       | hochlegiert                       | 1.2436           | X210CrW12          | AISI D4/D6                         |                                  |                  |  |
| Qx<br>Qx       |                       | Rm < 1200 N/mm <sup>2</sup>       | 1.3343           | HS6-5-2C           | AISI M2 / UNS T11302               |                                  |                  |  |
|                |                       |                                   | 1.3355           | HS18-0-1           | AISI T1 / UNS T12001               |                                  |                  |  |
|                |                       | Rostfreie Stähle-                 | 1.4016           | X6Cr17             | AISI 430 / UNS S43000              | 30-40                            | 0.5xd1 – 1xd1    |  |
| <del>~~~</del> | M                     | ferritisch                        | 1.4105           | X6CrMoS17          | AISI 430F                          | 30-40                            | 0.5xu1 – 1xu1    |  |
|                | IVI                   | Rostfreie Stähle-                 | 1.4034           | X46Cr13            | AISI 420C                          | 30-40                            | 0.5xd1 – 1xd1    |  |
|                |                       | martensitisch                     | 1.4112           | X90CrMoV18         | AISI 440B                          | 30-40                            | 0.3x01-1x01      |  |
|                |                       | Rostfreie Stähle-                 | 1.4542           | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH            | 20. 40                           | 0.5xd1 – 1xd1    |  |
|                |                       | martensitisch – PH                | 1.4545           | X5CrNiCuNb 15-5    | ASTM 15-5 PH                       | 30-40                            | 0.5xu1 – 1xu1    |  |
|                |                       |                                   | 1.4301           | X5CrNi 18-10       | AISI 304                           | 25–30                            |                  |  |
|                |                       | Rostfreie Stähle-<br>austenitisch | 1.4435           | X2CrNiMo 18-14-3   | AISI 316L                          |                                  | 0.5xd1 – 1xd1    |  |
|                |                       |                                   | 1.4441           | X2CrNiMo 18-15-3   | AISI 316LM                         |                                  | U.5XUT – IXUT    |  |
|                |                       |                                   | 1.4539           | X1NiCrMoCu 25-20-5 | AISI 904L                          |                                  |                  |  |
|                |                       |                                   | 0.6020           | GG20               | ASTM 30                            |                                  |                  |  |
|                | K                     | Gusseisen                         | 0.6030           | GG30               | ASTM 40B                           |                                  |                  |  |
|                |                       |                                   | 0.7040           | GGG40              | ASTM 60-40-18                      |                                  |                  |  |
|                |                       |                                   | 0.7060           | GGG60              | ASTM 80-60-03                      |                                  |                  |  |
|                |                       |                                   |                  |                    |                                    |                                  |                  |  |
|                | B. II                 | Aluminium                         | 3.2315           | AlMgSi1            | ASTM 6351<br>ASTM 7075             |                                  |                  |  |
|                | N                     | Knetlegierungen                   | 3.4365<br>3.2163 | AlZnMgCu1.5        |                                    |                                  |                  |  |
|                |                       | Aluminium<br>Druckgusslegierungen |                  | GD-AlSi9Cu3        | ASTM A380                          |                                  |                  |  |
|                |                       | Druckgussiegierungen              |                  | GD-AlSi10Mg        | UNS A03590                         | 30-100                           |                  |  |
|                |                       | Kupfer                            | 2.004            | Cu-OF / CW008A     | UNS C10100                         |                                  | 2xd1-4xd1        |  |
|                |                       |                                   | 2.0065           | Cu-ETP / CW004A    | UNS C11000                         |                                  |                  |  |
|                |                       | Messing bleifrei                  | 2.0321           | CuZn37 CW508L      | UNS C27400                         | 30-100                           | 1xd1-4xd1        |  |
|                |                       |                                   | 2.036            | CuZn40 CW509L      | UNS C28000                         |                                  |                  |  |
|                |                       | Messing, Bronze                   | 2.0401           | CuZn39Pb3 / CW614N |                                    |                                  |                  |  |
|                |                       | Rm < 400 N/mm <sup>2</sup>        | 2.102            | CuSn6              | UNS C51900                         |                                  |                  |  |
|                |                       | Bronze                            | 2.0966           | CuAl10Ni5Fe4       | UNS C63000                         |                                  |                  |  |
|                |                       | Rm < 600 N/mm <sup>2</sup>        | 2.096            | CuAl9Mn2           | UNS C63200                         |                                  |                  |  |
|                |                       |                                   | 2.4856           |                    | Inconel 625                        |                                  |                  |  |
|                | S <sub>1</sub>        | Hitzebeständige                   | 2.4668           |                    | Inconel 718                        | 15-25                            | 0.25xd1-0.5xd1   |  |
|                | 91                    | Stähle                            | 2.4617           | NiMo28             | Hastelloy B-2                      | 13-23                            | 0.23Ad1 = 0.3Ad1 |  |
|                |                       |                                   | 2.4665           | NiCr22Fe18Mo       | Hastelloy X                        |                                  |                  |  |
|                |                       | Titan rein                        | 3.7035           | Gr.2               | ASTM B348 / F67                    |                                  |                  |  |
|                | S <sub>2</sub>        | TRAITIEIII                        | 3.7065           | Gr.4               | ASTM B348 / F68                    |                                  |                  |  |
|                | 2                     | Titan Legierungen                 | 3.7165           | TiAl6V4            | ASTM B348 / F136                   |                                  |                  |  |
|                |                       | Thair Legierungen                 | 9.9367           | TiAl6Nb7           | ASTM F1295                         |                                  |                  |  |
|                | <b>S</b> <sub>3</sub> | CrCo-Legierungen                  | 2.4964           | CoCr20W15Ni        | Haynes 25                          | 25-35                            | 0.5xd1-1xd1      |  |
|                | <b>3</b>              | CrCo-Legierungen                  |                  | CrCoMo28           | ASTM F1537                         | 25-55                            | U.SXUT - TXUT    |  |
|                | H₁                    | Stähle gehärtet<br>< 55 HRC       | 1.2510           | 100MnCrMoW4        | AISI O1                            |                                  |                  |  |
|                | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC       | 1.2379           | X153CrMoV12        | AISI D2                            |                                  |                  |  |
|                |                       |                                   |                  |                    |                                    |                                  |                  |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U] |                               |                               |                               |                               |                               |                               |  |  |
|-----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
| Q <sub>x</sub>  | Ød1<br>0.3-0.5 mm<br><b>f</b> | Ød1<br>0.6-0.8 mm<br><b>f</b> | Ød1<br>0.9–1.1 mm<br><b>f</b> | Ød1<br>1.2–1.4 mm<br><b>f</b> | Ød1<br>1.5–1.7 mm<br><b>f</b> | Ød1<br>1.8–2.0 mm<br><b>f</b> |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
| 0.5xd1          | 0.010-0.015                   | 0.015-0.025                   | 0.025-0.030                   | 0.030-0.040                   | 0.040-0.050                   | 0.050-0.060                   |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
| 0.5xd1          | 0.015-0.025                   | 0.025-0.035                   | 0.035-0.040                   | 0.040-0.050                   | 0.050-0.060                   | 0.060-0.070                   |  |  |
| 0.5xd1          | 0.010-0.015                   | 0.015-0.020                   | 0.020-0.030                   | 0.030-0.040                   | 0.040-0.050                   | 0.050-0.060                   |  |  |
| 0.5xd1          | 0.010-0.015                   | 0.015-0.020                   | 0.020-0.030                   | 0.030-0.040                   | 0.040-0.045                   | 0.040-0.060                   |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
| 2xd1            | 0.030-0.060                   | 0.040-0.080                   | 0.050-0.100                   | 0.060-0.120                   | 0.070-0.150                   | 0.080-0.180                   |  |  |
| 1xd1-2xd1       | 0.030-0.060                   | 0.040-0.080                   | 0.050-0.100                   | 0.060-0.120                   | 0.070-0.150                   | 0.080-0.180                   |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
| 0.25xd1         | 0.005-0.010                   | 0.010 -0.015                  | 0.015-0.020                   | 0.020-0.025                   | 0.030-0.035                   | 0.030-0.040                   |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
| 0.5xd1          | 0.015-0.025                   | 0.025-0.035                   | 0.040-0.050                   | 0.050-0.060                   | 0.060-0.070                   | 0.070-0.080                   |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |
|                 |                               |                               |                               |                               |                               |                               |  |  |



### **NEW**

## CrazyDrill SST-Inox IK 12 x d

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



Die Variante CrazyDrill SST-Inox Typ IK bis zu 12 x d verfügt über 3 - 4 im Schaft integrierte Kühlkanäle, die für einen effizienten Kühlmittelstrahl sorgen. So wird die Temperatur konstant unter Kontrolle gehalten, die Späne aus der Bohrung gespült und eine verbesserte Standzeit erreicht. Die Schnittparameter dieser Bohrervariante erhöhen sich um 20 – 30 % im Vergleich zur Version mit Kühlmittelzufuhr von aussen.

Die Geometrie dieses Hartmetallbohrers unterscheidet sich wesentlich von heutigen Standards. Die kleinen Querschneiden der Bohrspitze reduzieren die Vorschubkraft. Die besondere Spitzengeometrie generiert sogar in langspanigen Materialien kurze Späne und vermeidet Schneidenausbrüche. Verantwortlich für die gute Späneabfuhr ist eine degressive Spiralnut.

Mikron Tool empfiehlt die Verwendung des Zentrierbohrers CrazyDrill Twicenter bzw. den Pilotbohrer CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

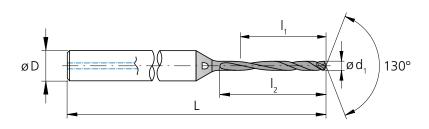
### Hinweis

Sie haben nicht die passende Variante von CrazyDrill SST-Inox IK (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall






**Z**2







| ab Lager       | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------------|----------------|----------|----------------|----------------|-----------|------|
| _ <del> </del> |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|                | 2.CD.120030.IK | 0.30     | 3.6            | 4.1            | 3         | 38   |
|                | 2.CD.120035.IK | 0.35     | 4.2            | 4.8            | 3         | 38   |
| •              | 2.CD.120040.IK | 0.40     | 4.8            | 5.5            | 3         | 38   |
|                | 2.CD.120045.IK | 0.45     | 5.4            | 6.2            | 3         | 42   |
|                | 2.CD.120050.IK | 0.50     | 6.0            | 6.9            | 3         | 42   |
|                | 2.CD.120055.IK | 0.55     | 6.6            | 7.6            | 3         | 42   |
| •              | 2.CD.120060.IK | 0.60     | 7.2            | 8.3            | 3         | 42   |
|                | 2.CD.120065.IK | 0.65     | 7.8            | 9.0            | 3         | 45   |
|                | 2.CD.120070.IK | 0.70     | 8.4            | 9.7            | 3         | 45   |
|                | 2.CD.120075.IK | 0.75     | 9.0            | 10.4           | 3         | 45   |
|                | 2.CD.120080.IK | 0.80     | 9.6            | 11.0           | 3         | 45   |
|                | 2.CD.120085.IK | 0.85     | 10.2           | 11.7           | 3         | 45   |
|                | 2.CD.120090.IK | 0.90     | 10.8           | 12.4           | 3         | 45   |
|                | 2.CD.120095.IK | 0.95     | 11.4           | 13.1           | 3         | 48   |
|                | 2.CD.120100.IK | 1.00     | 12.0           | 13.8           | 3         | 48   |
|                | 2.CD.120105.IK | 1.05     | 12.6           | 14.5           | 3         | 48   |
|                | 2.CD.120110.IK | 1.10     | 13.2           | 15.2           | 3         | 48   |
|                | 2.CD.120115.IK | 1.15     | 13.8           | 15.9           | 3         | 48   |

| Lager      | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|------------|----------------|----------|----------------|----------------|-----------|------|
| <b>a</b> b |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|            | 2.CD.120120.IK | 1.20     | 14.4           | 16.6           | 3         | 48   |
| •          | 2.CD.120125.IK | 1.25     | 15.0           | 17.3           | 4         | 55   |
| •          | 2.CD.120130.IK | 1.30     | 15.6           | 17.9           | 4         | 55   |
| •          | 2.CD.120135.IK | 1.35     | 16.2           | 18.6           | 4         | 55   |
| •          | 2.CD.120140.IK | 1.40     | 16.8           | 19.3           | 4         | 55   |
| •          | 2.CD.120145.IK | 1.45     | 17.4           | 20.0           | 4         | 55   |
| •          | 2.CD.120150.IK | 1.50     | 18.0           | 20.7           | 4         | 55   |
| •          | 2.CD.120155.IK | 1.55     | 18.6           | 21.4           | 4         | 58   |
| •          | 2.CD.120160.IK | 1.60     | 19.2           | 22.1           | 4         | 58   |
| •          | 2.CD.120165.IK | 1.65     | 19.8           | 22.8           | 4         | 58   |
| •          | 2.CD.120170.IK | 1.70     | 20.4           | 23.5           | 4         | 58   |
| •          | 2.CD.120175.IK | 1.75     | 21.0           | 24.2           | 4         | 58   |
| •          | 2.CD.120180.IK | 1.80     | 21.6           | 24.8           | 4         | 58   |
|            | 2.CD.120185.IK | 1.85     | 22.2           | 25.5           | 4         | 60   |
| •          | 2.CD.120190.IK | 1.90     | 22.8           | 26.2           | 4         | 60   |
|            | 2.CD.120195.IK | 1.95     | 23.4           | 26.9           | 4         | 60   |
| •          | 2.CD.120200.IK | 2.00     | 24.0           | 27.6           | 4         | 60   |

| Ergänzende Produkte       |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| CrazyDrill Twicenter      |  |  |  |  |  |
| CrazyDrill Pilot SST-Inox |  |  |  |  |  |
| CrazyDrill Crosspilot     |  |  |  |  |  |



# NEW

# CrazyDrill SST-Inox IK 12 x d

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstof<br>gruppe          | f-<br>Werkstoff                                     | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$         |  |
|-----------------------------|-----------------------------------------------------|--------|--------------------|-------------------------|----------------------------------|---------------|--|
|                             |                                                     | 1.0301 | C10                | AISI 1010               |                                  |               |  |
| P                           | Guille I. I.                                        | 1.0401 | C15                | AISI 1015               |                                  |               |  |
|                             | Stähle unlegiert                                    | 1.1191 | C45E/CK45          | AISI 1045               |                                  |               |  |
| , X, X                      | Rm < 800 N/mm <sup>2</sup>                          | 1.0044 | S275JR             | AISI 1020               |                                  |               |  |
|                             |                                                     | 1.0715 | 11SMn30            | AISI 1215               |                                  |               |  |
|                             |                                                     | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |               |  |
|                             | Camble of advisors from                             | 1.7131 | 16MnCr5            | AISI 5115               |                                  |               |  |
|                             | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6             | AISI 52100              |                                  |               |  |
|                             | 1411 > 300 14111111                                 | 1.7225 | 42CrMo4            | AISI 4140               |                                  |               |  |
| _d1_                        |                                                     | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |               |  |
|                             |                                                     | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |               |  |
| Q <sub>1</sub>              | Werkzeugstähle<br>hochlegiert                       | 1.2436 | X210CrW12          | AISI D4/D6              |                                  |               |  |
|                             | Rm < 1200 N/mm <sup>2</sup>                         | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |               |  |
| Qx                          | 1411 < 1200 14/11111                                | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |               |  |
| <sup>†</sup> Q <sub>x</sub> | Rostfreie Stähle-                                   | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |               |  |
|                             | ferritisch                                          | 1.4105 | X6CrMoS17          | AISI 430F               | 35-50                            | 1xd1-4xd1     |  |
| M                           | Rostfreie Stähle-                                   |        | X46Cr13            | AISI 420C               |                                  |               |  |
|                             | martensitisch                                       | 1.4112 | X90CrMoV18         | AISI 440B               | 35-50                            | 1xd1-4xd1     |  |
|                             | Rostfreie Stähle-                                   | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |               |  |
|                             | martensitisch – PH                                  | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 35-50                            | 1xd1-4xd1     |  |
|                             |                                                     | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |               |  |
|                             | Rostfreie Stähle-                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |               |  |
|                             | austenitisch                                        | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              | 30-45                            | 1xd1-4xd1     |  |
|                             |                                                     | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |               |  |
|                             |                                                     | 0.6020 | GG20               | ASTM 30                 |                                  |               |  |
| 1/                          | Gusseisen                                           | 0.6020 | GG30               | ASTM 40B                |                                  |               |  |
| K                           |                                                     | 0.7040 | GGG40              | ASTM 60-40-18           |                                  |               |  |
|                             |                                                     | 0.7040 | GGG60              | ASTM 80-60-03           |                                  |               |  |
|                             |                                                     |        |                    |                         |                                  |               |  |
|                             | Aluminium                                           | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |               |  |
| N                           | Knetlegierungen                                     | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |               |  |
|                             | Aluminium                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |               |  |
|                             | Druckgusslegierungen                                |        | GD-AlSi10Mg        | UNS A03590              |                                  |               |  |
|                             | Kupfer                                              | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40-100                           | 4xd1-8xd1     |  |
|                             |                                                     | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |               |  |
|                             | Messing bleifrei                                    | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40-100                           | 4xd1-8xd1     |  |
|                             | -                                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |               |  |
|                             | Messing, Bronze                                     | 2.0401 | CuZn39Pb3 / CW614N |                         |                                  |               |  |
|                             | Rm < 400 N/mm <sup>2</sup>                          | 2.102  | CuSn6              | UNS C51900              |                                  |               |  |
|                             | Bronze<br>Rm < 600 N/mm <sup>2</sup>                | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                                  |               |  |
|                             | KIII < 600 IV/IIIII <sup>2</sup>                    | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |               |  |
|                             |                                                     | 2.4856 |                    | Inconel 625             |                                  |               |  |
| $ S_1 $                     | Hitzebeständige                                     | 2.4668 |                    | Inconel 718             | 15-30                            | 0.5xd1 – 1xd1 |  |
| <b>3</b> 1                  | Stähle                                              | 2.4617 | NiMo28             | Hastelloy B-2           | .5 50                            | o.sxa i ixa i |  |
|                             |                                                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |               |  |
|                             | Titan rein                                          | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |               |  |
| $S_2$                       | Train rein                                          | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |               |  |
| 2                           | Titan Legierungen                                   | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |               |  |
|                             | Than Ecgiciungen                                    | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |               |  |
| S <sub>3</sub>              | CrCo-Legierungen                                    | 2.4964 | CoCr20W15Ni        | Haynes 25               | 40-50                            | 1xd1-4xd1     |  |
| <b>3</b>                    | Ci Co-Legierungen                                   |        | CrCoMo28           | ASTM F1537              | 4030                             | 1701-4701     |  |
| H₁                          | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |               |  |
| H <sub>2</sub>              | Stähle gehärtet<br>≥ 55 HRC                         | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |               |  |



ANWENDUNGSEMPFEHLUNG





|           |                                      |                                      | <b>f</b> [mi                         | m/U]                          |                                      |                               |
|-----------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|
| $Q_{x}$   | <b>Ød1</b><br>0.3-0.5 mm<br><b>f</b> | <b>Ød1</b><br>0.6–0.8 mm<br><b>f</b> | <b>Ød1</b><br>0.9–1.1 mm<br><b>f</b> | Ød1<br>1.2-1.4 mm<br><b>f</b> | <b>Ød1</b><br>1.5–1.7 mm<br><b>f</b> | Ød1<br>1.8-2.0 mm<br><b>f</b> |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
| 1xd1-2xd1 | 0.015-0.020                          | 0.020-0.030                          | 0.030-0.040                          | 0.040-0.050                   | 0.050-0.060                          | 0.060-0.070                   |
| 1xd1-2xd1 | 0.020-0.030                          | 0.030-0.040                          | 0.050-0.060                          | 0.060-0.070                   | 0.070-0.080                          | 0.080-0.100                   |
| 1xd1-2xd1 | 0.015-0.020                          | 0.020-0.025                          | 0.025-0.035                          | 0.040-0.050                   | 0.050-0.060                          | 0.060-0.070                   |
| 1xd1-2xd1 | 0.010-0.020                          | 0.015-0.025                          | 0.025-0.035                          | 0.035-0.045                   | 0.045-0.055                          | 0.055-0.060                   |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
| 4xd1      | 0.040-0.060                          | 0.050-0.080                          | 0.060-0.100                          | 0.080-0.120                   | 0.100-0.150                          | 0.120-0.180                   |
| 4xd1      | 0.040-0.060                          | 0.050-0.080                          | 0.060-0.100                          | 0.080-0.120                   | 0.100-0.150                          | 0.120-0.180                   |
|           |                                      |                                      |                                      |                               |                                      |                               |
| 0.5xd1    | 0.010-0.015                          | 0.015-0.020                          | 0.020-0.025                          | 0.025-0.035                   | 0.035-0.040                          | 0.045-0.055                   |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |
| 1xd1-2xd1 | 0.020-0.030                          | 0.030-0.040                          | 0.050-0.060                          | 0.060-0.070                   | 0.070-0.080                          | 0.080-0.100                   |
|           |                                      |                                      |                                      |                               |                                      |                               |
|           |                                      |                                      |                                      |                               |                                      |                               |



### **NEW**

## CrazyDrill SST-Inox IN 12 x d

### **BOHREN MIT AUSSENKÜHLUNG**



Die Variante CrazyDrill SST-Inox Typ IN bis zu 12 x d ist vorgesehen für Maschinen, welche nicht über Spindeln mit Innenkühlung verfügen.

Die Geometrie dieses Hartmetallbohrers unterscheidet sich wesentlich von heutigen Standards. Die kleinen Querschneiden der Bohrspitze reduzieren die Vorschubkraft, generieren sogar in langspanigen Materialien kurze Späne und vermeiden Schneidenausbrüche. Verantwortlich für guten Spänebruch und gute -abfuhr ist eine degressive Spiralnut.

Mikron Tool empfiehlt die Verwendung des Zentrierbohrers CrazyDrill Twicenter bzw. den Pilotbohrer CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

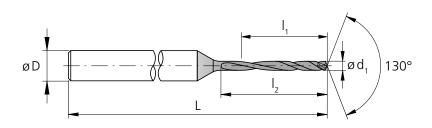
### Hinweis

Sie haben nicht die passende Variante von CrazyDrill SST-Inox IN (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



Hartmetall






**Z**2







| ab Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | I <sub>2</sub> | <b>D</b> (h6) | L    |
|----------|----------------|----------|----------------|----------------|---------------|------|
| ■ ak     |                | [mm]     | [mm]           | [mm]           | [mm]          | [mm] |
|          | 2.CD.120030.IN | 0.30     | 3.6            | 4.1            | 3             | 38   |
|          | 2.CD.120035.IN | 0.35     | 4.2            | 4.8            | 3             | 38   |
| •        | 2.CD.120040.IN | 0.40     | 4.8            | 5.5            | 3             | 38   |
| •        | 2.CD.120045.IN | 0.45     | 5.4            | 6.2            | 3             | 42   |
|          | 2.CD.120050.IN | 0.50     | 6.0            | 6.9            | 3             | 42   |
| •        | 2.CD.120055.IN | 0.55     | 6.6            | 7.6            | 3             | 42   |
| •        | 2.CD.120060.IN | 0.60     | 7.2            | 8.3            | 3             | 42   |
| -        | 2.CD.120065.IN | 0.65     | 7.8            | 9.0            | 3             | 45   |
|          | 2.CD.120070.IN | 0.70     | 8.4            | 9.7            | 3             | 45   |
|          | 2.CD.120075.IN | 0.75     | 9.0            | 10.4           | 3             | 45   |
|          | 2.CD.120080.IN | 0.80     | 9.6            | 11.0           | 3             | 45   |
| -        | 2.CD.120085.IN | 0.85     | 10.2           | 11.7           | 3             | 45   |
|          | 2.CD.120090.IN | 0.90     | 10.8           | 12.4           | 3             | 45   |
|          | 2.CD.120095.IN | 0.95     | 11.4           | 13.1           | 3             | 48   |
|          | 2.CD.120100.IN | 1.00     | 12.0           | 13.8           | 3             | 48   |
| -        | 2.CD.120105.IN | 1.05     | 12.6           | 14.5           | 3             | 48   |
|          | 2.CD.120110.IN | 1.10     | 13.2           | 15.2           | 3             | 48   |
|          | 2.CD.120115.IN | 1.15     | 13.8           | 15.9           | 3             | 48   |

| ab Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | I <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|----------------|-----------|------|
| ■ ac     |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.CD.120120.IN | 1.20     | 14.4           | 16.6           | 3         | 48   |
| •        | 2.CD.120125.IN | 1.25     | 15.0           | 17.3           | 3         | 55   |
| •        | 2.CD.120130.IN | 1.30     | 15.6           | 17.9           | 3         | 55   |
| •        | 2.CD.120135.IN | 1.35     | 16.2           | 18.6           | 3         | 55   |
| •        | 2.CD.120140.IN | 1.40     | 16.8           | 19.3           | 3         | 55   |
| •        | 2.CD.120145.IN | 1.45     | 17.4           | 20.0           | 3         | 55   |
| •        | 2.CD.120150.IN | 1.50     | 18.0           | 20.7           | 3         | 55   |
| •        | 2.CD.120155.IN | 1.55     | 18.6           | 21.4           | 3         | 58   |
| •        | 2.CD.120160.IN | 1.60     | 19.2           | 22.1           | 3         | 58   |
| •        | 2.CD.120165.IN | 1.65     | 19.8           | 22.8           | 3         | 58   |
| •        | 2.CD.120170.IN | 1.70     | 20.4           | 23.5           | 3         | 58   |
| •        | 2.CD.120175.IN | 1.75     | 21.0           | 24.2           | 3         | 58   |
| •        | 2.CD.120180.IN | 1.80     | 21.6           | 24.8           | 3         | 58   |
| •        | 2.CD.120185.IN | 1.85     | 22.2           | 25.5           | 3         | 60   |
| •        | 2.CD.120190.IN | 1.90     | 22.8           | 26.2           | 3         | 60   |
| •        | 2.CD.120195.IN | 1.95     | 23.4           | 26.9           | 3         | 60   |
| •        | 2.CD.120200.IN | 2.00     | 24.0           | 27.6           | 3         | 60   |

| Ergänzende Produkte       |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|
| CrazyDrill Twicenter      |  |  |  |  |  |  |
| CrazyDrill Pilot SST-Inox |  |  |  |  |  |  |
| CrazyDrill Crosspilot     |  |  |  |  |  |  |



## NEW

# CrazyDrill SST-Inox IN 12 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                               | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$          |  |
|----------------------|-----------------------------------------|--------|--------------------|-------------------------|----------------------------------|----------------|--|
|                      |                                         | 1.0301 | C10                | AISI 1010               |                                  |                |  |
| P                    |                                         | 1.0401 | C15                | AISI 1015               |                                  |                |  |
| \                    | Stähle unlegiert                        | 1.1191 | C45E/CK45          | AISI 1045               |                                  |                |  |
|                      | Rm < 800 N/mm <sup>2</sup>              | 1.0044 | S275JR             | AISI 1020               |                                  |                |  |
| VI //                |                                         | 1.0715 | 11SMn30            | AISI 1215               |                                  |                |  |
| <i>\lambda</i>       |                                         | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                |  |
|                      | erent to the first and                  | 1.7131 | 16MnCr5            | AISI 5115               |                                  |                |  |
|                      | Stähle niedriglegiert<br>Rm > 900 N/mm² | 1.3505 | 100Cr6             | AISI 52100              |                                  |                |  |
|                      | 1111 > 500 14,11111                     | 1.7225 | 42CrMo4            | AISI 4140               |                                  |                |  |
| <u>d1</u>            |                                         | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |                |  |
|                      | 101 1 1251                              | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                |  |
|                      | Werkzeugstähle<br>hochlegiert           | 1.2436 | X210CrW12          | AISI D4/D6              |                                  |                |  |
|                      | Rm < 1200 N/mm <sup>2</sup>             | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |                |  |
| Q <sub>x</sub>       |                                         | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                |  |
| [Q <sub>x</sub>      | Rostfreie Stähle-                       | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 30, 40                           | 0.5:-11 1::41  |  |
|                      | ferritisch                              | 1.4105 | X6CrMoS17          | AISI 430F               | 30-40                            | 0.5xd1 – 1xd1  |  |
| IVI                  | Rostfreie Stähle-                       | 1.4034 | X46Cr13            | AISI 420C               | 30, 40                           | 0.5            |  |
|                      | martensitisch                           | 1.4112 | X90CrMoV18         | AISI 440B               | 30-40                            | 0.5xd1 – 1xd1  |  |
|                      | Rostfreie Stähle-                       | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH | 30-40                            | 0 Evd1 1vd1    |  |
|                      | martensitisch – PH                      | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 30-40                            | 0.5xd1 – 1xd1  |  |
|                      |                                         | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |                |  |
|                      | Rostfreie Stähle-                       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 25-30                            | 0.5xd1 – 1xd1  |  |
|                      | austenitisch                            | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              | 25-30                            | 0.5x01-1x01    |  |
|                      |                                         | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |                |  |
|                      |                                         | 0.6020 | GG20               | ASTM 30                 |                                  |                |  |
| K                    | Gusseisen                               | 0.6030 | GG30               | ASTM 40B                |                                  |                |  |
|                      |                                         | 0.7040 | GGG40              | ASTM 60-40-18           |                                  |                |  |
|                      |                                         | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |                |  |
|                      | Aluminium                               | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |                |  |
| N                    | Knetlegierungen                         | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |                |  |
| IVI                  | Aluminium                               | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |                |  |
|                      | Druckgusslegierungen                    | 3.2381 | GD-AlSi10Mg        | UNS A03590              |                                  |                |  |
|                      | f                                       | 2.004  | Cu-OF / CW008A     | UNS C10100              | 20. 100                          | 214 4 14       |  |
|                      | Kupfer                                  | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 30-100                           | 2xd1-4xd1      |  |
|                      | Massing bl-:f:                          | 2.0321 | CuZn37 CW508L      | UNS C27400              | 20, 400                          | 111 414        |  |
|                      | Messing bleifrei                        | 2.036  | CuZn40 CW509L      | UNS C28000              | 30-100                           | 1xd1-4xd1      |  |
|                      | Messing, Bronze                         | 2.0401 | CuZn39Pb3 / CW614N |                         |                                  |                |  |
|                      | Rm < 400 N/mm <sup>2</sup>              | 2.102  | CuSn6              | UNS C51900              |                                  |                |  |
|                      | Bronze                                  | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                                  |                |  |
|                      | Rm < 600 N/mm <sup>2</sup>              | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |                |  |
|                      |                                         | 2.4856 |                    | Inconel 625             |                                  |                |  |
| C                    | Hitzebeständige                         | 2.4668 |                    | Inconel 718             | 45                               | 0.05 1: 5- ::  |  |
|                      | Stähle                                  | 2.4617 | NiMo28             | Hastelloy B-2           | 15-25                            | 0.25xd1-0.5xd1 |  |
|                      |                                         | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |                |  |
|                      | Titan roin                              | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |                |  |
| S <sub>2</sub>       | Titan rein                              | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |                |  |
| 2                    | Titan Logiorungan                       | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |                |  |
|                      | Titan Legierungen                       | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |                |  |
| C                    | CrCo-Legierungen                        | 2.4964 | CoCr20W15Ni        | Haynes 25               | 25 25                            | 0 5vd1 1vd1    |  |
| $S_3$                | CrCo-Legierungen                        |        | CrCoMo28           | ASTM F1537              | 25-35                            | 0.5xd1 – 1xd1  |  |
| H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC             | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |                |  |
|                      | Stähle gehärtet                         | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                |  |



ANWENDUNGSEMPFEHLUNG





|                |             |             | <b>f</b> [mr | m/U]        |             |             |
|----------------|-------------|-------------|--------------|-------------|-------------|-------------|
| Q <sub>x</sub> | Ød1         | Ød1         | Ød1          | Ød1         | Ød1         | Ød1         |
|                | 0.3-0.5 mm  | 0.6-0.8 mm  | 0.9-1.1 mm   | 1.2-1.4 mm  | 1.5-1.7 mm  | 1.8-2.0 mm  |
|                | f           | f           | f            | f           | f           | f           |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
| 0.5xd1         | 0.010-0.015 | 0.015-0.025 | 0.025-0.030  | 0.030-0.040 | 0.040-0.050 | 0.050-0.060 |
| 0.5xd1         | 0.015-0.025 | 0.025-0.035 | 0.035-0.040  | 0.040-0.050 | 0.050-0.060 | 0.060-0.070 |
| 0.5x01         | 0.015-0.025 | 0.025-0.055 | 0.035-0.040  | 0.040-0.030 | 0.030-0.060 | 0.060-0.070 |
| 0.5xd1         | 0.010-0.015 | 0.015-0.020 | 0.020-0.030  | 0.030-0.040 | 0.040-0.050 | 0.050-0.060 |
|                |             |             |              |             |             |             |
| 0.5xd1         | 0.010-0.015 | 0.015-0.020 | 0.020-0.030  | 0.030-0.040 | 0.040-0.045 | 0.040-0.060 |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
| 2xd1           | 0.030-0.060 | 0.040-0.080 | 0.050-0.100  | 0.060-0.120 | 0.070-0.150 | 0.080-0.180 |
| 2,01           | 0.030-0.000 | 0.040-0.080 | 0.030-0.100  | 0.000-0.120 | 0.070-0.130 | 0.080-0.180 |
| 1xd1-2xd1      | 0.030-0.060 | 0.040-0.080 | 0.050-0.100  | 0.060-0.120 | 0.070-0.150 | 0.080-0.180 |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
| 0.25xd1        | 0.005-0.010 | 0.010-0.015 | 0.015-0.020  | 0.020-0.025 | 0.030-0.035 | 0.030-0.040 |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
| <br>           |             |             |              |             |             |             |
| 0.5xd1         | 0.015-0.025 | 0.025-0.035 | 0.040-0.050  | 0.050-0.060 | 0.060-0.070 | 0.070-0.080 |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |
|                |             |             |              |             |             |             |



### PRÄZISE UND EFFIZIENTE BOHRUNG AB Ø 0.3 MM

### Kühlschmierstoff, Filter und Druck

**Kühlschmierstoff:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Die grossen Kühlkanäle erlauben einen Standardfilter. Filterqualität ≤ 0.05 mm.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter zu beachten.



**Kühlmitteldruck:** Um bei Werkzeugen mit Innenkühlung prozesssicher zu bohren, werden Mindestdrücke (siehe Tabelle) benötigt. Bei kleineren Bohrerdurchmessern werden generell höhere Drücke benötigt. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.

| Drehzahl        | [U/min] | ≤ 10′000 | > 10′000 |
|-----------------|---------|----------|----------|
| Minimaler Druck | [bar]   | 15       | 30       |

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Kühlmitteldruck zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

06

### Spannmittel

 $\label{thm:continuous} \mbox{Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".}$ 



### PRÄZISE UND EFFIZIENTE BOHRUNG AB Ø 0.3 MM

### CrazyDrill SST-Inox IK / IN 8 x d

Dank der hervorragenden Selbstzentrierung von CrazyDrill SST-Inox erübrigt sich die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen für Bohrtiefen bis 8 x d.

**Höhere Anforderungen:** Bei unregelmässigen bzw. rauen Oberflächen oder auch schrägen Oberflächen oder für höchste Positionsgenauigkeit empfiehlt Mikron Tool:

- CrazyDrill Pilot SST-Inox als Pilotbohrer
- CrazyDrill Twicenter als Zentrierbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

### CrazyDrill SST-Inox IK / IN 12 x d

Mikron Tool empfiehlt für CrazyDrill SST-Inox 12 x d eine Pilotbohrung:

- CrazyDrill Pilot SST-Inox als Pilotbohrer
- CrazyDrill Twicenter als Zentrierbohrerr
- **CrazyDrill Crosspilot** als Pilotbohrer auf schrägen Oberflächen

Somit wird höchste Fluchtungsgenauigkeit sowie Prozesssicherheit gewährleistet.

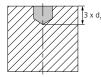
### Zentrieren / Pilotbohren und Bohren

Die Pilotbohrung mit CrazyDrill Pilot SST-Inox oder die Zentrierbohrung mit CrazyDrill Twicenter ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.

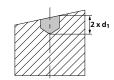
Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.



06


### **BOHRPROZESS**

### Bohrung gemäss DIN 66025 / PAL


G83 Tiefbohrzyklus mit Spanbruch und Entspänen Q = Tiefe des jeweiligen Bohrstosses

### 1 | ZENTRIER- ODER PILOTBOHRUNG

- Mit CrazyDrill Twicenter oder CrazyDrill Pilot SST-Inox (unregelmässige bzw. raue Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen) für die Version 8 x d.
- Mit CrazyDrill Twicenter oder CrazyDrill Pilot SST-Inox (gerade Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen) für die Version 12 x d.





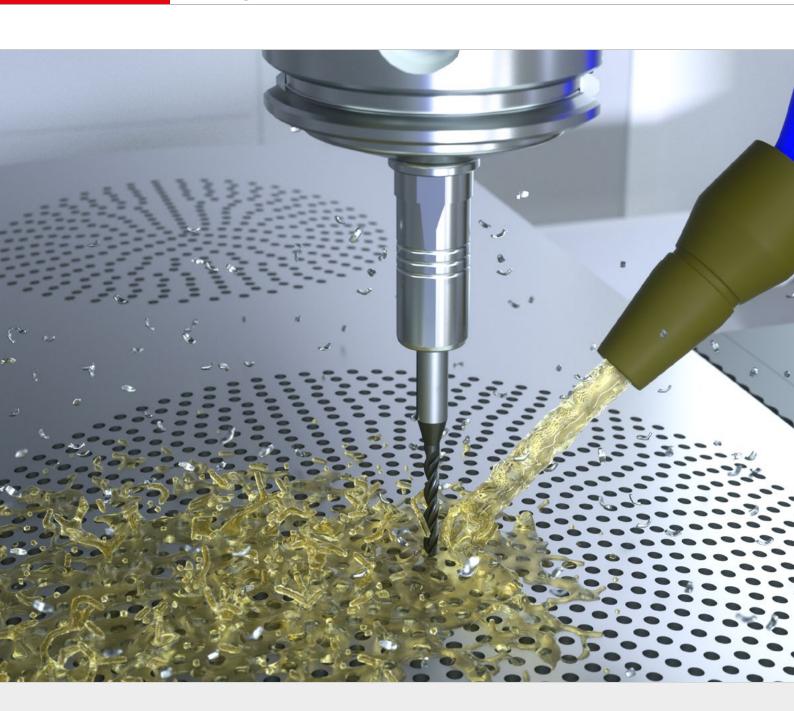


### 2 | BOHRUNG

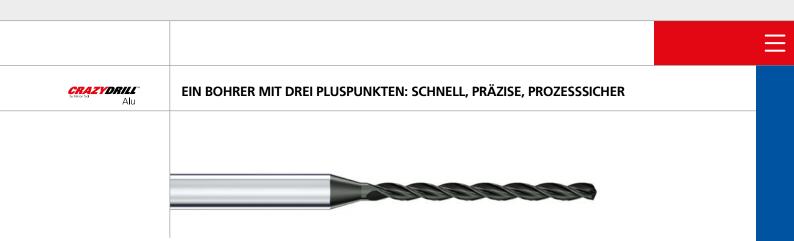
Mit CrazyDrill SST-Inox bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss, danach entspänen.



Weitere Bohrstösse Q<sub>X</sub> gemäss Schnittdatentabelle, anschliessend entspänen.




### Bemerkung:


Zwischen den Bohrstössen komplett aus der Bohrung fahren. Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



# CrazyDrill Alu







Mit CrazyDrill Alu bietet Mikron Tool einen beschichteten Kleinbohrer für alle Aluminiumlegierungen bis zu einer maximalen Bohrtiefe von 10 x d im Durchmesserbereich von 0.4 bis 3.0 mm an.

Dieser VHM-Bohrer beeindruckt vor allem mit seiner ausserordentlich hohen Bohrgeschwindigkeit und Standzeit in allen Aluminiumarten. Dank der speziell angepassten Beschichtung erreicht er auch bei siliziumhaltigen Aluminiumlegierungen eine hohe Lebensdauer.

Die drei Schneiden sowie eine sehr präzise Ausspitzung sorgen für beste Selbstzentrierung, ein Zentrieren oder Pilotbohren erübrigt sich. Eine gerade Bohrung, beste Rundheit und hohe Oberflächenqualität sind gewährleistet.



# Höchste Leistung in Alu

### DREI SCHNEIDEN FÜR PERFEKTE SELBSTZENTRIERUNG

Mit CrazyDrill Alu bietet Mikron Tool einen beschichteten Kleinbohrer für alle Aluminiumlegierungen bis zu einer maximalen Bohrtiefe von 10 x d im Durchmesserbereich von 0.4 bis 3 mm an.

CrazyDrill Alu, Bohrtiefe 5 x d / 10 x d, Aussenkühlung

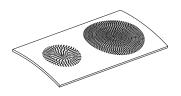


| 5 x d                     | 10 x d                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aussenkühlung Beschichtet | Aussenkühlung Beschichtet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 1 2                       | 1   SCHAFT Ein robuster Hartmetallschaft garantiert eine hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.  2   HARTMETALL Die Verwendung eines Hartmetalls der neuesten Generation ermöglicht hohe Bearbeitungsgeschwindigkeiten.  3   DREI-SCHNEIDEN-GEOMETRIE MIT AUSSPITZUNG Sorgt für eine maximale Selbstzentrierung, Zentrieren oder Pilotbohren ist nicht notwendig.  4   BESCHICHTUNG Eine DLC (diamond-like carbon) Beschichtung bietet Schutz gegen Verschleiss und garantiert eine hohe Standzeit.  5   SPIRALNUTENGEOMETRIE Sorgt für optimalen Spänefluss, nur minimales Entspänen bei 10 x d ist notwendig.  6   SPITZENWINKEL 130° Geringste Gratbildung dank Spitzenwinkel von 130° und scharfer Bohrergeometrie. Eine höchste Bohrungspräzision ist gewährleistet. |
| CrazyDrill Alu 5 x d      | CrazyDrill Alu 10 x d     | Bohrerspitze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



# Vorteile und Anwendungen

### WIEDERHOLGENAUIGKEIT UND PRODUKTIVITÄT


KÜRZERE BEARBEITUNGSZEIT | Dank hoher Bohrgeschwindigkeit

■ ERHÖHTE STANDZEIT | Dank spezieller DLC Beschichtung

HOHE PROZESSSICHERHEIT | Dank hoher Qualität

HOHE PRÄZISION Dank enger Toleranzen

TIEFE FERTIGUNGSKOSTEN | Kein Pilotbohren oder Zentrieren nötig



### TEIL

Lautsprecherabdeckung

### WERKSTOFF

AlMgSi 0.5 / 3.3206 / ASTM B221

### **BEARBEITUNG**

- 2'000 Bohrungen
- d = 1.2 mm
- Bohrtiefe 5 mm

### WERKZEUG

Mikron Tool - CrazyDrill Alu -  $5 \times d$ 

|   | DATEN         | MIKRON TOOL                                                            |
|---|---------------|------------------------------------------------------------------------|
| - | Werkzeugtyp   | CrazyDrill Alu - Hartmetall - Beschichtet - Aussenkühlung              |
|   | Artikelnummer | 2.CD.050120.A                                                          |
|   | Schnittdaten  | $v_c = 150 \text{ m/min}$ $f = 0.07 \text{ mm/U}$ $Q_1 = 5 \text{ mm}$ |

















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE                             |
|-----------------------|------------------------------------------------------|
| Luft- und Raumfahrt   | Strebe Flugzeugrumpf                                 |
| Formenbau             | Sacklochbohrungen für<br>verschiedene Druckgussteile |
| Automobilbau          | Bauteil zu Kupplungsgetriebe                         |
| Maschinenbau          | Siebplatte                                           |
| Elektronik / Elektrik | Kontaktstift                                         |
| Hydraulik / Pneumatik | Ventilkörper                                         |

| MATERIALGRUPPE                                           | BEISPIELE |          |                   |  |
|----------------------------------------------------------|-----------|----------|-------------------|--|
|                                                          | Wr. Nr.   | DIN      | AISI / ASTM / UNS |  |
| <b>Gruppe N</b> Aluminium Knet- und Druckgusslegierungen | 3.2315    | AlMgSi 1 | 6351              |  |
|                                                          |           |          |                   |  |



## CrazyDrill Alu 5 x d

### **BOHREN MIT AUSSENKÜHLUNG**



Der VHM-Kleinbohrer, speziell für Aluminium entwickelt, eignet sich sowohl für Aluminium Knetlegierungen als auch für Aluminium Druckgusslegierungen. Der beschichtete Kleinbohrer für Bohrtiefen bis 5 x d braucht keine vorherige Zentrierung. Dank seiner drei Schneiden und der speziell entwickelten Ausspitzung ist er selbstzentrierend. Eine gerade Bohrung, beste Rundheit und hohe Oberflächenqualität sind garantiert. Eine Zentrierung / Pilotbohrung wird nur empfohlen bei unregelmässigen, rauen bzw. schrägen Oberflächen. Details finden Sie beim Bohrprozess. Beeindruckend ist der Bohrer ausserdem durch seine ausserordentlich hohe Schnitt- und Vorschubgeschwindigkeit sowie seine Standzeit.

### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

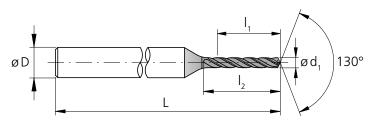
#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Alu (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.







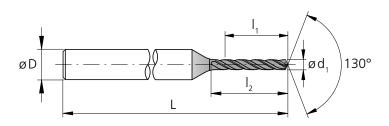



**Z**3








| ab Lager | Artikelnummer | d₁<br>k5 | l <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|---------------|----------|----------------|----------------|-----------|------|
| ■ ak     |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|          | 2.CD.050040.A | 0.40     | 2.00           | 2.9            | 3         | 43.0 |
|          | 2.CD.050045.A | 0.45     | 2.25           | 3.3            | 3         | 43.0 |
|          | 2.CD.050050.A | 0.50     | 2.50           | 3.6            | 3         | 43.0 |
|          | 2.CD.050055.A | 0.55     | 2.75           | 4.0            | 3         | 43.0 |
|          | 2.CD.050060.A | 0.60     | 3.00           | 4.3            | 3         | 43.0 |
|          | 2.CD.050065.A | 0.65     | 3.25           | 4.7            | 3         | 43.0 |
|          | 2.CD.050070.A | 0.70     | 3.50           | 5.1            | 3         | 45.0 |
|          | 2.CD.050075.A | 0.75     | 3.75           | 5.4            | 3         | 45.0 |
|          | 2.CD.050080.A | 0.80     | 4.00           | 5.8            | 3         | 45.0 |
|          | 2.CD.050085.A | 0.85     | 4.25           | 6.1            | 3         | 45.0 |
|          | 2.CD.050090.A | 0.90     | 4.50           | 6.5            | 3         | 45.0 |
|          | 2.CD.050095.A | 0.95     | 4.75           | 6.9            | 3         | 46.0 |
|          | 2.CD.050100.A | 1.00     | 5.00           | 7.2            | 3         | 46.0 |
|          | 2.CD.050105.A | 1.05     | 5.25           | 7.6            | 3         | 46.0 |
|          | 2.CD.050110.A | 1.10     | 5.50           | 8.0            | 3         | 46.0 |
|          | 2.CD.050115.A | 1.15     | 5.75           | 8.3            | 3         | 48.0 |
|          | 2.CD.050120.A | 1.20     | 6.00           | 8.7            | 3         | 48.0 |

# Ergänzende Produkte CrazyDrill Twicenter CrazyDrill Pilot CrazyDrill Crosspilot



# CrazyDrill Alu 5 x d

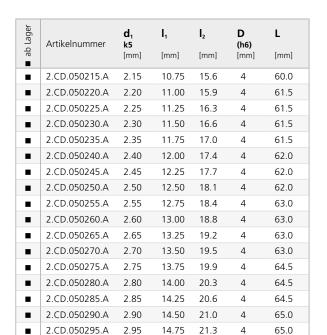
### **BOHREN MIT AUSSENKÜHLUNG**



| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|---------------|--------------------------------------------|----------------------------|----------------------------|--------------------------|-----------|
| •          | 2.CD.050125.A | 1.25                                       | 6.25                       | 9.0                        | 3                        | 48.0      |
|            | 2.CD.050130.A | 1.30                                       | 6.50                       | 9.4                        | 3                        | 48.0      |
| •          | 2.CD.050135.A | 1.35                                       | 6.75                       | 9.8                        | 3                        | 48.0      |
| •          | 2.CD.050140.A | 1.40                                       | 7.00                       | 10.1                       | 3                        | 48.0      |
| •          | 2.CD.050145.A | 1.45                                       | 7.25                       | 10.5                       | 3                        | 49.0      |
| •          | 2.CD.050150.A | 1.50                                       | 7.50                       | 10.9                       | 3                        | 49.0      |
| •          | 2.CD.050155.A | 1.55                                       | 7.75                       | 11.2                       | 3                        | 50.5      |
| •          | 2.CD.050160.A | 1.60                                       | 8.00                       | 11.6                       | 3                        | 50.5      |
| •          | 2.CD.050165.A | 1.65                                       | 8.25                       | 11.9                       | 3                        | 50.5      |
| -          | 2.CD.050170.A | 1.70                                       | 8.50                       | 12.3                       | 3                        | 50.5      |
| •          | 2.CD.050175.A | 1.75                                       | 8.75                       | 12.7                       | 3                        | 52.0      |
| •          | 2.CD.050180.A | 1.80                                       | 9.00                       | 13.0                       | 3                        | 52.0      |
| •          | 2.CD.050185.A | 1.85                                       | 9.25                       | 13.4                       | 3                        | 52.0      |
|            | 2.CD.050190.A | 1.90                                       | 9.50                       | 13.7                       | 3                        | 53.5      |
| •          | 2.CD.050195.A | 1.95                                       | 9.75                       | 14.1                       | 3                        | 53.5      |
| -          | 2.CD.050200.A | 2.00                                       | 10.00                      | 14.5                       | 4                        | 60.0      |
| •          | 2.CD.050205.A | 2.05                                       | 10.25                      | 14.8                       | 4                        | 60.0      |
| •          | 2.CD.050210.A | 2.10                                       | 10.50                      | 15.2                       | 4                        | 60.0      |



Hartmetall






**Z**3







15.00 21.7

65.0

| Ergänzende Produkte   |  |  |  |  |  |
|-----------------------|--|--|--|--|--|
| CrazyDrill Twicenter  |  |  |  |  |  |
| CrazyDrill Pilot      |  |  |  |  |  |
| CrazyDrill Crosspilot |  |  |  |  |  |

2.CD.050300.A 3.00



# CrazyDrill Alu 5 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| No.   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1                                                                                                                                                                                                                                                                                                  |                                        | Werkstoff-<br>gruppe   | Werkstoff                  | Wr.Nr.       | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | Q <sub>1</sub> |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------------------------|--------------|--------------------|-------------------------|----------------------------------|----------------|--|
| 1.4961   C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                        |                            | 1 0301       | C10                | AISI 1010               |                                  |                |  |
| First                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | D                      |                            |              |                    |                         |                                  |                |  |
| 1.004   \$237   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0   \$2.0 |                                        | r                      | Rm < 800 N/mm <sup>2</sup> |              |                    |                         |                                  |                |  |
| 1.0715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        |                            |              |                    |                         |                                  |                |  |
| 1.5752   1.5Nicr13   ASIM 24157 ABI 3310   1.5Nicr13   1.5MinCr5   ASIS 1510   1.5Bible niedriglegiert 1.13905   1.00cr6   ASIS 52100   ASIS 52100   ASIS 52100   1.2842   2.9MinCr5   ASIS 52100   ASIS 52100   1.2842   2.9MinCr5   ASIS 52100   ASIS 52100   1.2842   2.9MinCr5   ASIS 52100   ASIS 52100   ASIS 52100   1.2842   2.9MinCr5   ASIS 52100   ASIS                                                                                                                                                                                                                                                                                                  | \ \/{ //                               |                        |                            |              |                    |                         |                                  |                |  |
| 1.7131   16MmCrS   AIS 1315   AIS 1315   AIS 1316   A                                                                                                                                                                                                                                                                                                  | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                        |                            |              |                    |                         |                                  |                |  |
| Stable niedigliggett   1.3505   100Cr6   AIS 12100   Rm 9 900 N/mm²   725   42C/Mod   AIS 14140   12842   90MnCv8   AIS 02   12842   90MnCv8   AIS 02   12842   12842   90MnCv8   AIS 02   12843   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   12842   1                                                                                                                                                                                                                                                                                                  | ΥΔ"                                    |                        |                            |              |                    |                         |                                  |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                        | Stähle niedriglegiert      |              |                    |                         |                                  |                |  |
| 1,2842   9,0MnC/WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Werkzeugstähle hochlegiert   12379   X153CnMoV12   ASID D406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                      |                        |                            |              |                    |                         |                                  |                |  |
| Werkzeugstähle   1,2436   X210C/W12   ASI D4/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>-d1</del>                         |                        |                            |              |                    |                         |                                  |                |  |
| No.                                                                                                                                                                                                                                                                                                   |                                        |                        | Marken unetähle            |              |                    |                         |                                  |                |  |
| Rm < 1200 Wmm²   1,3443   1505-12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01                                     |                        |                            |              |                    |                         |                                  |                |  |
| Rostfreie Stahle- ferritsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Machine   1.4105   X6CrMoS17   AISI 430F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                        |                            | 1.3355       | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                |  |
| Nostrice stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                        | Rostfreie Stähle-          | 1.4016       | X6Cr17             | AISI 430 / UNS S43000   |                                  |                |  |
| Nostrice   Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ // // /                              | $\mathbf{N}\mathbf{I}$ | ferritisch                 | 1.4105       | X6CrMoS17          | AISI 430F               |                                  |                |  |
| Rostfreie Stähle-martersfitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | IVI                    | Rostfreie Stähle-          | 1.4034       | X46Cr13            | AISI 420C               |                                  |                |  |
| Martensitisch - PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                        | martensitisch              | 1.4112       | X90CrMoV18         | AISI 440B               |                                  |                |  |
| 1.4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        |                            | 1.4542       | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                |  |
| Rostfreie Stähle- austenitisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |                            | 1.4545       | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                |  |
| Authoritisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                        | 1.4301                     | X5CrNi 18-10 | AISI 304           |                         |                                  |                |  |
| Authoritisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                        | Rostfreie Stähle-          |              |                    |                         |                                  |                |  |
| 1.4539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Company   Comp                                                                                                                                                                                                                                                                                                  |                                        | <b>K</b> Gusseisen     |                            |              |                    |                         |                                  |                |  |
| No.                                                                                                                                                                                                                                                                                                   |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                        | Gusseisen                  |              |                    |                         |                                  |                |  |
| Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Natural Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                        | Knetlegierungen Aluminium  |              |                    |                         | 300                              | 5xd1           |  |
| Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | N                      |                            |              | -                  |                         |                                  |                |  |
| National Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | -                      |                            |              |                    |                         | 200                              | 5xd1           |  |
| Cu-ETP / CW004A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                        | Druckgusslegierungen       |              | _                  |                         |                                  |                |  |
| Messing bleifrei   2.0321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                        | Kunfer                     |              | Cu-OF / CW008A     | UNS C10100              |                                  |                |  |
| Messing, Bronze   2.0401   CuZn39Pb3 / CW614N   UNS C38500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                        | Rupiei                     | 2.0065       | Cu-ETP / CW004A    | UNS C11000              |                                  |                |  |
| Messing, Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                        | Messing bleifrei           |              | CuZn37 CW508L      | UNS C27400              |                                  |                |  |
| Rm < 400 N/mm²   2.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        | Iviessing bienrei          | 2.036        | CuZn40 CW509L      | UNS C28000              |                                  |                |  |
| Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        | Messing, Bronze            | 2.0401       | CuZn39Pb3 / CW614N | UNS C38500              |                                  |                |  |
| Rm < 600 N/mm²   2.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        | Rm < 400 N/mm <sup>2</sup> | 2.102        | CuSn6              | UNS C51900              |                                  |                |  |
| Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        | Bronze                     | 2.0966       | CuAl10Ni5Fe4       | UNS C63000              |                                  |                |  |
| Hitzebeständige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                        | Rm < 600 N/mm <sup>2</sup> | 2.096        | CuAl9Mn2           | UNS C63200              |                                  |                |  |
| Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                        |                            | 2.4856       |                    | Inconel 625             |                                  |                |  |
| Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | C                      | Hitzeheständige            |              |                    |                         |                                  |                |  |
| 2.4665   NiCr22Fe18Mo   Hastelloy X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | $\mathbf{J}_1$         |                            |              | NiMo28             |                         |                                  |                |  |
| Sample   S                                                                                                                                                                                                                                                                                                  | S <sub>2</sub>                         | -                      |                            |              |                    |                         |                                  |                |  |
| Stable gehärtet   Stable geh                                                                                                                                                                                                                                                                                                  |                                        |                        |                            |              |                    |                         |                                  |                |  |
| Titan Legierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | C                      | Titan rein                 |              |                    |                         |                                  |                |  |
| Titan Legierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | <b>J</b> <sub>2</sub>  |                            |              |                    |                         |                                  |                |  |
| CrCo-Legierungen         2.4964         CoCr20W15Ni         Haynes 25           CrCoMo28         ASTM F1537           H1         Stähle gehärtet<br>< 55 HRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                        | Titan Legierungen          |              |                    |                         |                                  |                |  |
| CrCoMo28 ASTM F1537  Stähle gehärtet < 55 HRC 1.2510 100MnCrMoW4 AISI O1  Stähle gehärtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | C                      |                            |              |                    |                         |                                  |                |  |
| Stähle gehärtet < 55 HRC 1.2510 100MnCrMoW4 AISI O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | <b>3</b> 3             | CrCo-Legierungen           | 2.4304       |                    |                         |                                  |                |  |
| 55 HRC 1.2510 100MnCrMoVV4 AISLOT Stähle gehärtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                      |                        |                            |              | CICOIVIOZO         | WOULL LOOK              |                                  |                |  |
| Stähle gehärtet 1 2379 Y153CrMaV12 AISLD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | $H_1$                  |                            | 1.2510       | 100MnCrMoW4        | AISI O1                 |                                  |                |  |
| ≥ 55 HRC 1.23/9 X133CN/IOV 12 AISI D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | $H_2$                  |                            | 1.2379       | X153CrMoV12        | AISI D2                 |                                  |                |  |



ANWENDUNGSEMPFEHLUNG





|        |        | <b>f</b> [m | m/U]   |        |        |  |
|--------|--------|-------------|--------|--------|--------|--|
| Ød1    | Ød1    | Ød1         | Ød1    | Ød1    | Ød1    |  |
| 0.5 mm | 1.0 mm | 1.5 mm      | 2.0 mm | 2.5 mm | 3.0 mm |  |
| f      | f      | f           | f      | f      | f      |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
| 0.03   | 0.05   | 0.10        | 0.20   | 0.25   | 0.30   |  |
| 0.10   | 0.20   | 0.25        | 0.30   | 0.40   | 0.50   |  |
| 0.10   | 0.20   | 0.25        | 0.30   | 0.40   | 0.50   |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
|        |        |             |        |        |        |  |
| <br>   |        |             |        |        |        |  |
|        |        |             |        |        |        |  |



### CrazyDrill Alu 10 x d

### **BOHREN MIT AUSSENKÜHLUNG**



Der VHM-Kleinbohrer, speziell für Aluminium entwickelt, eignet sich sowohl für Aluminium Knetlegierungen als auch für Aluminium Druckgusslegierungen. Der beschichtete Kleinbohrer für Bohrtiefen bis 10 x d braucht keine vorherige Zentrierung. Dank seiner drei Schneiden und der speziell entwickelten Ausspitzung ist er selbstzentrierend. Eine gerade Bohrung, beste Rundheit und hohe Oberflächenqualität sind garantiert. Eine Zentrierung / Pilotbohrung wird nur empfohlen bei unregelmässigen, rauen bzw. schrägen Oberflächen. Details finden Sie beim Bohrprozess. Beeindruckend ist der Bohrer ausserdem durch seine ausserordentlich hohe Schnitt- und Vorschubgeschwindigkeit sowie seine Standzeit.

### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

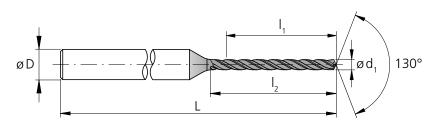
#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Alu (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.







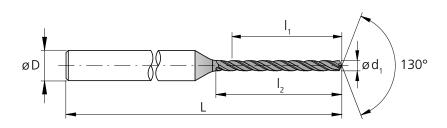



**Z**3








| ab Lager | Artikelnummer | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|---------------|----------|----------------|----------------|-----------|------|
| ■ ak     |               | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|          | 2.CD.100040.A | 0.40     | 4.00           | 4.9            | 3         | 45.0 |
|          | 2.CD.100045.A | 0.45     | 4.50           | 5.5            | 3         | 45.0 |
|          | 2.CD.100050.A | 0.50     | 5.00           | 6.1            | 3         | 45.0 |
|          | 2.CD.100055.A | 0.55     | 5.50           | 6.7            | 3         | 45.0 |
|          | 2.CD.100060.A | 0.60     | 6.00           | 7.3            | 3         | 47.0 |
|          | 2.CD.100065.A | 0.65     | 6.50           | 8.0            | 3         | 47.0 |
|          | 2.CD.100070.A | 0.70     | 7.00           | 8.6            | 3         | 47.0 |
|          | 2.CD.100075.A | 0.75     | 7.50           | 9.2            | 3         | 49.0 |
|          | 2.CD.100080.A | 0.80     | 8.00           | 9.8            | 3         | 49.0 |
|          | 2.CD.100085.A | 0.85     | 8.50           | 10.4           | 3         | 49.0 |
|          | 2.CD.100090.A | 0.90     | 9.00           | 11.0           | 3         | 49.0 |
|          | 2.CD.100095.A | 0.95     | 9.50           | 11.6           | 3         | 50.5 |
|          | 2.CD.100100.A | 1.00     | 10.00          | 12.2           | 3         | 50.5 |
|          | 2.CD.100105.A | 1.05     | 10.50          | 12.8           | 3         | 52.0 |
|          | 2.CD.100110.A | 1.10     | 11.00          | 13.5           | 3         | 52.0 |
|          | 2.CD.100115.A | 1.15     | 11.50          | 14.1           | 3         | 53.5 |
|          | 2.CD.100120.A | 1.20     | 12.00          | 14.7           | 3         | 53.5 |

# Ergänzende Produkte CrazyDrill Twicenter CrazyDrill Pilot CrazyDrill Crosspilot



# CrazyDrill Alu 10 x d

### **BOHREN MIT AUSSENKÜHLUNG**



| ■ ab Lager | Artikelnummer | <b>d</b> ₁<br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|---------------|---------------------------------|----------------------------|-------------------------------|--------------------------|-----------|
|            | 2.CD.100125.A | 1.25                            | 12.50                      | 15.3                          | 3                        | 53.5      |
|            | 2.CD.100130.A | 1.30                            | 13.00                      | 15.9                          | 3                        | 55.5      |
|            | 2.CD.100135.A | 1.35                            | 13.50                      | 16.5                          | 3                        | 55.5      |
|            | 2.CD.100140.A | 1.40                            | 14.00                      | 17.1                          | 3                        | 55.5      |
|            | 2.CD.100145.A | 1.45                            | 14.50                      | 17.7                          | 3                        | 55.5      |
| -          | 2.CD.100150.A | 1.50                            | 15.00                      | 18.4                          | 4                        | 64.5      |
|            | 2.CD.100155.A | 1.55                            | 15.50                      | 19.0                          | 4                        | 64.5      |
|            | 2.CD.100160.A | 1.60                            | 16.00                      | 19.6                          | 4                        | 64.5      |
|            | 2.CD.100165.A | 1.65                            | 16.50                      | 20.2                          | 4                        | 64.5      |
|            | 2.CD.100170.A | 1.70                            | 17.00                      | 20.8                          | 4                        | 67.0      |
|            | 2.CD.100175.A | 1.75                            | 17.50                      | 21.4                          | 4                        | 67.0      |
|            | 2.CD.100180.A | 1.80                            | 18.00                      | 22.0                          | 4                        | 67.0      |
|            | 2.CD.100185.A | 1.85                            | 18.50                      | 22.6                          | 4                        | 68.5      |
|            | 2.CD.100190.A | 1.90                            | 19.00                      | 23.2                          | 4                        | 68.5      |
|            | 2.CD.100195.A | 1.95                            | 19.50                      | 23.9                          | 4                        | 68.5      |
|            | 2.CD.100200.A | 2.00                            | 20.00                      | 24.5                          | 4                        | 70.0      |
|            | 2.CD.100205.A | 2.05                            | 20.50                      | 25.1                          | 4                        | 70.0      |
|            | 2.CD.100210.A | 2.10                            | 21.00                      | 25.7                          | 4                        | 70.0      |



Hartmetall





**Z**3







| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub><br>[mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|---------------|--------------------------------------------|-------------------------------|------------------------------|--------------------------|-----------|
| -          | 2.CD.100215.A | 2.15                                       | 21.50                         | 26.3                         | 4                        | 72.0      |
| •          | 2.CD.100220.A | 2.20                                       | 22.00                         | 26.9                         | 4                        | 72.0      |
| •          | 2.CD.100225.A | 2.25                                       | 22.50                         | 27.5                         | 4                        | 72.0      |
| •          | 2.CD.100230.A | 2.30                                       | 23.00                         | 28.1                         | 4                        | 73.5      |
|            | 2.CD.100235.A | 2.35                                       | 23.50                         | 28.7                         | 4                        | 73.5      |
|            | 2.CD.100240.A | 2.40                                       | 24.00                         | 29.4                         | 4                        | 73.5      |
|            | 2.CD.100245.A | 2.45                                       | 24.50                         | 30.0                         | 4                        | 75.0      |
|            | 2.CD.100250.A | 2.50                                       | 25.00                         | 30.6                         | 4                        | 75.0      |
|            | 2.CD.100255.A | 2.55                                       | 25.50                         | 31.2                         | 4                        | 75.0      |
|            | 2.CD.100260.A | 2.60                                       | 26.00                         | 31.8                         | 4                        | 76.5      |
|            | 2.CD.100265.A | 2.65                                       | 26.50                         | 32.4                         | 4                        | 76.5      |
|            | 2.CD.100270.A | 2.70                                       | 27.00                         | 33.0                         | 4                        | 76.5      |
| •          | 2.CD.100275.A | 2.75                                       | 27.50                         | 33.6                         | 4                        | 78.0      |
|            | 2.CD.100280.A | 2.80                                       | 28.00                         | 34.3                         | 4                        | 78.0      |
|            | 2.CD.100285.A | 2.85                                       | 28.50                         | 34.9                         | 4                        | 78.0      |
|            | 2.CD.100290.A | 2.90                                       | 29.00                         | 35.5                         | 4                        | 80.0      |
| •          | 2.CD.100295.A | 2.95                                       | 29.50                         | 36.1                         | 4                        | 80.0      |
|            | 2.CD.100300.A | 3.00                                       | 30.00                         | 36.7                         | 4                        | 80.0      |

# Ergänzende Produkte CrazyDrill Twicenter CrazyDrill Pilot CrazyDrill Crosspilot



# CrazyDrill Alu 10 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| 1.0931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Werkstoff-<br>gruppe | Werkstoff                    | Wr.Nr. | DIN                | AISI/ASTM/UNS | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_{\scriptscriptstyle{1}}$ | $Q_{x}$ |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|------------------------------|--------|--------------------|---------------|----------------------------------|--------------------------------------|---------|--|
| 1,491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                      |                              | 1 0301 | C10                | AISI 1010     |                                  |                                      |         |  |
| Rm < 800 N/mm²   1,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | D                    |                              |        |                    |               |                                  |                                      |         |  |
| No.   1.0044   327.0FR   A. MS 1020   1.5752   1.51Ms 30   ASI 1215   1.5752   ASI 1510   ASI 1510  |                                              | P                    |                              |        |                    |               |                                  |                                      |         |  |
| 10.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                      | Rm < 800 N/mm <sup>2</sup>   |        |                    |               |                                  |                                      |         |  |
| 1.5752   1.596C/13   ASIM 3415 / AISI 3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \/\(\/\/\/\/\                                |                      |                              |        |                    |               |                                  |                                      |         |  |
| Size    |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Stable neddiglegied   1,3500   100-c/6   ASS 12:100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Φ"                                           |                      | Stähle niedriglegiert        |        |                    |               |                                  |                                      |         |  |
| 1725   42CMod   AISI 4140    |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| 1,2842   90MrC/V8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                      | Rm > 900 N/mm <sup>2</sup>   |        | 42CrMo4            |               |                                  |                                      |         |  |
| New Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d <sub>1</sub>                               |                      |                              |        |                    |               |                                  |                                      |         |  |
| No.   No.  |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Note    |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Mostfreie Stahle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q1                                           |                      |                              |        |                    |               |                                  |                                      |         |  |
| Rostfreie Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                      | KIII < 1200 IV/IIII12        |        |                    |               |                                  |                                      |         |  |
| Marchitech   1.4105   X6CrMoS17   ASI 430F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                      | Dostfraio Ctäblo             |        |                    |               |                                  |                                      |         |  |
| No.   No.  | <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | R.A                  |                              |        |                    |               |                                  |                                      |         |  |
| Martenistisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | IVI                  |                              |        |                    |               |                                  |                                      |         |  |
| Rostfreie Stähle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Martensitisch - PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Rostfreie Stähle- austentisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Rostfreie Stähle-austenitisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                      | martensitisch – m            |        |                    |               |                                  |                                      |         |  |
| Austenitisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                      | Postfroio Stäblo             |        |                    |               |                                  |                                      |         |  |
| 1.4539   X1NiCrMoCu 25-20-5   AlSi 904L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| County   C |                                              |                      | austernuscri                 |        |                    |               |                                  |                                      |         |  |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| No.   No.  |                                              | K                    | Gusseisen                    |        |                    |               |                                  |                                      |         |  |
| No.   No.  |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                      |                              |        |                    |               |                                  |                                      |         |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                      |                              | 0.7060 | GGG60              | ASTM 80-60-03 |                                  |                                      |         |  |
| Natural Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                      | Knetlegierungen<br>Aluminium | 3.2315 | AlMgSi1            | ASTM 6351     |                                  | Evd1                                 | 1 v d 1 |  |
| Alchimim   Alchimim  |                                              | N                    |                              | 3.4365 | AlZnMgCu1.5        | ASTM 7075     |                                  | 3xu i                                | TXUT    |  |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | 1 4                  |                              |        | GD-AlSi9Cu3        | ASTM A380     |                                  | 5vd1                                 | 1vd1    |  |
| Nesting bleifrei   2.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                      | Druckgusslegierungen         | 3.2381 | GD-AlSi10Mg        | UNS A03590    | 200                              | JAUT                                 | IXUI    |  |
| Messing bleifrei   2.0321   CuZn37 CW508L   UNS C27400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                      | Kunfor                       | 2.004  | Cu-OF / CW008A     | UNS C10100    |                                  |                                      |         |  |
| Messing, Bronze   2.0401   CuZn39Pb3 / CW614N   UNS C38500   CuZn39Pb3 / CW614N   UNS C38500   CuXn39Pb3 / CW614N   UNS C38500   CuXn39Pb3 / CW614N   UNS C51900   CuXn39Pb3 / CW614N   UNS C51900   CuXn39Pb3 / CW614N   UNS C63000   CuXn39Pb3 / CW614N   UNS C63000   CuXn39Pb3 / CuXn3000   CuXn300 |                                              |                      | Kupiei                       | 2.0065 | Cu-ETP / CW004A    | UNS C11000    |                                  |                                      |         |  |
| Messing, Bronze   Z.0401   CuZn39Pb3 / CW614N   UNS C38500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                      | Massing blaifrai             | 2.0321 | CuZn37 CW508L      | UNS C27400    |                                  |                                      |         |  |
| Rm < 400 N/mm²   2.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                      | iviessing bienrei            | 2.036  | CuZn40 CW509L      | UNS C28000    |                                  |                                      |         |  |
| Bronze   Rm < 600 N/mm²   2.0966   CuAl10Ni5Fe4   UNS C63000   CuAl9Mn2   UNS C63200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                      | Messing, Bronze              | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500    |                                  |                                      |         |  |
| Rm < 600 N/mm²   2.096   CuAl9Mn2   UNS C63200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                      | Rm < 400 N/mm <sup>2</sup>   | 2.102  | CuSn6              | UNS C51900    |                                  |                                      |         |  |
| Hitzebeständige   2.4856   Inconel 625   Inconel 718     2.4668   Inconel 718     2.4665   NiCr22Fe18Mo   Hastelloy B-2     2.4665   NiCr22Fe18Mo   Hastelloy X     2.4665   NiCr22Fe18Mo   Hastelloy X     3.7035   Gr.2   ASTM B348 / F67     3.7065   Gr.4   ASTM B348 / F68     3.7165   TiAl6V4   ASTM B348 / F136     9.9367   TiAl6Nb7   ASTM F1295     3.7165   TiAl6Nb7   ASTM F1295     3.7165   TiAl6Nb7   ASTM F1295     3.7165   TiAl6Nb7   ASTM F1537     3.7165   TiAl6Nb7   TiAl6Nb7   ASTM F1537     3.7165   TiAl6Nb7    |                                              |                      | Bronze                       | 2.0966 | CuAl10Ni5Fe4       | UNS C63000    |                                  |                                      |         |  |
| Hitzebeständige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                      | Rm < 600 N/mm <sup>2</sup>   | 2.096  | CuAl9Mn2           | UNS C63200    |                                  |                                      |         |  |
| S1     Hitzebeständige Stähle     2.4668   Inconel 718   2.4617   NiMo28   Hastelloy B-2   2.4665   NiCr22Fe18Mo   Hastelloy X   NiMo28   ASTM B348 / F67   NiMo28   ASTM B348 / F68   NiCr22Fe18Mo   NiMo28                                  |                                              |                      |                              |        |                    | Inconel 625   |                                  |                                      |         |  |
| Stähle       2.4617       NiMo28       Hastelloy B-2         2.4665       NiCr22Fe18Mo       Hastelloy X         Titan rein       3.7035       Gr.2       ASTM B348 / F67         3.7065       Gr.4       ASTM B348 / F68         Titan Legierungen       3.7165       TiAl6V4       ASTM B348 / F136         9.9367       TiAl6Nb7       ASTM F1295         CrCo-Legierungen       2.4964       CoCr20W15Ni       Haynes 25         CrCoMo28       ASTM F1537     Stähle gehärtet  < 55 HRC 1.2510 100MnCrMoW4 AISI O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | C                    | Hitzeheständige              |        |                    |               |                                  |                                      |         |  |
| Stähle gehärtet   1.2510   100MnCrMoW4   AISI O1   Stähle gehärtet   1.2510   100MnCrMoW4   AISI O1   AISI O1   AISI MB348 / Find the stable of the stable |                                              | $\mathbf{D}_1$       |                              |        | NiMo28             |               |                                  |                                      |         |  |
| S2       Titan rein     3.7035   Gr.2   ASTM B348 / F67   3.7065   Gr.4   ASTM B348 / F68   ASTM B348 / F68   ASTM B348 / F136   Gr.2   ASTM F1295   Gr.2   Gr.                                                                       |                                              |                      |                              |        |                    | -             |                                  |                                      |         |  |
| Stähle gehärtet   1.2510   100MnCrMoW4   ASTM B348 / F68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                      |                              |        |                    | -             |                                  |                                      |         |  |
| Stähle gehärtet   1.2510   100MnCrMoW4   ASTM B348 / F136   ASTM F1295   Stähle gehärtet   1.2510   100MnCrMoW4   AISI O1    |                                              | C                    | Titan rein                   |        |                    |               |                                  |                                      |         |  |
| Titan Legierungen   9.9367   TiAl6Nb7   ASTM F1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | 32                   |                              |        |                    |               |                                  |                                      |         |  |
| Sa         2.4964         CoCr20W15Ni         Haynes 25           CrCo-Legierungen         CrCoMo28         ASTM F1537           Hage Stähle gehärtet < 55 HRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                      | Titan Legierungen            |        |                    |               |                                  |                                      |         |  |
| CrCo-Legierungen CrCoMo28 ASTM F1537  Stähle gehärtet < 55 HRC 1.2510 100MnCrMoW4 AISI O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | C                    |                              |        |                    |               |                                  |                                      |         |  |
| Stähle gehärtet < 55 HRC 1.2510 100MnCrMoW4 AISI O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | 3                    | CrCo-Legierungen             | 2.7704 |                    | -             |                                  |                                      |         |  |
| 1 < 55 HRC 1.2510 100MIRCHW6W4 AISLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                      |                              |        | CICOIVIOZO         | 7.5119111557  |                                  |                                      |         |  |
| Stähle gehärtet ≥ 55 HRC  1.2379  X153CrMoV12  AISI D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | $H_1$                |                              | 1.2510 | 100MnCrMoW4        | AISI O1       |                                  |                                      |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | $H_2$                |                              | 1.2379 | X153CrMoV12        | AISI D2       |                                  |                                      |         |  |



ANWENDUNGSEMPFEHLUNG





|                           |                    | <b>f</b> [m               | m/U]       |                    |                    |
|---------------------------|--------------------|---------------------------|------------|--------------------|--------------------|
| Ød1<br>0.5 mm<br><b>f</b> | Ød1<br>1.0 mm<br>f | Ød1<br>1.5 mm<br><b>f</b> | Ød1 2.0 mm | Ød1<br>2.5 mm<br>f | Ød1<br>3.0 mm<br>f |
| Ť                         | T                  | Ť                         | Ť          | T                  | Ť                  |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
| 0.03                      | 0.04               | 0.10                      | 0.20       | 0.25               | 0.30               |
| 0.07                      | 0.10               | 0.15                      | 0.25       | 0.30               | 0.40               |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |
|                           |                    |                           |            |                    |                    |



### PRÄZISES UND SCHNELLES BOHREN BIS 10 X D

### Kühlschmierstoff, Filter und Druck

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und –menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".



### CrazyDrill Alu bis zu 5 x d / 10 x d

Dank der hervorragenden Selbstzentrierung von CrazyDrill Alu ist die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen bis zu einer maximalen Bohrtiefe von 10 x d nicht notwendig.

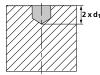
### Zentrieren, Pilotbohren und Bohren

**Höhere Anforderungen:** Bei unregelmässigen, rauen oder auch schrägen Oberflächen empfiehlt Mikron Tool:

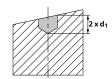
06

- **CrazyDrill Twicenter** als Zentrierbohrer
- CrazyDrill Pilot als Pilotbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

Die Zentrierbohrung mit CrazyDrill Twicenter bzw. Pilotbohrung mit CrazyDrill Pilot ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.


Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.




### **BOHRUNG IN EINEM BOHRSTOSS BIS 5 X D**

### 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot oder CrazyDrill Twicenter (unregelmässige Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).







### 2 | BOHRUNG

Mit CrazyDrill Alu in einem Bohrstoss mit empfohlener Schnitt- und Vorschubgeschwindigkeit.

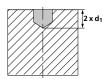


### Bemerkung:

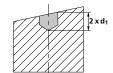
Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.






06

### **BOHRUNG BIS 10 X D GEMÄSS DIN 66025 / PAL**

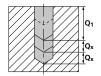

G83 Tiefbohrzyklus mit Spänebruch und Entspänen Q = Tiefe des jeweiligen Bohrschrittes

### 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot oder CrazyDrill Twicenter (unregelmässige Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).








### 2 | BOHRUNG

Erster Bohrstoss Q<sub>1</sub> mit CrazyDrill Alu bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss, danach entspänen.



Weitere Bohrstösse Q<sub>X</sub> gemäss Schnittdatentabelle, anschliessend entspänen.



### Bemerkung:

Zwischen den Bohrstössen kann komplett aus der Bohrung gefahren werden. Beim Auftreten von Aufschwingungen empfehlen wir, nicht komplett aus der Bohrung zu fahren.

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



# CrazyDrill Cool SST-Inox



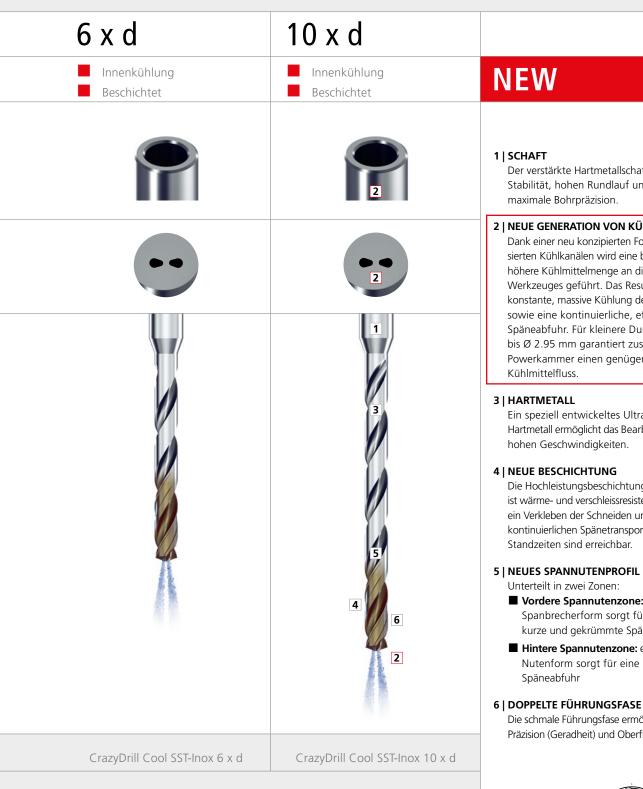




Mit CrazyDrill Cool SST-Inox bietet Mikron Tool einen Bohrer an für rost-, säure- und hitzebeständige Stähle sowie für CrCo-Legierungen im Durchmesserbereich von 1.0 mm bis 6.0 mm und für Bohrtiefen von 6 x d oder 10 x d.

Die neue Spitzen- und Nutengeometrie sowie die Form der Kühlkanäle, die bis zu vier Mal mehr Kühlmenge an die Bohrspitze führen, bilden zusammen mit der neuartigen Beschichtung die Basis für das Bohren in einem einzigen Bohrstoss bis zu einer Bohrtiefe von 10 x d mit hohen Leistungen in Bezug auf Qualität, Stand- und Bearbeitungszeit.




### Die Innovation für schwer zerspanbare Materialien

### DER REVOLUTIONÄRE BOHRER IN GEOMETRIE UND KÜHLKONZEPT

Mit CrazyDrill Cool SST-Inox bietet Mikron Tool einen Bohrer an für rostfreie Stähle sowie für hitzebeständige und CrCo-Legierungen im Durchmesserbereich von 1.0~mm bis 6.0~mm und für Bohrtiefen von 6~x d oder 10~x d.

CrazyDrill Cool SST-Inox, Bohrtiefen 6 x d oder 10 x d, mit Innenkühlung.

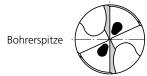




Der verstärkte Hartmetallschaft garantiert Stabilität, hohen Rundlauf und damit maximale Bohrpräzision.

### 2 | NEUE GENERATION VON KÜHLKANÄLEN

Dank einer neu konzipierten Form der spiralisierten Kühlkanälen wird eine bis zu vier Mal höhere Kühlmittelmenge an die Spitze des Werkzeuges geführt. Das Resultat ist eine konstante, massive Kühlung der Schneiden sowie eine kontinuierliche, effiziente Späneabfuhr. Für kleinere Durchmesser bis Ø 2.95 mm garantiert zusätzlich eine Powerkammer einen genügend starken


Ein speziell entwickeltes Ultrafeinkorn-Hartmetall ermöglicht das Bearbeiten mit hohen Geschwindigkeiten.

Die Hochleistungsbeschichtung eXedur SNP ist wärme- und verschleissresistent, verhindert ein Verkleben der Schneiden und fördert den kontinuierlichen Spänetransport. Sehr hohe

#### **5 | NEUES SPANNUTENPROFIL**

- Vordere Spannutenzone: eine spezielle Spanbrecherform sorgt für kompakte, kurze und gekrümmte Späne.
- Hintere Spannutenzone: eine erweiterte Nutenform sorgt für eine perfekte

Die schmale Führungsfase ermöglicht höchste Präzision (Geradheit) und Oberflächenqualität.





# Vorteile und Anwendungen

### FÜR MEHR LEISTUNG IN EDELSTAHL UND SUPERLEGIERUNGEN

KÜRZERE BEARBEITUNGSZEIT | Bis zu 5 Mal schneller

**ERHÖHTE STANDZEIT** | Bis zu 3 Mal höher

HOHE PROZESSSICHERHEIT | Dank grösserem Kühlmittelfluss

HOHE PRÄZISION | Dank doppelter Führungsfase



#### TEIL

Düse für Lebensmittelindustrie

### WERKSTOFF

X2CrNiMo 18-14-3 / 1.4435 / AISI 316L

#### **BEARBEITUNG**

- Bohren
- d = 2 mm
- Bohrtiefe 18 mm

### WERKZEUG

Mikron Tool - CrazyDrill Cool SST-Inox -  $10 \times d$ 

| DATEN         | MIKRON TOOL                                                            |
|---------------|------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Cool SST-Inox - Hartmetall - Beschichtet - Innenkühlung     |
| Artikelnummer | 2.CD.100200.IC                                                         |
| Schnittdaten  | $v_c = 80 \text{ m/min}$ $f = 0.06 \text{ mm/U}$ $Q_1 = 18 \text{ mm}$ |























| MATERIALGRUPPE                             | BEISPIELE |                  |                   |  |  |  |  |
|--------------------------------------------|-----------|------------------|-------------------|--|--|--|--|
|                                            | Wr. Nr.   | DIN              | AISI / ASTM / UNS |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle        | 1.4105    | X6CrMoS17        | 430F              |  |  |  |  |
|                                            | 1.4112    | X90CrMoV18       | 440B              |  |  |  |  |
|                                            | 1.4542    | X5CrNiCuNb 16-4  | 630               |  |  |  |  |
|                                            | 1.4435    | X2CrNiMo 18-14-3 | 316L              |  |  |  |  |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle | 2.4856    |                  | INCONEL 625       |  |  |  |  |
|                                            | 2.4665    | NiCr22Fe18Mo     | HASTELLOY X       |  |  |  |  |
| <b>Gruppe S3</b><br>CrCo-Legierungen       | 2.4964    | CoCr20W15Ni      | HAYNES 25         |  |  |  |  |
|                                            |           |                  |                   |  |  |  |  |



### CrazyDrill Cool SST-Inox 6 x d

### **BOHREN MIT INNENKÜHLUNG**



Der Bohrer CrazyDrill Cool SST-Inox 6 x d ist speziell für rostfreie Stähle, hitzebeständige und CrCo-Legierungen entwickelt worden. Bisher unerreichte Leistungen sind möglich dank einer neuen Schneidengeometrie und einer neuen Kühlkanalform, die eine massive Kühlung der Schneiden garantiert. Die neue, kupferrote Beschichtung ist verklebungsarm und unterstützt den sehr effizienten Bohrprozess.

Die Bohrung bis zu einer maximalen Bohrtiefe von 6 x d wird in einem einzigen Bohrstoss ausgeführt. Dabei garantiert das Werkzeug dank seiner neuen Schneidengeometrie und dem Nutenprofil einen optimalen Spanbruch und eine optimale Späneabfuhr.

Ausserdem sorgen die neu entwickelten Kühlkanäle in Tropfenform für höchste Effizienz und optimale Spanabfuhr. Höchste Schnittgeschwindigkeiten und Standzeiten werden Realität.

Bei der Version bis Bohrtiefe 6 x d erübrigt sich eine vorgehende Zentrierung auf geraden Oberflächen. Mit seinem Spitzenwinkel von 140° und seiner S-Ausspitzung hat der Bohrer eine gute Selbstzentrierung. Das Pilotbohren oder auch Zentrieren wird empfohlen bei unreglemässiger, rauer oder schräger Materialoberfläche, oder bei Bedarf an hoher Positionsgenauigkeit. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

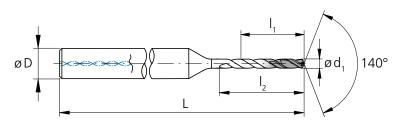
### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Cool SST-Inox (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.



Hartmetall





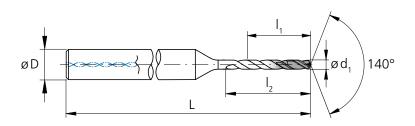

**Z**2







| ab Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|----------------|-----------|------|
| ■ ab     |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|          | 2.CD.060100.IC | 1.00     | 6.0            | 9.0            | 4         | 55   |
| -        | 2.CD.060105.IC | 1.05     | 6.3            | 9.5            | 4         | 55   |
| -        | 2.CD.060110.IC | 1.10     | 6.6            | 9.9            | 4         | 55   |
| -        | 2.CD.060115.IC | 1.15     | 6.9            | 10.4           | 4         | 55   |
| •        | 2.CD.060120.IC | 1.20     | 7.2            | 10.8           | 4         | 57   |
| -        | 2.CD.060125.IC | 1.25     | 7.5            | 11.3           | 4         | 57   |
| -        | 2.CD.060130.IC | 1.30     | 7.8            | 11.7           | 4         | 57   |
|          | 2.CD.060135.IC | 1.35     | 8.1            | 12.2           | 4         | 57   |
| •        | 2.CD.060140.IC | 1.40     | 8.4            | 12.6           | 4         | 57   |
| -        | 2.CD.060145.IC | 1.45     | 8.7            | 13.1           | 4         | 58   |
| -        | 2.CD.060150.IC | 1.50     | 9.0            | 13.5           | 4         | 58   |
|          | 2.CD.060155.IC | 1.55     | 9.3            | 14.0           | 4         | 58   |
| •        | 2.CD.060160.IC | 1.60     | 9.6            | 14.4           | 4         | 58   |
| -        | 2.CD.060165.IC | 1.65     | 9.9            | 14.9           | 4         | 58   |
| -        | 2.CD.060170.IC | 1.70     | 10.2           | 15.3           | 4         | 60   |
| -        | 2.CD.060175.IC | 1.75     | 10.5           | 15.8           | 4         | 60   |
| •        | 2.CD.060180.IC | 1.80     | 10.8           | 16.2           | 4         | 60   |
| -        | 2.CD.060185.IC | 1.85     | 11.1           | 16.7           | 4         | 60   |
| -        | 2.CD.060190.IC | 1.90     | 11.4           | 17.1           | 4         | 60   |
| -        | 2.CD.060195.IC | 1.95     | 11.7           | 17.6           | 4         | 60   |
|          | 2.CD.060200.IC | 2.00     | 12.0           | 18.0           | 4         | 63   |
|          | 2.CD.060205.IC | 2.05     | 12.3           | 18.5           | 4         | 63   |
| -        | 2.CD.060210.IC | 2.10     | 12.6           | 18.9           | 4         | 63   |
|          | 2.CD.060215.IC | 2.15     | 12.9           | 19.4           | 4         | 63   |
| -        | 2.CD.060220.IC | 2.20     | 13.2           | 19.8           | 4         | 63   |
|          | 2.CD.060225.IC | 2.25     | 13.5           | 20.3           | 4         | 63   |
| -        | 2.CD.060230.IC | 2.30     | 13.8           | 20.7           | 4         | 65   |


Ergänzende Produkte

CrazyDrill Coolpilot CrazyDrill Crosspilot



# CrazyDrill Cool SST-Inox 6 x d

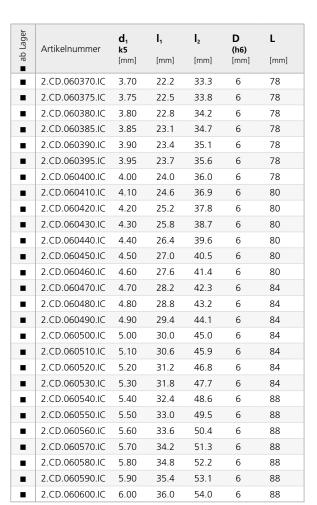
### **BOHREN MIT INNENKÜHLUNG**



| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b> [mm] |
|------------|----------------|--------------------------------------------|----------------------------|----------------------------|--------------------------|---------------|
| -          | 2.CD.060235.IC | 2.35                                       | 14.1                       | 21.2                       | 4                        | 65            |
| •          | 2.CD.060240.IC | 2.40                                       | 14.4                       | 21.6                       | 4                        | 65            |
| •          | 2.CD.060245.IC | 2.45                                       | 14.7                       | 22.1                       | 4                        | 65            |
| •          | 2.CD.060250.IC | 2.50                                       | 15.0                       | 22.5                       | 4                        | 65            |
| •          | 2.CD.060255.IC | 2.55                                       | 15.3                       | 23.0                       | 4                        | 65            |
| •          | 2.CD.060260.IC | 2.60                                       | 15.6                       | 23.4                       | 4                        | 68            |
| •          | 2.CD.060265.IC | 2.65                                       | 15.9                       | 23.9                       | 4                        | 68            |
| •          | 2.CD.060270.IC | 2.70                                       | 16.2                       | 24.3                       | 4                        | 68            |
| •          | 2.CD.060275.IC | 2.75                                       | 16.5                       | 24.8                       | 4                        | 68            |
| -          | 2.CD.060280.IC | 2.80                                       | 16.8                       | 25.2                       | 4                        | 68            |
| •          | 2.CD.060285.IC | 2.85                                       | 17.1                       | 25.7                       | 4                        | 68            |
| -          | 2.CD.060290.IC | 2.90                                       | 17.4                       | 26.1                       | 4                        | 68            |
| •          | 2.CD.060295.IC | 2.95                                       | 17.7                       | 26.6                       | 4                        | 68            |
| -          | 2.CD.060300.IC | 3.00                                       | 18.0                       | 27.0                       | 6                        | 74            |
| •          | 2.CD.060305.IC | 3.05                                       | 18.3                       | 27.5                       | 6                        | 74            |
| -          | 2.CD.060310.IC | 3.10                                       | 18.6                       | 27.9                       | 6                        | 74            |
| •          | 2.CD.060315.IC | 3.15                                       | 18.9                       | 28.4                       | 6                        | 74            |
| -          | 2.CD.060320.IC | 3.20                                       | 19.2                       | 28.8                       | 6                        | 74            |
| •          | 2.CD.060325.IC | 3.25                                       | 19.5                       | 29.3                       | 6                        | 74            |
| •          | 2.CD.060330.IC | 3.30                                       | 19.8                       | 29.7                       | 6                        | 74            |
| •          | 2.CD.060335.IC | 3.35                                       | 20.1                       | 30.2                       | 6                        | 74            |
| •          | 2.CD.060340.IC | 3.40                                       | 20.4                       | 30.6                       | 6                        | 74            |
| •          | 2.CD.060345.IC | 3.45                                       | 20.7                       | 31.1                       | 6                        | 74            |
| •          | 2.CD.060350.IC | 3.50                                       | 21.0                       | 31.5                       | 6                        | 78            |
| •          | 2.CD.060355.IC | 3.55                                       | 21.3                       | 32.0                       | 6                        | 78            |
| -          | 2.CD.060360.IC | 3.60                                       | 21.6                       | 32.4                       | 6                        | 78            |
| -          | 2.CD.060365.IC | 3.65                                       | 21.9                       | 32.9                       | 6                        | 78            |



Hartmetall






**Z**2







Ergänzende Produkte CrazyDrill Coolpilot CrazyDrill Crosspilot



# CrazyDrill Cool SST-Inox 6 x d

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                                  | erkstoff-             | Werkstoff                               | Wr.Nr. | DIN                | AISI/ASTM/UNS                                |      | <b>۷</b> ؞<br>[m/min] |      |
|--------------------------------------------------|-----------------------|-----------------------------------------|--------|--------------------|----------------------------------------------|------|-----------------------|------|
| gr                                               | ruppe                 | TVCTR3COTT                              | •••••• | <b>5</b>           | 7431713111170113                             | Tief | Mittel                | Hoch |
|                                                  |                       |                                         |        |                    | 1151 1010                                    | Tici | Militer               | Hoch |
|                                                  |                       |                                         | 1.0301 | C10<br>C15         | AISI 1010                                    |      |                       |      |
| <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> | •                     | Stähle unlegiert                        | 1.0401 | C45E/CK45          | AISI 1015<br>AISI 1045                       |      |                       |      |
|                                                  |                       | Rm < 800 N/mm <sup>2</sup>              | 1.0044 | S275JR             | AISI 1020                                    |      |                       |      |
| \ž(                                              |                       |                                         | 1.0044 | 11SMn30            | AISI 1020                                    |      |                       |      |
| (5)                                              |                       |                                         | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310                        |      |                       |      |
|                                                  |                       |                                         | 1.7131 | 16MnCr5            | AISI 5115                                    |      |                       |      |
|                                                  |                       | Stähle niedriglegiert                   | 1.3505 | 100Cr6             | AISI 52100                                   |      |                       |      |
|                                                  |                       | Rm > 900 N/mm <sup>2</sup>              | 1.7225 | 42CrMo4            | AISI 4140                                    |      |                       |      |
|                                                  |                       |                                         | 1.7223 | 90MnCrV8           | AISI O2                                      |      |                       |      |
| u1                                               |                       |                                         | 1.2379 | X153CrMoV12        | AISI D2                                      |      |                       |      |
|                                                  |                       | Werkzeugstähle                          | 1.2379 | X210CrW12          | AISI D4/D6                                   |      |                       |      |
| 6 x d <sub>1</sub>                               |                       | hochlegiert                             | 1.3343 | HS6-5-2C           |                                              |      |                       |      |
| 1   <i> </i>                                     |                       | Rm < 1200 N/mm <sup>2</sup>             |        | HS18-0-1           | AISI M2 / UNS T11302<br>AISI T1 / UNS T12001 |      |                       |      |
| // <del>/////</del>                              |                       |                                         | 1.3355 |                    |                                              |      |                       |      |
| /////                                            |                       | Rostfreie Stähle-                       | 1.4016 | X6Cr17             | AISI 430 / UNS S43000                        | 60   | 80                    | 100  |
|                                                  | VI                    | ferritisch                              | 1.4105 | X6CrMoS17          | AISI 430F                                    |      |                       |      |
| •                                                |                       | Rostfreie Stähle-<br>martensitisch      | 1.4034 | X46Cr13            | AISI 420C                                    | 60   | 80                    | 100  |
|                                                  |                       |                                         | 1.4112 | X90CrMoV18         | AISI 440B                                    |      |                       |      |
|                                                  |                       | Rostfreie Stähle-<br>martensitisch – PH | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH                      | 60   | 80                    | 100  |
|                                                  |                       | martensitisch – Fri                     | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH                                 |      |                       |      |
|                                                  |                       | B (6 1 6 m)                             | 1.4301 | X5CrNi 18-10       | AISI 304                                     |      |                       |      |
|                                                  |                       | Rostfreie Stähle-<br>austenitisch       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L                                    | 60   | 80                    | 100  |
|                                                  |                       | austeritisch                            | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM                                   |      |                       |      |
|                                                  |                       |                                         | 1.4539 | X1NiCrMoCu 25-20-5 |                                              |      |                       |      |
|                                                  | _                     |                                         | 0.6020 | GG20               | ASTM 30                                      |      |                       |      |
|                                                  |                       | Gusseisen                               | 0.6030 | GG30               | ASTM 40B                                     |      |                       |      |
| -                                                |                       |                                         | 0.7040 | GGG40              | ASTM 60-40-18                                |      |                       |      |
|                                                  |                       |                                         | 0.7060 | GGG60              | ASTM 80-60-03                                |      |                       |      |
| _                                                | _                     | Aluminium                               | 3.2315 | AlMgSi1            | ASTM 6351                                    |      |                       |      |
|                                                  | V                     | Knetlegierungen                         | 3.4365 | AlZnMgCu1.5        | ASTM 7075                                    |      |                       |      |
|                                                  | •                     | Aluminium                               | 3.2163 | GD-AlSi9Cu3        | ASTM A380                                    |      |                       |      |
|                                                  |                       | Druckgusslegierungen                    |        | GD-AlSi10Mg        | UNS A03590                                   |      |                       |      |
|                                                  |                       | Kupfer                                  | 2.004  | Cu-OF / CW008A     | UNS C10100                                   |      |                       |      |
|                                                  |                       | r ·                                     | 2.0065 | Cu-ETP / CW004A    | UNS C11000                                   |      |                       |      |
|                                                  |                       | Messing bleifrei                        | 2.0321 | CuZn37 CW508L      | UNS C27400                                   |      |                       |      |
|                                                  |                       |                                         | 2.036  | CuZn40 CW509L      | UNS C28000                                   |      |                       |      |
|                                                  |                       | Messing, Bronze                         | 2.0401 | CuZn39Pb3 / CW614N |                                              |      |                       |      |
|                                                  |                       | Rm < 400 N/mm <sup>2</sup>              | 2.102  | CuSn6              | UNS C51900                                   |      |                       |      |
|                                                  |                       | Bronze                                  | 2.0966 | CuAl10Ni5Fe4       | UNS C63000                                   |      |                       |      |
|                                                  |                       | Rm < 600 N/mm <sup>2</sup>              | 2.096  | CuAl9Mn2           | UNS C63200                                   |      |                       |      |
|                                                  | _                     |                                         | 2.4856 |                    | Inconel 625                                  |      |                       |      |
|                                                  | 51                    | Hitzebeständige                         | 2.4668 |                    | Inconel 718                                  | 30   | 40                    | 50   |
|                                                  | <b>-</b> 1            | Stähle                                  | 2.4617 | NiMo28             | Hastelloy B-2                                |      |                       |      |
|                                                  |                       |                                         | 2.4665 | NiCr22Fe18Mo       | Hastelloy X                                  |      |                       |      |
|                                                  |                       | Titan rein                              | 3.7035 | Gr.2               | ASTM B348 / F67                              |      |                       |      |
| 5                                                | <b>5</b> <sub>2</sub> |                                         | 3.7065 | Gr.4               | ASTM B348 / F68                              |      |                       |      |
|                                                  |                       | Titan Legierungen                       | 3.7165 | TiAl6V4            | ASTM B348 / F136                             |      |                       |      |
|                                                  |                       |                                         | 9.9367 | TiAl6Nb7           | ASTM F1295                                   |      |                       |      |
|                                                  | 3                     | CrCo-Legierungen                        | 2.4964 | CoCr20W15Ni        | Haynes 25                                    | 50   | 70                    | 90   |
|                                                  |                       | J J                                     |        | CrCoMo28           | ASTM F1537                                   |      |                       |      |
| -                                                | ┨╸                    | Stähle gehärtet<br>< 55 HRC             | 1.2510 | 100MnCrMoW4        | AISI O1                                      |      |                       |      |
| _                                                | <b>-</b>              | < 55 HKC                                | 1.2379 |                    |                                              |      |                       |      |



ANWENDUNGSEMPFEHLUNG





|       |                  |       |       |        |       |       |                  |       |       |                  |       | 1     | mm/l             |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|-------|------------------|-------|-------|--------|-------|-------|------------------|-------|-------|------------------|-------|-------|------------------|-------|-------|--------|-------|-------|------------------|-------|-------|------------------|-------|-------|------------------|-----|
|       | Ød1              |       |       | Ød1    |       |       | Ød1              |       |       | Ød1              |       |       | Ød1              |       |       | Ød1    |       |       | Ød1              |       |       | Ød1              |       |       | Ød1              |     |
|       | 1.0 mm<br>Mittel |       |       | .25 mm |       |       | 1.5 mm<br>Mittel |       |       | 2.0 mm<br>Mittel |       |       | 2.5 mm<br>Mittel |       |       | 3.0 mm |       |       | 4.0 mm<br>Mittel |       |       | 5.0 mm<br>Mittel |       |       | 6.0 mm<br>Mittel |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
| 0.010 | 0.020            | 0.030 | 0.013 | 0.025  | 0.038 | 0.015 | 0.030            | 0.045 | 0.020 | 0.040            | 0.060 | 0.025 | 0.050            | 0.075 | 0.030 | 0.060  | 0.090 | 0.040 | 0.080            | 0.120 | 0.050 | 0.100            | 0.150 | 0.060 | 0.120            | 0.1 |
| 0.030 | 0.040            | 0.050 | 0.038 | 0.050  | 0.063 | 0.045 | 0.060            | 0.075 | 0.060 | 0.080            | 0.100 | 0.075 | 0.100            | 0.125 | 0.090 | 0.120  | 0.150 | 0.120 | 0.160            | 0.200 | 0.150 | 0.200            | 0.250 | 0.180 | 0.240            | 0.3 |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
| υ.020 | 0.030            | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045            | 0.060 | 0.040 | 0.060            | 0.080 | 0.050 | 0.075            | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120            | U.160 | 0.100 | 0.150            | U.200 | 0.120 | 0.180            | 0.2 |
| 0.000 | 0.000            | 0.045 | 0.035 | 0.035  | 0.055 | 0.035 | 0.045            | 0.055 | 0.045 | 0.055            | 0.000 | 0.055 | 0.075            | 0.400 | 0.055 | 0.000  | 0.135 | 0.000 | 0.430            | 0.155 | 0.100 | 0.450            | 0.300 | 0.435 | 0.100            | 0.5 |
| U.U20 | 0.030            | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045            | 0.060 | U.U40 | U.U60            | 0.080 | U.U50 | 0.0/5            | U.100 | U.U60 | 0.090  | 0.120 | 0.080 | 0.120            | U.160 | 0.100 | U.150            | U.200 | 0.120 | U.180            | 0.2 |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
| 0.010 | 0.015            | 0.020 | 0.013 | 0.019  | 0.025 | 0.015 | 0.023            | 0.030 | 0.020 | 0.030            | 0.040 | 0.025 | 0.038            | 0.050 | 0.030 | 0.045  | 0.060 | 0.040 | 0.060            | 0.080 | 0.050 | 0.075            | 0.100 | 0.060 | 0.090            | 0.1 |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
| 0.020 | 0.030            | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045            | 0.060 | 0.040 | 0.060            | 0.080 | 0.050 | 0.075            | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120            | 0.160 | 0.100 | 0.150            | 0.200 | 0.120 | 0.180            | 0.2 |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |
|       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |       |       |        |       |       |                  |       |       |                  |       |       |                  |     |



### CrazyDrill Cool SST-Inox 10 x d

### **BOHREN MIT INNENKÜHLUNG**



Der Bohrer CrazyDrill Cool SST-Inox 10 x d ist speziell für rostfreie Stähle, hitzebeständige und CrCo-Legierungen entwickelt worden. Bisher unerreichte Leistungen sind möglich dank einer neuen Schneidengeometrie und einer neuen Kühlkanalform, die eine massive Kühlung der Schneiden garantiert. Die neue, kupferrote Beschichtung ist verklebungsarm und unterstützt den sehr effizienten Bohrprozess.

Die Bohrung bis zu einer maximalen Bohrtiefe von 10 x d wird in einem einzigen Bohrstoss ausgeführt. Dabei garantiert das Werkzeug dank seiner neuen Schneidengeometrie und dem Nutenprofil einen optimalen Spanbruch und eine optimale Späneabfuhr.

Ausserdem sorgen die neu entwickelten Kühlkanäle in Tropfenform für höchste Effizienz und optimale Spanabfuhr. Höchste Schnittgeschwindigkeiten und Standzeiten werden Realität.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Coolpilot oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

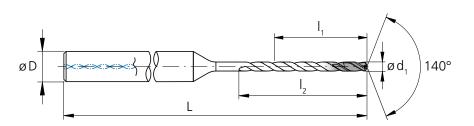
#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Cool SST-Inox (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.



Hartmetall





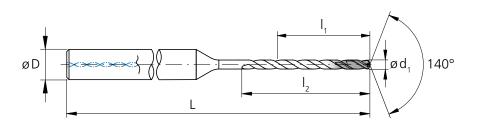

**Z**2







| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|-----------|
| •          | 2.CD.100100.IC | 1.00                                       | 10.0                       | 13.0                         | 4                        | 59        |
|            | 2.CD.100105.IC | 1.05                                       | 10.5                       | 13.7                         | 4                        | 59        |
| •          | 2.CD.100110.IC | 1.10                                       | 11.0                       | 14.3                         | 4                        | 59        |
| •          | 2.CD.100115.IC | 1.15                                       | 11.5                       | 15.0                         | 4                        | 59        |
| •          | 2.CD.100120.IC | 1.20                                       | 12.0                       | 15.6                         | 4                        | 62        |
| •          | 2.CD.100125.IC | 1.25                                       | 12.5                       | 16.3                         | 4                        | 62        |
| •          | 2.CD.100130.IC | 1.30                                       | 13.0                       | 16.9                         | 4                        | 62        |
| -          | 2.CD.100135.IC | 1.35                                       | 13.5                       | 17.6                         | 4                        | 62        |
| •          | 2.CD.100140.IC | 1.40                                       | 14.0                       | 18.2                         | 4                        | 62        |
| -          | 2.CD.100145.IC | 1.45                                       | 14.5                       | 18.9                         | 4                        | 65        |
| •          | 2.CD.100150.IC | 1.50                                       | 15.0                       | 19.5                         | 4                        | 65        |
| -          | 2.CD.100155.IC | 1.55                                       | 15.5                       | 20.2                         | 4                        | 65        |
| •          | 2.CD.100160.IC | 1.60                                       | 16.0                       | 20.8                         | 4                        | 65        |
| •          | 2.CD.100165.IC | 1.65                                       | 16.5                       | 21.5                         | 4                        | 65        |
| -          | 2.CD.100170.IC | 1.70                                       | 17.0                       | 22.1                         | 4                        | 67        |
| -          | 2.CD.100175.IC | 1.75                                       | 17.5                       | 22.8                         | 4                        | 67        |
| •          | 2.CD.100180.IC | 1.80                                       | 18.0                       | 23.4                         | 4                        | 67        |
|            | 2.CD.100185.IC | 1.85                                       | 18.5                       | 24.1                         | 4                        | 67        |
| •          | 2.CD.100190.IC | 1.90                                       | 19.0                       | 24.7                         | 4                        | 67        |
| •          | 2.CD.100195.IC | 1.95                                       | 19.5                       | 25.4                         | 4                        | 67        |
| •          | 2.CD.100200.IC | 2.00                                       | 20.0                       | 26.0                         | 4                        | 70        |
|            | 2.CD.100205.IC | 2.05                                       | 20.5                       | 26.7                         | 4                        | 70        |
| -          | 2.CD.100210.IC | 2.10                                       | 21.0                       | 27.3                         | 4                        | 70        |
| -          | 2.CD.100215.IC | 2.15                                       | 21.5                       | 28.0                         | 4                        | 70        |
|            | 2.CD.100220.IC | 2.20                                       | 22.0                       | 28.6                         | 4                        | 70        |
|            | 2.CD.100225.IC | 2.25                                       | 22.5                       | 29.3                         | 4                        | 70        |
| •          | 2.CD.100230.IC | 2.30                                       | 23.0                       | 29.9                         | 4                        | 75        |


Ergänzende Produkte

CrazyDrill Coolpilot CrazyDrill Crosspilot



# CrazyDrill Cool SST-Inox 10 x d

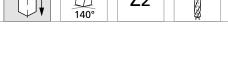
### **BOHREN MIT INNENKÜHLUNG**



| ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|-----------------------------|----------------|----------------|-----------|------|
| - RO     |                | [mm]                        | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.CD.100235.IC | 2.35                        | 23.5           | 30.6           | 4         | 75   |
| •        | 2.CD.100240.IC | 2.40                        | 24.0           | 31.2           | 4         | 75   |
| •        | 2.CD.100245.IC | 2.45                        | 24.5           | 31.9           | 4         | 75   |
| •        | 2.CD.100250.IC | 2.50                        | 25.0           | 32.5           | 4         | 75   |
| •        | 2.CD.100255.IC | 2.55                        | 25.5           | 33.2           | 4         | 75   |
| •        | 2.CD.100260.IC | 2.60                        | 26.0           | 33.8           | 4         | 80   |
| •        | 2.CD.100265.IC | 2.65                        | 26.5           | 34.5           | 4         | 80   |
| •        | 2.CD.100270.IC | 2.70                        | 27.0           | 35.1           | 4         | 80   |
| •        | 2.CD.100275.IC | 2.75                        | 27.5           | 35.8           | 4         | 80   |
| •        | 2.CD.100280.IC | 2.80                        | 28.0           | 36.4           | 4         | 80   |
| •        | 2.CD.100285.IC | 2.85                        | 28.5           | 37.1           | 4         | 80   |
| -        | 2.CD.100290.IC | 2.90                        | 29.0           | 37.7           | 4         | 80   |
| •        | 2.CD.100295.IC | 2.95                        | 29.5           | 38.4           | 4         | 80   |
| •        | 2.CD.100300.IC | 3.00                        | 30.0           | 39.0           | 6         | 87   |
| •        | 2.CD.100305.IC | 3.05                        | 30.5           | 39.7           | 6         | 87   |
| -        | 2.CD.100310.IC | 3.10                        | 31.0           | 40.3           | 6         | 87   |
| •        | 2.CD.100315.IC | 3.15                        | 31.5           | 41.0           | 6         | 87   |
| •        | 2.CD.100320.IC | 3.20                        | 32.0           | 41.6           | 6         | 87   |
| •        | 2.CD.100325.IC | 3.25                        | 32.5           | 42.3           | 6         | 87   |
| -        | 2.CD.100330.IC | 3.30                        | 33.0           | 42.9           | 6         | 87   |
| •        | 2.CD.100335.IC | 3.35                        | 33.5           | 43.6           | 6         | 87   |
| •        | 2.CD.100340.IC | 3.40                        | 34.0           | 44.2           | 6         | 87   |
| •        | 2.CD.100345.IC | 3.45                        | 34.5           | 44.9           | 6         | 87   |
| -        | 2.CD.100350.IC | 3.50                        | 35.0           | 45.5           | 6         | 95   |
| -        | 2.CD.100355.IC | 3.55                        | 35.5           | 46.2           | 6         | 95   |
| -        | 2.CD.100360.IC | 3.60                        | 36.0           | 46.8           | 6         | 95   |
| •        | 2.CD.100365.IC | 3.65                        | 36.5           | 47.5           | 6         | 95   |



Hartmetall






**Z**2







| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|----------------------------|--------------------------|-----------|
| -          | 2.CD.100370.IC | 3.70                                       | 37.0                       | 48.1                       | 6                        | 95        |
| •          | 2.CD.100375.IC | 3.75                                       | 37.5                       | 48.8                       | 6                        | 95        |
| •          | 2.CD.100380.IC | 3.80                                       | 38.0                       | 49.4                       | 6                        | 95        |
| •          | 2.CD.100385.IC | 3.85                                       | 38.5                       | 50.1                       | 6                        | 95        |
| •          | 2.CD.100390.IC | 3.90                                       | 39.0                       | 50.7                       | 6                        | 95        |
| -          | 2.CD.100395.IC | 3.95                                       | 39.5                       | 51.4                       | 6                        | 95        |
| •          | 2.CD.100400.IC | 4.00                                       | 40.0                       | 52.0                       | 6                        | 95        |
| •          | 2.CD.100410.IC | 4.10                                       | 41.0                       | 53.3                       | 6                        | 100       |
| •          | 2.CD.100420.IC | 4.20                                       | 42.0                       | 54.6                       | 6                        | 100       |
| •          | 2.CD.100430.IC | 4.30                                       | 43.0                       | 55.9                       | 6                        | 100       |
| •          | 2.CD.100440.IC | 4.40                                       | 44.0                       | 57.2                       | 6                        | 100       |
| •          | 2.CD.100450.IC | 4.50                                       | 45.0                       | 58.5                       | 6                        | 100       |
| •          | 2.CD.100460.IC | 4.60                                       | 46.0                       | 59.8                       | 6                        | 100       |
| •          | 2.CD.100470.IC | 4.70                                       | 47.0                       | 61.1                       | 6                        | 105       |
| •          | 2.CD.100480.IC | 4.80                                       | 48.0                       | 62.4                       | 6                        | 105       |
| -          | 2.CD.100490.IC | 4.90                                       | 49.0                       | 63.7                       | 6                        | 105       |
| •          | 2.CD.100500.IC | 5.00                                       | 50.0                       | 65.0                       | 6                        | 105       |
| •          | 2.CD.100510.IC | 5.10                                       | 51.0                       | 66.3                       | 6                        | 105       |
| •          | 2.CD.100520.IC | 5.20                                       | 52.0                       | 67.6                       | 6                        | 105       |
| -          | 2.CD.100530.IC | 5.30                                       | 53.0                       | 68.9                       | 6                        | 105       |
| •          | 2.CD.100540.IC | 5.40                                       | 54.0                       | 70.2                       | 6                        | 112       |
| -          | 2.CD.100550.IC | 5.50                                       | 55.0                       | 71.5                       | 6                        | 112       |
| •          | 2.CD.100560.IC | 5.60                                       | 56.0                       | 72.8                       | 6                        | 112       |
| -          | 2.CD.100570.IC | 5.70                                       | 57.0                       | 74.1                       | 6                        | 112       |
| •          | 2.CD.100580.IC | 5.80                                       | 58.0                       | 75.4                       | 6                        | 112       |
| -          | 2.CD.100590.IC | 5.90                                       | 59.0                       | 76.7                       | 6                        | 112       |
| •          | 2.CD.100600.IC | 6.00                                       | 60.0                       | 78.0                       | 6                        | 112       |

Ergänzende Produkte

CrazyDrill Coolpilot CrazyDrill Crosspilot



# CrazyDrill Cool SST-Inox 10 x d

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werksto             | ff-<br>Werkstoff                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           |      | <b>V</b> <sub>c</sub><br>[m/min] |       |
|---------------------|------------------------------------|--------|--------------------|-------------------------|------|----------------------------------|-------|
| gruppe              |                                    | •••••  | 2                  |                         | Tief | Mittel                           | Hoch  |
|                     |                                    | 1 0201 | C10                | AICI 1010               | 1101 | IIIICCCI                         | 11001 |
| _   D               |                                    | 1.0301 | C10<br>C15         | AISI 1010<br>AISI 1015  |      |                                  |       |
| P                   | Stähle unlegiert                   | 1.1191 | C45E/CK45          | AISI 1015               |      |                                  |       |
|                     | Rm < 800 N/mm <sup>2</sup>         | 1.0044 | S275JR             |                         |      |                                  |       |
|                     |                                    | 1.0044 | 11SMn30            | AISI 1020<br>AISI 1215  |      |                                  |       |
|                     |                                    | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |      |                                  |       |
|                     |                                    | 1.7131 | 16MnCr5            | AISI 5115               |      |                                  |       |
| _                   | Stähle niedriglegiert              | 1.7131 | 100Cr6             | AISI 52100              |      |                                  |       |
|                     | Rm > 900 N/mm <sup>2</sup>         | 1.7225 | 42CrMo4            | AISI 4140               |      |                                  |       |
|                     |                                    | 1.7223 | 90MnCrV8           | AISI O2                 |      |                                  |       |
| _                   |                                    | 1.2379 | X153CrMoV12        | AISI D2                 |      |                                  |       |
|                     | Werkzeugstähle                     | 1.2436 | X210CrW12          | AISI D4/D6              |      |                                  |       |
| 10 x d <sub>1</sub> | hochlegiert                        |        | HS6-5-2C           |                         |      |                                  |       |
|                     | Rm < 1200 N/mm <sup>2</sup>        | 1.3343 |                    | AISI M2 / UNS T11302    |      |                                  |       |
| <del> </del>        |                                    | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |      |                                  |       |
| 1                   | Rostfreie Stähle-                  | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 60   | 80                               | 100   |
| M                   | ferritisch                         | 1.4105 | X6CrMoS17          | AISI 430F               |      |                                  |       |
|                     | Rostfreie Stähle-<br>martensitisch | 1.4034 | X46Cr13            | AISI 420C               | 60   | 80                               | 100   |
|                     |                                    | 1.4112 | X90CrMoV18         | AISI 440B               |      |                                  |       |
|                     | Rostfreie Stähle-                  | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH | 60   | 80                               | 100   |
|                     | martensitisch – PH                 | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |      |                                  |       |
|                     |                                    | 1.4301 | X5CrNi 18-10       | AISI 304                |      |                                  |       |
|                     | Rostfreie Stähle-                  | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 60   | 80                               | 100   |
|                     | austenitisch                       | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |      |                                  |       |
|                     |                                    | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |      |                                  |       |
|                     |                                    | 0.6020 | GG20               | ASTM 30                 |      |                                  |       |
| K                   | Gusseisen                          | 0.6030 | GG30               | ASTM 40B                |      |                                  |       |
|                     |                                    | 0.7040 | GGG40              | ASTM 60-40-18           |      |                                  |       |
|                     |                                    | 0.7060 | GGG60              | ASTM 80-60-03           |      |                                  |       |
|                     | Aluminium                          | 3.2315 | AlMgSi1            | ASTM 6351               |      |                                  |       |
| N                   | Knetlegierungen                    | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |      |                                  |       |
| 14                  | Aluminium                          | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |      |                                  |       |
|                     | Druckgusslegierungen               | 3.2381 | GD-AlSi10Mg        | UNS A03590              |      |                                  |       |
|                     | Vunfor                             | 2.004  | Cu-OF / CW008A     | UNS C10100              |      |                                  |       |
|                     | Kupfer                             | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |      |                                  |       |
|                     | Massing blaifes                    | 2.0321 | CuZn37 CW508L      | UNS C27400              |      |                                  |       |
|                     | Messing bleifrei                   | 2.036  | CuZn40 CW509L      | UNS C28000              |      |                                  |       |
|                     | Messing, Bronze                    | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              |      |                                  |       |
|                     | Rm < 400 N/mm <sup>2</sup>         | 2.102  | CuSn6              | UNS C51900              |      |                                  |       |
|                     | Bronze                             | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |      |                                  |       |
|                     | Rm < 600 N/mm <sup>2</sup>         | 2.096  | CuAl9Mn2           | UNS C63200              |      |                                  |       |
|                     |                                    | 2.4856 |                    | Inconel 625             |      |                                  |       |
| C                   | Hitzebeständige                    | 2.4668 |                    | Inconel 718             | 30   | 40                               | 50    |
| $S_1$               | Stähle                             | 2.4617 | NiMo28             | Hastelloy B-2           | οU   | 40                               | 50    |
| -                   |                                    | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |      |                                  |       |
|                     |                                    | 3.7035 | Gr.2               | ASTM B348 / F67         |      |                                  |       |
| C                   | Titan rein                         | 3.7065 | Gr.4               | ASTM B348 / F68         |      |                                  |       |
| $S_2$               |                                    | 3.7165 | TiAl6V4            | ASTM B348 / F136        |      |                                  |       |
|                     | Titan Legierungen                  | 9.9367 | TiAl6Nb7           | ASTM F1295              |      |                                  |       |
| 6                   |                                    | 2.4964 | CoCr20W15Ni        | Haynes 25               |      |                                  |       |
| $S_3$               | CrCo-Legierungen                   | 2.7304 | CrCoMo28           | ASTM F1537              | 50   | 70                               | 90    |
| H <sub>1</sub>      | Stähle gehärtet<br>< 55 HRC        | 1.2510 | 100MnCrMoW4        | AISI O1                 |      |                                  |       |
| H <sub>2</sub>      | Stähle gehärtet                    | 1.2379 | X153CrMoV12        | AISI D2                 |      |                                  |       |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         | <u></u> |
|-----|-----|-------|-------|-------|--------|-------|-------|---------|-------|-------|---------|-------|-------|--------|-------|-------|--------|-------|-------|--------|--------|-------|------------------|-------|-------|---------|---------|
|     |     |       |       |       |        |       |       |         |       |       |         |       | f     | mm/l   | J]    |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     | Ød1   |       |       | Ød1    |       |       | Ød1     |       |       | Ød1     |       |       | Ød1    |       |       | Ød1    |       |       | Ød1    |        |       | Ød1              |       |       | Ød1     |         |
| т   |     | .0 mm | Hoch  |       | .25 mm |       |       | 1.5 mm  |       |       | 2.0 mm  |       |       | 2.5 mm |       |       | 3.0 mm |       |       | 4.0 mm |        |       | 5.0 mm<br>Mittel |       |       | 6.0 mm  |         |
|     |     | · ·   | Hoch  | 1101  | Wilter | Hoch  | rici  | Wileeci | Посп  | rici  | Mileter | Hoch  | Tici  | Mitte  | Hoch  | TICI  | witter | HOCH  | rici  | WITCE  | Hoch   | 1101  | Wileten          | Hoch  | 1101  | Wileeci | Tioci   |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
| 0.0 | 010 | 0 020 | 0 030 | 0 013 | 0.025  | U U38 | 0.015 | 0 030   | 0 045 | 0.020 | 0 040   | 0.060 | 0.025 | 0.050  | 0.075 | 0 030 | 0 060  | n nan | 0 040 | 0 080  | 0 120  | 0.050 | 0.100            | 0.150 | 0 060 | 0.120   | 0 180   |
| 0.0 | 010 | 0.020 | 0.000 | 0.013 | 0.023  | 0.030 | 0.013 | 0.00    | 0.043 | 0.020 | 5.040   | 5.000 | J.UZJ | 5.050  | 0.073 | 0.000 | 0.000  | 0.050 | 0.040 | 5.000  | J. 12U | 0.000 | 0.100            | 5.150 | 5.000 | 0.120   | 0.100   |
| 0.0 | 030 | 0.040 | 0.050 | 0.038 | 0.050  | 0.063 | 0.045 | 0.060   | 0.075 | 0.060 | 0.080   | 0.100 | 0.075 | 0.100  | 0.125 | 0.090 | 0.120  | 0.150 | 0.120 | 0.160  | 0.200  | 0.150 | 0.200            | 0.250 | 0.180 | 0.240   | 0.30    |
| 0.0 | 020 | 0.030 | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045   | 0.060 | 0.040 | 0.060   | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120  | 0.160  | 0.100 | 0.150            | 0.200 | 0.120 | 0.180   | 0.24    |
| -   | -   |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
| 0.4 | 020 | 0.000 | 0.040 | 0.025 | 0.020  | 0.050 | 0.000 | 0.045   | 0.000 | 0.040 | 0.000   | 0.000 | 0.050 | 0.075  | 0.400 | 0.000 | 0.000  | 0.130 | 0.000 | 0.430  | 0.160  | 0.100 | 0.450            | 0.200 | 0.130 | 0.100   | 0.24    |
| 0.0 | 020 | 0.030 | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045   | 0.060 | 0.040 | 0.060   | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120  | 0.160  | 0.100 | 0.150            | 0.200 | 0.120 | 0.180   | 0.24    |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
| 0.0 | 010 | 0.015 | 0.020 | 0.013 | 0.019  | 0.025 | 0.015 | 0.023   | 0.030 | 0.020 | 0.030   | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045  | 0.060 | 0.040 | 0.060  | 0.080  | 0.050 | 0.075            | 0.100 | 0.060 | 0.090   | 0.12    |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     | _   |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
| 0.0 | 020 | 0.030 | 0.040 | 0.025 | 0.038  | 0.050 | 0.030 | 0.045   | 0.060 | 0.040 | 0.060   | 0.080 | 0.050 | 0.075  | 0.100 | 0.060 | 0.090  | 0.120 | 0.080 | 0.120  | 0.160  | 0.100 | 0.150            | 0.200 | 0.120 | 0.180   | 0.24    |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |
|     |     |       |       |       |        |       |       |         |       |       |         |       |       |        |       |       |        |       |       |        |        |       |                  |       |       |         |         |



### PRÄZISES UND SCHNELLES BOHREN BIS 10 X D

#### Kühlschmierstoff, Filter und Druck

#### Kühlen mit innerer Kühlmittelzufuhr

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen. Speziell bei kleinen Durchmessern müssen folgende Filterqualitäten eingehalten werden:

- Bohrer mit Ø < 2 mm Filterqualität ≤ 0.010 mm.
- Bohrer mit  $\emptyset$  < 3 mm Filterqualität  $\le$  0.020 mm.
- Bohrer mit Ø < 6 mm Filterqualität ≤ 0.050 mm.

**Kühlmitteldruck:** Für CrazyDrill Cool SST-Inox wird mindestens der in der Tabelle angegebene Kühlmitteldruck benötigt, um prozesssicher zu bohren. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

| Ø d₁ Werkzeug                | [mm]  | 1.0 mm - 2.0 mm | 2.0 mm - 4.0 mm | 4.0 mm - 6.0 mm |  |
|------------------------------|-------|-----------------|-----------------|-----------------|--|
| Minimaler<br>Kühlmitteldruck | [bar] | 50              | 40              | 25              |  |

### **Spannmittel**

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

### CrazyDrill Cool SST-Inox 6 x d

Dank der hervorragenden Selbstzentrierung von CrazyDrill Cool SST-Inox, erübrigt sich die Verwendung eines Zentrier- oder Pilotbohrers auf regelmässigen und geraden Oberflächen.

**Höhere Anforderungen:** Bei unregelmässigen, rauen oder schrägen Oberflächen sowie für eine hohe Positionsgenauigkeit und Geradheit empfiehlt Mikron Tool:

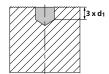
- CrazyDrill Coolpilot als Pilotbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

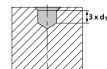
### CrazyDrill Cool SST-Inox 10 x d

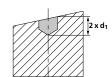
Empfohlen ist eine Pilotbohrung mit CrazyDrill Coolpilot oder CrazyDrill Crosspilot auf schrägen Oberflächen.

### Pilotbohren und Bohren

Die Pilotbohrung mit CrazyDrill Coolpilot oder CrazyDrill Crosspilot (auf schrägen Oberflächen) ist der perfekte Ausgangspunkt für eine präzise Bohrungsposition mit hoher Fluchtungsgenauigkeit. Dank perfekt abgestimmter Bohrertoleranz entsteht kein sichtbarer Übergang vom Pilotbohrer zum Folgebohrer. Eine durchgehend hohe Qualität der Bohrung ist gewährleistet.

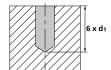


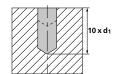





### **BOHRUNG IN EINEM BOHRSTOSS BIS 10 X D**

### 1 | PILOTBOHRUNG

- Interne Kühlung einschalten.
- Bohren mit CrazyDrill Coolpilot (unregelmässige und raue Oberflächen) bis 3 x d. Gleichzeitiges Anfasen 90°. Bohren mit CrazyDrill Crosspilot für beide Versionen (6 x d / 10 x d) auf schrägen Oberflächen.



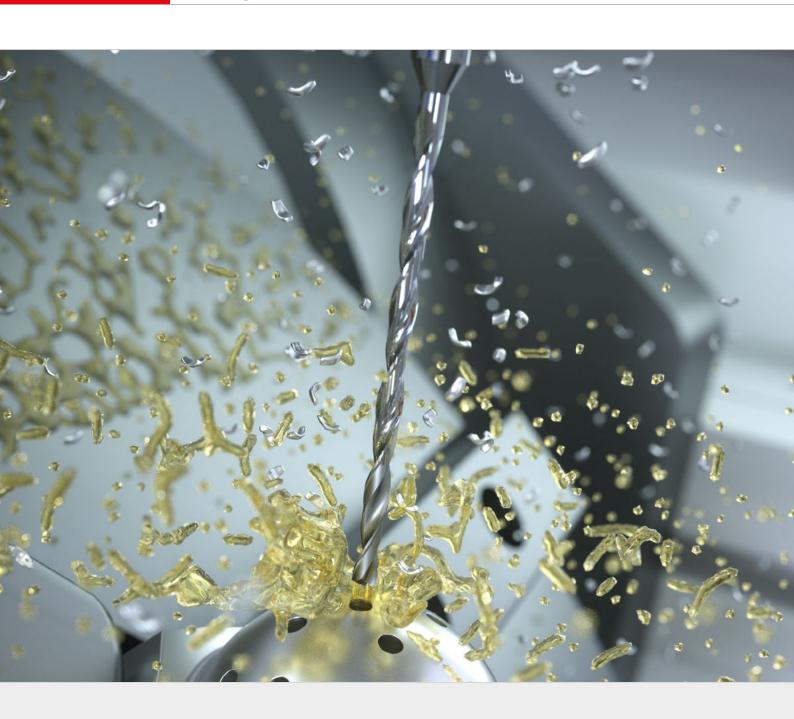






### 2 | BOHRUNG

- Interne Kühlung einschalten.
- Bohren mit CrazyDrill Cool SST-Inox in einem einzigen Bohrstoss mit der empfohlenen Schnittund Vorschubgeschwindigkeit.






### Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



# CrazyDrill Cool







Je nach dem zu bearbeitenden Material kann zwischen einer unbeschichteten und beschichteten Variante gewählt werden.

Eingesetzt in Kombination mit dem Pilotbohrer CrazyDrill Pilot (oder CrazyDrill Coolpilot bzw. CrazyDrill Pilot SST-Inox für schwer zerspanbare Materialien) eignet sich dieser Bohrer für präzise, tiefe Bohrungen. Je nach Material ist dabei ein Entspänen notwendig. Dank eng abgestimmter Toleranzen zwischen Pilotbohrer und CrazyDrill Cool ist ein prozesssicheres Bohren sowie eine hohe Bohrungsqualität (Fluchtungsgenauigkeit und kein messbarer Übergang) gewährleistet.

Zwei spiralisierte Kühlkanäle führen das Kühlmittel bis an die Spitze und garantieren eine konstante Kühlung, Schmierung und Späneabfuhr. Eine Powerkammer im Schaft sorgt für den notwendigen Kühlmittelfluss auch bei kleinen Dimensionen. Hohe Bohrgeschwindigkeiten und gute Standzeiten sind das Resultat.



## Tief und anspruchsvoll

### PROZESSSICHER BOHREN BIS 15 X D

Mit CrazyDrill Cool bietet Mikron Tool einen Tieflochbohrer im Durchmesserbereich von 0.75 mm bis 6.00 mm und für Bohrtiefen bis 15 x d an.

Je nach dem zu bearbeitenden Material kann zwischen einer unbeschichteten und beschichteten Variante gewählt werden.

CrazyDrill Cool, Bohrtiefen 6 x d / 10 x d / 15 x d, beschichtet und unbeschichtet.





#### 1 | SCHAFT

Ein robuster Hartmetallschaft garantiert hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.

#### 2 | HARTMETALL

Die Verwendung eines Hartmetalls der neuesten Generation ermöglicht hohe Bearbeitungsgeschwindigkeiten.

### 3 | BESCHICHTUNG / OBERFLÄCHENBE-**HANDLUNG**

- Version CA (unbeschichtet): Extrem glatte unbeschichtete Spannuten, scharf und mit Schneidkantenbehandlung für hohe Stabilität und Standzeit, z.B. für Aluminium, Messing, Bronze.
- Version CS (beschichtet): Die zusätzliche Hochleistungsbeschichtung eXedur RI / RIP sorgt für thermischen Schutz, Verschleissschutz und verhindert ein Verkleben der Späne. Das Ergebnis ist ein perfekter Spänetransport und eine hohe Standzeit z.B. bei Stählen, legierten Stählen, Gusseisen.

### **4 | KÜHLUNG MIT POWERKAMMER**

Zwei interne Kühlkanäle, bis an die Bohrerspitze geführt, sorgen für eine konstante Kühlung / Schmierung und gleichzeitig für eine gute Spanabfuhr. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer für einen guten Kühlmittelfluss.

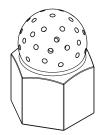
### 5 | GEOMETRIE

Eine spezielle Schneidengeometrie sowie Spiralnutenform sorgt für einen optimalen Spänefluss. Ein Entspänen kann je nach Material notwendig sein.








## Vorteile und Anwendungen

### KLEINBOHRER MIT INNENKÜHLUNG FÜR TIEFE BOHRUNGEN

KÜRZERE BEARBEITUNGSZEIT | Durch hohe Vorschübe

ERHÖHTE STANDZEIT | Durch effiziente Kühlung

HOHE PRÄZISION Dank enger Toleranzen



### TEIL

Spritzdüse

#### WERKSTOFF

X2CrMoTiS18-2 / 1.4523 / ASTM 430F

#### **BEARBEITUNG**

- 50 Bohrungen
- d = 1.0 mm
- Bohrtiefe 15 mm

### WERKZEUG

Mikron Tool - CrazyDrill Cool - 15 x d beschichtet

| DATEN         | MIKRON TOOL                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Cool - Hartmetall - Beschichtet - Innenkühlung                                       |
| Artikelnummer | 2.CD.150100.CS                                                                                  |
| Schnittdaten  | $v_c = 50 \text{ m/min}$ $f = 0.03 \text{ mm/U}$ $Q_1 = 0.5 \text{ mm}$ $Q_2 = 0.25 \text{ mm}$ |















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE    |
|-----------------------|-----------------------------|
| Dentaltechnik         | Zahnimplantat               |
| Medizintechnik        | Bauteil für Messinstrument  |
| Automobilbau          | Bauteil für Einspritzsystem |
| Maschinenbau          | Verriegelungsbolzen         |
| Lebensmittelindustrie | Düse                        |
| Energie               | Turbinenschaufel            |

| MATERIALGRUPPE                              | ERIALGRUPPE BEISPIELE |                 |                   |  |  |  |  |  |
|---------------------------------------------|-----------------------|-----------------|-------------------|--|--|--|--|--|
|                                             | Wr. Nr.               | DIN             | AISI / ASTM / UNS |  |  |  |  |  |
| Gruppe P<br>Unlegierte u.                   | 1.0401                | C15             | 1015              |  |  |  |  |  |
| legierte Stähle                             | 1.3505                | 100Cr6          | 52100             |  |  |  |  |  |
|                                             | 1.2436                | X210CrW12       | D4 / D6           |  |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105                | X6CrMoS17       | 430F              |  |  |  |  |  |
|                                             | 1.4034                | X46Cr13         | 420C              |  |  |  |  |  |
|                                             | 1.4542                | X5CrNiCuNb 16-4 | 630               |  |  |  |  |  |
|                                             | 1.4301                | X5CrNi 18-10    | 304               |  |  |  |  |  |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040                | GGG40           | 60-40-18          |  |  |  |  |  |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315                | AlMgSi1         | 6351              |  |  |  |  |  |
|                                             | 3.2163                | GD-AlSi9Cu3     | A380              |  |  |  |  |  |
|                                             | 2.004                 | Cu-OF / CW008A  | C10100            |  |  |  |  |  |
|                                             | 2.0321                | CuZn37 CW508L   | C27400            |  |  |  |  |  |
|                                             | 2.102                 | CuSn6           | C51900            |  |  |  |  |  |
|                                             | 2.096                 | CuAl9Mn2        | C63200            |  |  |  |  |  |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle  | 2.4856                |                 | INCONEL 625       |  |  |  |  |  |
|                                             | 2.4665                | NiCr22Fe18Mo    | HASTELLOY X       |  |  |  |  |  |
| <b>Gruppe S3</b><br>CrCo Legierungen        | 2.4964                | CoCr20W15Ni     | HAYNES 25         |  |  |  |  |  |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510                | 100MnCrMoW4     | 01                |  |  |  |  |  |



### CrazyDrill Cool 6 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool 6 x d in der beschichteten Version eignet sich vor allem für unlegierte, legierte und rostfreie Stähle, für Gusseisen und sogar gehärtete Stähle bis 55 HRC.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Bei der Version bis Bohrtiefe 6 x d erübrigt sich eine vorgehende Zentrierung auf geraden Oberflächen. Mit seinem Spitzenwinkel von 140° und seiner S-Ausspitzung hat der Bohrer eine gute Selbstzentrierung. Das Pilotbohren oder auch Zentrieren wird empfohlen bei unregelmässiger, rauer oder schräger Materialoberfläche, oder bei Bedarf an hoher Positionsgenauigkeit. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

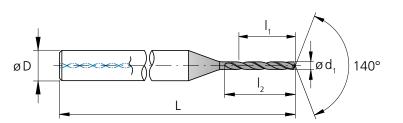
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Cool - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.







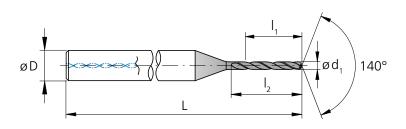

**Z**2







| ab Lager | Artikelnummer  | <b>d₁</b><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | D<br>(h6)<br>[mm] | L<br>[mm] |
|----------|----------------|--------------------------------|----------------------------|----------------------------|-------------------|-----------|
| -        | 2.CD.060075.CS | 0.75                           | 4.5                        | 6.8                        | 3                 | 51.5      |
|          | 2.CD.060080.CS | 0.80                           | 4.8                        | 7.2                        | 3                 | 51.5      |
|          | 2.CD.060085.CS | 0.85                           | 5.1                        | 7.7                        | 3                 | 51.5      |
|          | 2.CD.060090.CS | 0.90                           | 5.4                        | 8.1                        | 3                 | 51.5      |
|          | 2.CD.060095.CS | 0.95                           | 5.7                        | 8.6                        | 3                 | 51.5      |
|          | 2.CD.060100.CS | 1.00                           | 6.0                        | 9.0                        | 4                 | 55.0      |
|          | 2.CD.060105.CS | 1.05                           | 6.3                        | 9.5                        | 4                 | 55.0      |
|          | 2.CD.060103.CS | 1.10                           | 6.6                        | 9.9                        | 4                 | 55.0      |
|          | 2.CD.060115.CS | 1.15                           | 6.9                        | 10.4                       | 4                 | 55.0      |
|          | 2.CD.060120.CS | 1.20                           | 7.2                        | 10.4                       | 4                 | 55.0      |
|          | 2.CD.060125.CS | 1.25                           | 7.5                        | 11.3                       | 4                 | 55.0      |
|          | 2.CD.060130.CS | 1.30                           | 7.8                        | 11.7                       | 4                 | 57.0      |
|          | 2.CD.060135.CS | 1.35                           | 8.1                        | 12.2                       | 4                 | 57.0      |
| _        | 2.CD.060140.CS | 1.40                           | 8.4                        | 12.6                       | 4                 | 57.0      |
|          | 2.CD.060145.CS | 1.45                           | 8.7                        | 13.1                       | 4                 | 57.0      |
|          | 2.CD.060150.CS | 1.50                           | 9.0                        | 13.5                       | 4                 | 57.0      |
|          | 2.CD.060155.CS | 1.55                           | 9.3                        | 14.0                       | 4                 | 59.0      |
|          | 2.CD.060160.CS | 1.60                           | 9.6                        | 14.4                       | 4                 | 59.0      |
|          | 2.CD.060165.CS | 1.65                           | 9.9                        | 14.9                       | 4                 | 59.0      |
| •        | 2.CD.060170.CS | 1.70                           | 10.2                       | 15.3                       | 4                 | 59.0      |
|          | 2.CD.060175.CS | 1.75                           | 10.5                       | 15.8                       | 4                 | 59.0      |
|          | 2.CD.060180.CS | 1.80                           | 10.8                       | 16.2                       | 4                 | 61.0      |
| •        | 2.CD.060185.CS | 1.85                           | 11.1                       | 16.7                       | 4                 | 61.0      |
| -        | 2.CD.060190.CS | 1.90                           | 11.4                       | 17.1                       | 4                 | 61.0      |
| -        | 2.CD.060195.CS | 1.95                           | 11.7                       | 17.6                       | 4                 | 61.0      |
| -        | 2.CD.060200.CS | 2.00                           | 12.0                       | 18.0                       | 4                 | 63.0      |
| -        | 2.CD.060205.CS | 2.05                           | 12.3                       | 18.5                       | 4                 | 63.0      |
| -        | 2.CD.060210.CS | 2.10                           | 12.6                       | 18.9                       | 4                 | 63.0      |


Ergänzende Produkte

CrazyDrill Pilot CrazyDrill Crosspilot



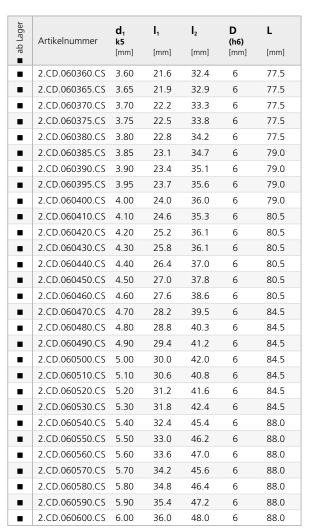
## CrazyDrill Cool 6 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|-----------------------------|----------------|----------------|-----------|------|
|          |                | [mm]                        | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.CD.060215.CS | 2.15                        | 12.9           | 19.4           | 4         | 63.0 |
| •        | 2.CD.060220.CS | 2.20                        | 13.2           | 19.8           | 4         | 63.0 |
| •        | 2.CD.060225.CS | 2.25                        | 13.5           | 20.3           | 4         | 63.0 |
|          | 2.CD.060230.CS | 2.30                        | 13.8           | 20.7           | 4         | 65.0 |
| •        | 2.CD.060235.CS | 2.35                        | 14.1           | 21.2           | 4         | 65.0 |
|          | 2.CD.060240.CS | 2.40                        | 14.4           | 21.6           | 4         | 65.0 |
| •        | 2.CD.060245.CS | 2.45                        | 14.7           | 22.1           | 4         | 65.0 |
| •        | 2.CD.060250.CS | 2.50                        | 15.0           | 22.5           | 4         | 65.0 |
|          | 2.CD.060255.CS | 2.55                        | 15.3           | 22.7           | 4         | 65.0 |
| •        | 2.CD.060260.CS | 2.60                        | 15.6           | 23.4           | 4         | 66.5 |
| •        | 2.CD.060265.CS | 2.65                        | 15.9           | 23.9           | 4         | 66.5 |
|          | 2.CD.060270.CS | 2.70                        | 16.2           | 24.3           | 4         | 66.5 |
| •        | 2.CD.060275.CS | 2.75                        | 16.5           | 24.8           | 4         | 68.5 |
|          | 2.CD.060280.CS | 2.80                        | 16.8           | 25.2           | 4         | 68.5 |
| •        | 2.CD.060285.CS | 2.85                        | 17.1           | 25.7           | 4         | 68.5 |
|          | 2.CD.060290.CS | 2.90                        | 17.4           | 26.1           | 4         | 68.5 |
| •        | 2.CD.060295.CS | 2.95                        | 17.7           | 26.6           | 4         | 68.5 |
|          | 2.CD.060300.CS | 3.00                        | 18.0           | 27.0           | 6         | 73.0 |
| •        | 2.CD.060305.CS | 3.05                        | 18.3           | 27.5           | 6         | 73.0 |
|          | 2.CD.060310.CS | 3.10                        | 18.6           | 27.9           | 6         | 73.0 |
| •        | 2.CD.060315.CS | 3.15                        | 18.9           | 28.4           | 6         | 73.0 |
|          | 2.CD.060320.CS | 3.20                        | 19.2           | 28.8           | 6         | 73.0 |
| •        | 2.CD.060325.CS | 3.25                        | 19.5           | 29.3           | 6         | 73.0 |
|          | 2.CD.060330.CS | 3.30                        | 19.8           | 29.7           | 6         | 75.5 |
|          | 2.CD.060335.CS | 3.35                        | 20.1           | 30.2           | 6         | 75.5 |
|          | 2.CD.060340.CS | 3.40                        | 20.4           | 30.6           | 6         | 75.5 |
|          | 2.CD.060345.CS | 3.45                        | 20.7           | 31.1           | 6         | 75.5 |
|          | 2.CD.060350.CS | 3.50                        | 21.0           | 31.5           | 6         | 75.5 |
|          | 2.CD.060355.CS | 3.55                        | 21.3           | 32.0           | 6         | 75.5 |








**Z**2







Ergänzende Produkte

CrazyDrill Pilot

CrazyDrill Crosspilot



# CrazyDrill Cool 6 x d - beschichtet

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werksto<br>gruppe | ff-<br>Werkstoff             | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$  | Q <sub>x</sub> |  |
|-------------------|------------------------------|--------|--------------------|-------------------------|----------------------------------|--------|----------------|--|
|                   |                              | 1.0301 | C10                | AISI 1010               |                                  |        |                |  |
| P                 |                              | 1.0401 | C15                | AISI 1015               |                                  |        |                |  |
| \ 0 /             | Stähle unlegiert             | 1.1191 | C45E/CK45          | AISI 1045               | 80                               | 6xd1   | _              |  |
|                   | Rm < 800 N/mm <sup>2</sup>   | 1.0044 | S275JR             | AISI 1020               |                                  |        |                |  |
| 121               |                              | 1.0715 | 11SMn30            | AISI 1215               |                                  |        |                |  |
|                   |                              | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |        |                |  |
| ζρ.               |                              | 1.7131 | 16MnCr5            | AISI 5115               |                                  |        |                |  |
|                   | Stähle niedriglegiert        | 1.3505 | 100Cr6             | AISI 52100              | 80                               | 6xd1   | _              |  |
|                   | Rm > 900 N/mm <sup>2</sup>   | 1.7225 | 42CrMo4            | AISI 4140               |                                  |        |                |  |
| d <sub>1</sub>    |                              | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |        |                |  |
|                   |                              | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |  |
| Q1                | Werkzeugstähle               | 1.2436 | X210CrW12          | AISI D4/D6              |                                  |        |                |  |
|                   | hochlegiert                  | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 60                               | 6xd1   | _              |  |
| Qx                | Rm < 1200 N/mm <sup>2</sup>  | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |        |                |  |
| Qx                | Rostfreie Stähle-            | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |        |                |  |
|                   | ferritisch                   | 1.4105 | X6CrMoS17          | AISI 430F               | 50                               | 0.5xd1 | 0.25xd1        |  |
| M                 | Rostfreie Stähle-            | 1.4034 | X46Cr13            | AISI 420C               |                                  |        |                |  |
|                   | martensitisch                | 1.4112 | X90CrMoV18         | AISI 440B               | 40                               | 0.5xd1 | 0.25xd1        |  |
|                   | Rostfreie Stähle-            | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |        |                |  |
|                   | martensitisch – PH           | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 40                               | 0.5xd1 | 0.25xd1        |  |
|                   | martensitisen in             | 1.4301 | X5CrNi 18-10       | AISI 304                | 40                               | 0.5xd1 | 0.25xd1        |  |
|                   | Rostfreie Stähle-            | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 40                               | 0.3xu1 | 0.23801        |  |
|                   | austenitisch                 | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |        |                |  |
|                   | dastermiserr                 | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |        |                |  |
|                   |                              |        |                    |                         |                                  |        |                |  |
| 1.7               |                              | 0.6020 | GG20               | ASTM 400                |                                  |        |                |  |
| K                 | Gusseisen                    | 0.6030 | GG30               | ASTM 40B                | 80                               | 6xd1   | _              |  |
|                   |                              | 0.7040 | GGG40              | ASTM 60-40-18           |                                  |        |                |  |
|                   |                              | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |        |                |  |
|                   | Aluminium<br>Knetlegierungen | 3.2315 | AlMgSi1            | ASTM 6351               | 300                              | 6xd1   | _              |  |
| N                 |                              | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |        |                |  |
|                   | Aluminium                    | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 200                              | 6xd1   | _              |  |
|                   | Druckgusslegierungen         |        | GD-AlSi10Mg        | UNS A03590              |                                  | OAG I  |                |  |
|                   | Kupfer                       | 2.004  | Cu-OF / CW008A     | UNS C10100              | 100                              | 1.5xd1 | 1xd1           |  |
|                   |                              | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |        |                |  |
|                   | Messing bleifrei             | 2.0321 | CuZn37 CW508L      | UNS C27400              | 140                              | 1xd1   | 0.5xd1         |  |
|                   |                              | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |        |                |  |
|                   | Messing, Bronze              | 2.0401 | CuZn39Pb3 / CW614N |                         | 120                              | 2xd1   | 1xd1           |  |
|                   | Rm < 400 N/mm <sup>2</sup>   | 2.102  | CuSn6              | UNS C51900              |                                  |        |                |  |
|                   | Bronze                       | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 200                              | 6xd1   | _              |  |
|                   | Rm < 600 N/mm <sup>2</sup>   | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |        |                |  |
|                   |                              | 2.4856 |                    | Inconel 625             |                                  |        |                |  |
| $ S_1 $           | Hitzebeständige              | 2.4668 |                    | Inconel 718             | 20                               | 0.5xd1 | 0.25xd1        |  |
| 21                | Stähle                       | 2.4617 | NiMo28             | Hastelloy B-2           | 20                               | 0.5801 | 0.23/01        |  |
|                   |                              | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |        |                |  |
|                   | Titan rein                   | 3.7035 | Gr.2               | ASTM B348 / F67         | 20                               | 0.5xd1 | 0.25xd1        |  |
| $S_2$             | ritair reiir                 | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  | 0.JAU1 | 0.23Au1        |  |
| <b>3</b> 2        | Titan Legierungen            | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 20                               | 0.5xd1 | 0.25xd1        |  |
|                   | Titali Legierangen           | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  | 0.JAU1 | 0.23Au1        |  |
| $S_3$             | CrCo-Legierungen             | 2.4964 | CoCr20W15Ni        | Haynes 25               | 20                               | 0.5xd1 | 0.25xd1        |  |
| <b>3</b> 3        | Crco-Legierungen             |        | CrCoMo28           | ASTM F1537              | ۷                                | 0.3/01 | 0.2 JAUT       |  |
| H,                | Stähle gehärtet<br>< 55 HRC  | 1.2510 | 100MnCrMoW4        | AISI O1                 | 40                               | 0.5xd1 | 0.25xd1        |  |
| H <sub>2</sub>    | Stähle gehärtet<br>≥ 55 HRC  | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |  |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> [mm/U]       |                       |                       |                       |                       |                       |                       |                       |                       |                       |  |  |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|
| <b>Ød1</b><br>0.80 mm | <b>Ød1</b><br>1.00 mm | <b>Ød1</b><br>1.25 mm | <b>Ød1</b><br>1.50 mm | <b>Ød1</b><br>2.00 mm | <b>Ød1</b><br>2.50 mm | <b>Ød1</b><br>3.00 mm | <b>Ød1</b><br>4.00 mm | <b>Ød1</b><br>5.00 mm | <b>Ød1</b><br>6.00 mm |  |  |
| f                     | f                     | f                     | f                     | f                     | f                     | f                     | f                     | f                     | f                     |  |  |
| 0.050                 | 0.080                 | 0.110                 | 0.140                 | 0.180                 | 0.210                 | 0.240                 | 0.280                 | 0.310                 | 0.340                 |  |  |
| 0.050                 | 0.080                 | 0.100                 | 0.120                 | 0.150                 | 0.170                 | 0.190                 | 0.220                 | 0.240                 | 0.260                 |  |  |
| 0.020                 | 0.050                 | 0.065                 | 0.080                 | 0.110                 | 0.130                 | 0.150                 | 0.180                 | 0.200                 | 0.220                 |  |  |
| 0.011                 | 0.030                 | 0.045                 | 0.060                 | 0.080                 | 0.090                 | 0.100                 | 0.120                 | 0.130                 | 0.140                 |  |  |
| 0.020                 | 0.050                 | 0.065                 | 0.080                 | 0.110                 | 0.130                 | 0.150                 | 0.180                 | 0.200                 | 0.220                 |  |  |
| 0.010                 | 0.020                 | 0.030                 | 0.040                 | 0.060                 | 0.080                 | 0.090                 | 0.110                 | 0.120                 | 0.130                 |  |  |
| 0.010                 | 0.020                 | 0.030                 | 0.040                 | 0.060                 | 0.080                 | 0.090                 | 0.110                 | 0.120                 | 0.130                 |  |  |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |  |  |
| 0.075                 | 0.100                 | 0.120                 | 0.140                 | 0.170                 | 0.190                 | 0.210                 | 0.240                 | 0.260                 | 0.280                 |  |  |
| 0.050                 | 0.060                 | 0.070                 | 0.080                 | 0.090                 | 0.110                 | 0.130                 | 0.150                 | 0.180                 | 0.220                 |  |  |
| 0.070                 | 0.080                 | 0.090                 | 0.110                 | 0.130                 | 0.160                 | 0.180                 | 0.210                 | 0.240                 | 0.260                 |  |  |
| 0.055                 | 0.065                 | 0.080                 | 0.090                 | 0.100                 | 0.110                 | 0.130                 | 0.140                 | 0.170                 | 0.200                 |  |  |
| 0.055                 | 0.065                 | 0.080                 | 0.090                 | 0.100                 | 0.110                 | 0.130                 | 0.140                 | 0.170                 | 0.200                 |  |  |
| 0.080                 | 0.100                 | 0.110                 | 0.130                 | 0.150                 | 0.170                 | 0.190                 | 0.200                 | 0.210                 | 0.230                 |  |  |
| 0.020                 | 0.030                 | 0.040                 | 0.055                 | 0.070                 | 0.090                 | 0.110                 | 0.130                 | 0.150                 | 0.200                 |  |  |
| 0.009                 | 0.012                 | 0.014                 | 0.017                 | 0.020                 | 0.022                 | 0.024                 | 0.034                 | 0.039                 | 0.044                 |  |  |
| 0.020                 | 0.030                 | 0.045                 | 0.060                 | 0.075                 | 0.090                 | 0.100                 | 0.110                 | 0.130                 | 0.150                 |  |  |
| 0.020                 | 0.030                 | 0.045                 | 0.060                 | 0.075                 | 0.090                 | 0.100                 | 0.110                 | 0.130                 | 0.150                 |  |  |
| 0.009                 | 0.012                 | 0.014                 | 0.019                 | 0.024                 | 0.029                 | 0.034                 | 0.039                 | 0.044                 | 0.054                 |  |  |
| 0.008                 | 0.010                 | 0.012                 | 0.015                 | 0.020                 | 0.025                 | 0.030                 | 0.040                 | 0.050                 | 0.060                 |  |  |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |  |  |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |  |  |



### CrazyDrill Cool 6 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool 6 x d in der unbeschichteten Version eignet sich vor allem für Nichteisenmetalle.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Bei der Version bis Bohrtiefe 6 x d erübrigt sich eine vorgehende Zentrierung auf geraden Oberflächen. Mit seinem Spitzenwinkel von 140° und seiner S-Ausspitzung hat der Bohrer eine gute Selbstzentrierung. Das Pilotbohren oder auch Zentrieren wird empfohlen bei unregekmässiger, rauer oder schräger Materialoberfläche, oder bei Bedarf an hoher Positionsgenauigkeit. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

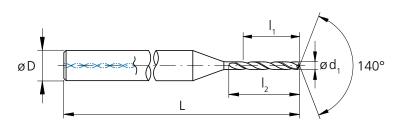
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Cool - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.





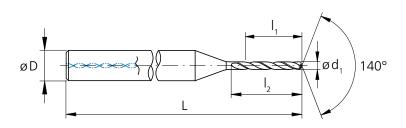



**Z**2



Nicht beschichtet




| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | I <sub>1</sub> | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------|----------------------------|--------------------------|-----------|
| •          | 2.CD.060075.CA | 0.75                                       | 4.5            | 6.8                        | 3                        | 51.5      |
| •          | 2.CD.060080.CA | 0.80                                       | 4.8            | 7.2                        | 3                        | 51.5      |
| •          | 2.CD.060085.CA | 0.85                                       | 5.1            | 7.7                        | 3                        | 51.5      |
| •          | 2.CD.060090.CA | 0.90                                       | 5.4            | 8.1                        | 3                        | 51.5      |
| •          | 2.CD.060095.CA | 0.95                                       | 5.7            | 8.6                        | 3                        | 51.5      |
| -          | 2.CD.060100.CA | 1.00                                       | 6.0            | 9.0                        | 4                        | 55.0      |
| •          | 2.CD.060105.CA | 1.05                                       | 6.3            | 9.5                        | 4                        | 55.0      |
|            | 2.CD.060110.CA | 1.10                                       | 6.6            | 9.9                        | 4                        | 55.0      |
|            | 2.CD.060115.CA | 1.15                                       | 6.9            | 10.4                       | 4                        | 55.0      |
|            | 2.CD.060120.CA | 1.20                                       | 7.2            | 10.8                       | 4                        | 55.0      |
| •          | 2.CD.060125.CA | 1.25                                       | 7.5            | 11.3                       | 4                        | 55.0      |
|            | 2.CD.060130.CA | 1.30                                       | 7.8            | 11.7                       | 4                        | 57.0      |
|            | 2.CD.060135.CA | 1.35                                       | 8.1            | 12.2                       | 4                        | 57.0      |
|            | 2.CD.060140.CA | 1.40                                       | 8.4            | 12.6                       | 4                        | 57.0      |
|            | 2.CD.060145.CA | 1.45                                       | 8.7            | 13.1                       | 4                        | 57.0      |
|            | 2.CD.060150.CA | 1.50                                       | 9.0            | 13.5                       | 4                        | 57.0      |
| •          | 2.CD.060155.CA | 1.55                                       | 9.3            | 14.0                       | 4                        | 59.0      |
|            | 2.CD.060160.CA | 1.60                                       | 9.6            | 14.4                       | 4                        | 59.0      |
|            | 2.CD.060165.CA | 1.65                                       | 9.9            | 14.9                       | 4                        | 59.0      |
|            | 2.CD.060170.CA | 1.70                                       | 10.2           | 15.3                       | 4                        | 59.0      |
|            | 2.CD.060175.CA | 1.75                                       | 10.5           | 15.8                       | 4                        | 59.0      |
|            | 2.CD.060180.CA | 1.80                                       | 10.8           | 16.2                       | 4                        | 61.0      |
| -          | 2.CD.060185.CA | 1.85                                       | 11.1           | 16.7                       | 4                        | 61.0      |
| -          | 2.CD.060190.CA | 1.90                                       | 11.4           | 17.1                       | 4                        | 61.0      |
| -          | 2.CD.060195.CA | 1.95                                       | 11.7           | 17.6                       | 4                        | 61.0      |
|            | 2.CD.060200.CA | 2.00                                       | 12.0           | 18.0                       | 4                        | 63.0      |
|            | 2.CD.060205.CA | 2.05                                       | 12.3           | 18.5                       | 4                        | 63.0      |
|            | 2.CD.060210.CA | 2.10                                       | 12.6           | 18.9                       | 4                        | 63.0      |

Ergänzende Produkte CrazyDrill Pilot CrazyDrill Crosspilot



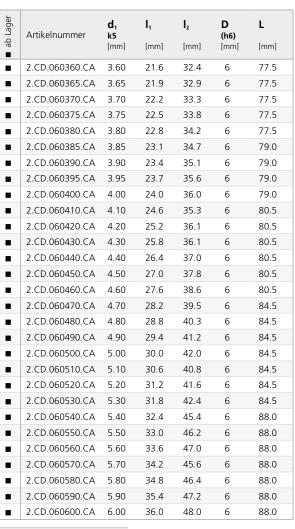
## CrazyDrill Cool 6 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ab Lager | Artikelnummer  | d <sub>1</sub><br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------------------|----------------|----------------|-----------|------|
|          |                | [mm]                 | [mm]           | [mm]           | [mm]      | [mm] |
| -        | 2.CD.060215.CA | 2.15                 | 12.9           | 19.4           | 4         | 63.0 |
| -        | 2.CD.060220.CA | 2.20                 | 13.2           | 19.8           | 4         | 63.0 |
| •        | 2.CD.060225.CA | 2.25                 | 13.5           | 20.3           | 4         | 63.0 |
| -        | 2.CD.060230.CA | 2.30                 | 13.8           | 20.7           | 4         | 65.0 |
| -        | 2.CD.060235.CA | 2.35                 | 14.1           | 21.2           | 4         | 65.0 |
|          | 2.CD.060240.CA | 2.40                 | 14.4           | 21.6           | 4         | 65.0 |
|          | 2.CD.060245.CA | 2.45                 | 14.7           | 22.1           | 4         | 65.0 |
| -        | 2.CD.060250.CA | 2.50                 | 15.0           | 22.5           | 4         | 65.0 |
|          | 2.CD.060255.CA | 2.55                 | 15.3           | 22.7           | 4         | 65.0 |
| -        | 2.CD.060260.CA | 2.60                 | 15.6           | 23.4           | 4         | 66.5 |
| -        | 2.CD.060265.CA | 2.65                 | 15.9           | 23.9           | 4         | 66.5 |
|          | 2.CD.060270.CA | 2.70                 | 16.2           | 24.3           | 4         | 66.5 |
| -        | 2.CD.060275.CA | 2.75                 | 16.5           | 24.8           | 4         | 68.5 |
|          | 2.CD.060280.CA | 2.80                 | 16.8           | 25.2           | 4         | 68.5 |
|          | 2.CD.060285.CA | 2.85                 | 17.1           | 25.7           | 4         | 68.5 |
| -        | 2.CD.060290.CA | 2.90                 | 17.4           | 26.1           | 4         | 68.5 |
|          | 2.CD.060295.CA | 2.95                 | 17.7           | 26.6           | 4         | 68.5 |
| -        | 2.CD.060300.CA | 3.00                 | 18.0           | 27.0           | 6         | 73.0 |
|          | 2.CD.060305.CA | 3.05                 | 18.3           | 27.5           | 6         | 73.0 |
|          | 2.CD.060310.CA | 3.10                 | 18.6           | 27.9           | 6         | 73.0 |
|          | 2.CD.060315.CA | 3.15                 | 18.9           | 28.4           | 6         | 73.0 |
|          | 2.CD.060320.CA | 3.20                 | 19.2           | 28.8           | 6         | 73.0 |
| •        | 2.CD.060325.CA | 3.25                 | 19.5           | 29.3           | 6         | 73.0 |
| -        | 2.CD.060330.CA | 3.30                 | 19.8           | 29.7           | 6         | 75.5 |
| •        | 2.CD.060335.CA | 3.35                 | 20.1           | 30.2           | 6         | 75.5 |
|          | 2.CD.060340.CA | 3.40                 | 20.4           | 30.6           | 6         | 75.5 |
| -        | 2.CD.060345.CA | 3.45                 | 20.7           | 31.1           | 6         | 75.5 |
|          | 2.CD.060350.CA | 3.50                 | 21.0           | 31.5           | 6         | 75.5 |
|          | 2.CD.060355.CA | 3.55                 | 21.3           | 32.0           | 6         | 75.5 |








**Z**2



Nicht beschichtet



Ergänzende Produkte

CrazyDrill Pilot

CrazyDrill Crosspilot



## CrazyDrill Cool 6 x d - unbeschichtet

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                         | Wr.Nr.           | DIN                     | AISI/ASTM/UNS                      | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$   | Q <sub>x</sub> |  |
|----------------------|-----------------------------------|------------------|-------------------------|------------------------------------|----------------------------------|---------|----------------|--|
|                      |                                   | 1.0301           | C10                     | AISI 1010                          |                                  |         |                |  |
|                      |                                   | 1.0401           | C15                     | AISI 1015                          |                                  |         |                |  |
|                      | Stähle unlegiert                  | 1.1191           | C45E/CK45               | AISI 1045                          | 60                               | 6xd1    | _              |  |
| \0,/                 | Rm < 800 N/mm <sup>2</sup>        | 1.0044           | S275JR                  | AISI 1020                          | 00                               | OAGT    |                |  |
| )2(                  |                                   | 1.0715           | 11SMn30                 | AISI 1215                          |                                  |         |                |  |
|                      |                                   | 1.5752           | 15NiCr13                | ASTM 3415 / AISI 3310              |                                  |         |                |  |
| Ψ                    |                                   | 1.7131           | 16MnCr5                 | AISI 5115                          |                                  |         |                |  |
|                      | Stähle niedriglegiert             | 1.3505           | 100Cr6                  | AISI 52100                         | 60                               | 6xd1    | _              |  |
|                      | Rm > 900 N/mm <sup>2</sup>        | 1.7225           | 42CrMo4                 | AISI 4140                          |                                  |         |                |  |
| d <sub>1</sub>       |                                   | 1.2842           | 90MnCrV8                | AISI O2                            |                                  |         |                |  |
|                      |                                   | 1.2379           | X153CrMoV12             | AISI D2                            |                                  |         |                |  |
|                      | Werkzeugstähle                    | 1.2436           | X210CrW12               | AISI D4/D6                         |                                  |         |                |  |
|                      | hochlegiert                       | 1.3343           | HS6-5-2C                | AISI M2 / UNS T11302               | 40                               | 6xd1    | -              |  |
| Qx                   | Rm < 1200 N/mm <sup>2</sup>       | 1.3355           | HS18-0-1                | AISI T1 / UNS T12001               |                                  |         |                |  |
| Qx                   | D+f:- C+# - -                     |                  |                         |                                    |                                  |         |                |  |
|                      | Rostfreie Stähle-<br>ferritisch   | 1.4016<br>1.4105 | X6Cr17<br>X6CrMoS17     | AISI 430 / UNS S43000<br>AISI 430F |                                  |         |                |  |
|                      | Rostfreie Stähle-                 | 1.4034           | X46Cr13                 | AISI 420C                          |                                  |         |                |  |
|                      | martensitisch                     | 1.4112           | X90CrMoV18              | AISI 440B                          |                                  |         |                |  |
|                      | Rostfreie Stähle-                 | 1.4542           | X5CrNiCuNb 16-4         | AISI 630 / ASTM 17-4 PH            |                                  |         |                |  |
|                      | martensitisch – PH                | 1.4545           | X5CrNiCuNb 15-5         | ASTM 15-5 PH                       |                                  |         |                |  |
|                      | That tensitiser TTT               | 1.4301           | X5CrNi 18-10            | AISI 304                           |                                  |         |                |  |
|                      | Doctfroio Ctöblo                  | 1.4435           | X2CrNiMo 18-14-3        | AISI 316L                          |                                  |         |                |  |
|                      | Rostfreie Stähle-<br>austenitisch | 1.4441           | X2CrNiMo 18-14-3        | AISI 316LM                         |                                  |         |                |  |
|                      | adstermiserr                      | 1.4539           | X1NiCrMoCu 25-20-5      |                                    |                                  |         |                |  |
|                      |                                   |                  |                         |                                    |                                  |         |                |  |
| 1.7                  | Gusseisen                         | 0.6020           | GG20                    | ASTM 40D                           |                                  |         |                |  |
| K                    |                                   | 0.6030           | GG30                    | ASTM 40B                           |                                  |         |                |  |
|                      |                                   | 0.7040           | GGG40                   | ASTM 60-40-18                      |                                  |         |                |  |
|                      |                                   | 0.7060           | GGG60                   | ASTM 80-60-03                      |                                  |         |                |  |
|                      | Aluminium<br>Knetlegierungen      | 3.2315           | AlMgSi1                 | ASTM 6351                          | 300                              | 6xd1    | _              |  |
|                      |                                   | 3.4365           | AlZnMgCu1.5             | ASTM 7075                          |                                  |         |                |  |
|                      | Aluminium                         | 3.2163           | GD-AlSi9Cu3             | ASTM A380                          | 200                              | 6xd1    | _              |  |
|                      | Druckgusslegierungen              |                  | GD-AlSi10Mg             | UNS A03590                         |                                  |         |                |  |
|                      | Kupfer                            | 2.004            | Cu-OF / CW008A          | UNS C10100                         | 100                              | 1.5xd1  | 1xd1           |  |
|                      |                                   | 2.0065           | Cu-ETP / CW004A         | UNS C11000                         |                                  |         |                |  |
|                      | Messing bleifrei                  | 2.0321           | CuZn37 CW508L           | UNS C27400                         | 140                              | 1xd1    | 0.5xd1         |  |
|                      |                                   | 2.036            | CuZn40 CW509L           | UNS C28000                         |                                  |         | -              |  |
|                      | Messing, Bronze                   | 2.0401           | CuZn39Pb3 / CW614N      |                                    | 120                              | 2xd1    | 1xd1           |  |
|                      | Rm < 400 N/mm <sup>2</sup>        | 2.102            | CuSn6                   | UNS C51900                         |                                  |         |                |  |
|                      | Bronze                            | 2.0966           | CuAl10Ni5Fe4            | UNS C63000                         | 120                              | 6xd1    | _              |  |
|                      | Rm < 600 N/mm <sup>2</sup>        | 2.096            | CuAl9Mn2                | UNS C63200                         |                                  |         |                |  |
|                      |                                   | 2.4856           |                         | Inconel 625                        |                                  |         |                |  |
| $ S_1 $              | Hitzebeständige                   | 2.4668           |                         | Inconel 718                        |                                  |         |                |  |
| 91                   | Stähle                            | 2.4617           | NiMo28                  | Hastelloy B-2                      |                                  |         |                |  |
|                      |                                   | 2.4665           | NiCr22Fe18Mo            | Hastelloy X                        |                                  |         |                |  |
|                      | Titan rein                        | 3.7035           | Gr.2                    | ASTM B348 / F67                    | 20                               | 0.5xd1  | 0.25xd1        |  |
| $ S_2 $              | TITALI TEILI                      | 3.7065           | Gr.4                    | ASTM B348 / F68                    | 20                               | 0.5801  | 0.23/01        |  |
| <b>3</b> 2           | Titan Legierungen                 | 3.7165           | TiAl6V4                 | ASTM B348 / F136                   | 20                               | 0.5xd1  | 0.25xd1        |  |
|                      | man Legierungen                   | 9.9367           | TiAl6Nb7                | ASTM F1295                         | 20                               | U.3XU I | U.Z.JXU I      |  |
| $ S_3 $              | CrCo-Legierungen                  | 2.4964           | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537            |                                  |         |                |  |
| Ш                    | Stähle gehärtet<br>< 55 HRC       | 1.2510           | 100MnCrMoW4             | AISI O1                            |                                  |         |                |  |
|                      | Stähle gehärtet                   | 1.2379           | X153CrMoV12             | AISI D2                            |                                  |         |                |  |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle Dicht empfohlen



| <b>f</b> [mm/U]                          |                     |                                   |                            |                     |                     |                     |                     |                     |                     |  |  |
|------------------------------------------|---------------------|-----------------------------------|----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|
| Ød1<br>0.80 mm<br>f                      | Ød1<br>1.00 mm<br>f | <b>Ød1</b><br>1.25 mm<br><b>f</b> | Ød1<br>1.50 mm<br><b>f</b> | Ød1<br>2.00 mm<br>f | Ød1<br>2.50 mm<br>f | Ød1<br>3.00 mm<br>f | Ød1<br>4.00 mm<br>f | Ød1<br>5.00 mm<br>f | Ød1<br>6.00 mm<br>f |  |  |
| 0.040                                    | 0.060               | 0.090                             | 0.120                      | 0.160               | 0.180               | 0.220               | 0.260               | 0.280               | 0.300               |  |  |
| 0.030                                    | 0.050               | 0.080                             | 0.100                      | 0.140               | 0.160               | 0.180               | 0.200               | 0.220               | 0.240               |  |  |
| 0.020                                    | 0.040               | 0.060                             | 0.080                      | 0.100               | 0.120               | 0.140               | 0.160               | 0.180               | 0.200               |  |  |
| Empfohlen: CrazyDrill Cool - beschichtet |                     |                                   |                            |                     |                     |                     |                     |                     |                     |  |  |
|                                          |                     |                                   | Em                         | pfohlen: CrazyDr    | ill Cool - beschich | ntet                |                     |                     |                     |  |  |
| 0.050                                    | 0.060               | 0.070                             | 0.080                      | 0.090               | 0.110               | 0.130               | 0.150               | 0.180               | 0.220               |  |  |
| 0.070                                    | 0.080               | 0.090                             | 0.110                      | 0.130               | 0.160               | 0.180               | 0.210               | 0.240               | 0.260               |  |  |
| 0.055                                    | 0.065               | 0.080                             | 0.090                      | 0.100               | 0.110               | 0.130               | 0.140               | 0.170               | 0.200               |  |  |
| 0.055                                    | 0.065               | 0.080                             | 0.090                      | 0.100               | 0.110               | 0.130               | 0.140               | 0.170               | 0.200               |  |  |
| 0.080                                    | 0.100               | 0.110                             | 0.130                      | 0.150               | 0.170               | 0.190               | 0.200               | 0.210               | 0.230               |  |  |
| 0.020                                    | 0.030               | 0.040                             | 0.055                      | 0.070               | 0.090               | 0.110               | 0.130               | 0.150               | 0.200               |  |  |
|                                          |                     |                                   | Em                         | pfohlen: CrazyDr    | ill Cool - beschich | ntet                |                     |                     |                     |  |  |
| 0.020                                    | 0.030               | 0.045                             | 0.060                      | 0.075               | 0.090               | 0.100               | 0.110               | 0.130               | 0.150               |  |  |
| 0.020                                    | 0.030               | 0.045                             | 0.060                      | 0.075               | 0.090               | 0.100               | 0.110               | 0.130               | 0.150               |  |  |
|                                          |                     |                                   | Em                         | pfohlen: CrazyDr    | ill Cool - beschich | ntet                |                     |                     |                     |  |  |
|                                          |                     |                                   | Em                         | pfohlen: CrazyDr    | ill Cool - beschich | ntet                |                     |                     |                     |  |  |
|                                          |                     |                                   |                            |                     |                     |                     |                     |                     |                     |  |  |



### CrazyDrill Cool 10 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool 10 x d in der beschichteten Version eignet sich vor allem für unlegierte, legierte und rostfreie Stähle, für Gusseisen und sogar gehärtete Stähle bis 55 HRC.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot, oder in schwer zerspanbaren Materialien mit CrazyDrill Coolpilot und CrazyDrill Pilot SST-Inox, bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Pilot SST-Inox / Crosspilot und Bohrer CrazyDrill Cool wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

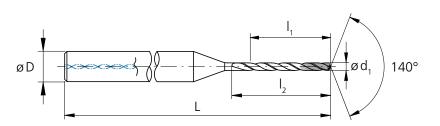
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.







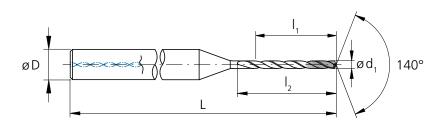

**Z**2







| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|-----------|
| •          | 2.CD.100075.CS | 0.75                                       | 7.5                        | 9.8                          | 3                        | 54.0      |
| -          | 2.CD.100080.CS | 0.80                                       | 8.0                        | 10.4                         | 3                        | 54.0      |
| -          | 2.CD.100085.CS | 0.85                                       | 8.5                        | 11.1                         | 3                        | 56.0      |
| -          | 2.CD.100090.CS | 0.90                                       | 9.0                        | 11.7                         | 3                        | 56.0      |
| •          | 2.CD.100095.CS | 0.95                                       | 9.5                        | 12.4                         | 3                        | 56.0      |
| -          | 2.CD.100100.CS | 1.00                                       | 10.0                       | 13.0                         | 4                        | 59.0      |
| -          | 2.CD.100105.CS | 1.05                                       | 10.5                       | 13.7                         | 4                        | 59.0      |
| -          | 2.CD.100110.CS | 1.10                                       | 11.0                       | 14.3                         | 4                        | 59.0      |
| -          | 2.CD.100115.CS | 1.15                                       | 11.5                       | 15.0                         | 4                        | 59.0      |
| -          | 2.CD.100120.CS | 1.20                                       | 12.0                       | 15.6                         | 4                        | 61.5      |
| •          | 2.CD.100125.CS | 1.25                                       | 12.5                       | 16.3                         | 4                        | 61.5      |
| -          | 2.CD.100130.CS | 1.30                                       | 13.0                       | 16.9                         | 4                        | 61.5      |
| -          | 2.CD.100135.CS | 1.35                                       | 13.5                       | 17.6                         | 4                        | 61.5      |
| -          | 2.CD.100140.CS | 1.40                                       | 14.0                       | 18.0                         | 4                        | 61.5      |
| •          | 2.CD.100145.CS | 1.45                                       | 14.5                       | 18.9                         | 4                        | 63.5      |
| -          | 2.CD.100150.CS | 1.50                                       | 15.0                       | 19.5                         | 4                        | 63.5      |
| •          | 2.CD.100155.CS | 1.55                                       | 15.5                       | 20.2                         | 4                        | 63.5      |
| -          | 2.CD.100160.CS | 1.60                                       | 16.0                       | 20.8                         | 4                        | 66.0      |
| •          | 2.CD.100165.CS | 1.65                                       | 16.5                       | 21.5                         | 4                        | 66.0      |
| -          | 2.CD.100170.CS | 1.70                                       | 17.0                       | 22.1                         | 4                        | 66.0      |
| •          | 2.CD.100175.CS | 1.75                                       | 17.5                       | 22.8                         | 4                        | 66.0      |
| -          | 2.CD.100180.CS | 1.80                                       | 18.0                       | 23.4                         | 4                        | 68.0      |
| •          | 2.CD.100185.CS | 1.85                                       | 18.5                       | 24.1                         | 4                        | 68.0      |
| -          | 2.CD.100190.CS | 1.90                                       | 19.0                       | 24.7                         | 4                        | 68.0      |
| -          | 2.CD.100195.CS | 1.95                                       | 19.5                       | 25.0                         | 4                        | 68.0      |
| -          | 2.CD.100200.CS | 2.00                                       | 20.0                       | 26.0                         | 4                        | 70.0      |
| -          | 2.CD.100205.CS | 2.05                                       | 20.5                       | 26.7                         | 4                        | 70.0      |
| -          | 2.CD.100210.CS | 2.10                                       | 21.0                       | 27.3                         | 4                        | 70.0      |


### Ergänzende Produkte

CrazyDrill Pilot
CrazyDrill Crosspilot
CrazyDrill Coolpilot
CrazyDrill Pilot SST-Inox



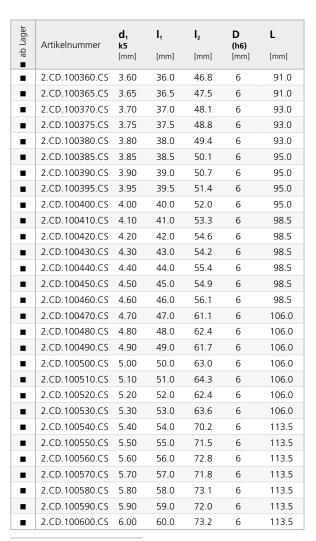
# CrazyDrill Cool 10 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ab Lager | Artikelnummer  | <b>d</b> ₁ k5 | I <sub>1</sub> | <b>I</b> <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|---------------|----------------|-----------------------|-----------|------|
| - TO     |                | [mm]          | [mm]           | [mm]                  | [mm]      | [mm] |
| •        | 2.CD.100215.CS | 2.15          | 21.5           | 28.0                  | 4         | 72.0 |
| •        | 2.CD.100220.CS | 2.20          | 22.0           | 28.6                  | 4         | 72.0 |
|          | 2.CD.100225.CS | 2.25          | 22.5           | 29.3                  | 4         | 72.0 |
| •        | 2.CD.100230.CS | 2.30          | 23.0           | 29.9                  | 4         | 74.0 |
| •        | 2.CD.100235.CS | 2.35          | 23.5           | 30.6                  | 4         | 74.0 |
| •        | 2.CD.100240.CS | 2.40          | 24.0           | 31.2                  | 4         | 74.0 |
| •        | 2.CD.100245.CS | 2.45          | 24.5           | 31.9                  | 4         | 75.5 |
| •        | 2.CD.100250.CS | 2.50          | 25.0           | 32.5                  | 4         | 75.5 |
| •        | 2.CD.100255.CS | 2.55          | 25.5           | 33.2                  | 4         | 75.5 |
| •        | 2.CD.100260.CS | 2.60          | 26.0           | 33.8                  | 4         | 77.5 |
| •        | 2.CD.100265.CS | 2.65          | 26.5           | 34.5                  | 4         | 77.5 |
| •        | 2.CD.100270.CS | 2.70          | 27.0           | 35.1                  | 4         | 77.5 |
| •        | 2.CD.100275.CS | 2.75          | 27.5           | 35.8                  | 4         | 79.0 |
| •        | 2.CD.100280.CS | 2.80          | 28.0           | 36.4                  | 4         | 79.0 |
| •        | 2.CD.100285.CS | 2.85          | 28.5           | 37.1                  | 4         | 79.0 |
| •        | 2.CD.100290.CS | 2.90          | 29.0           | 37.7                  | 4         | 80.5 |
| •        | 2.CD.100295.CS | 2.95          | 29.5           | 38.4                  | 4         | 80.5 |
| •        | 2.CD.100300.CS | 3.00          | 30.0           | 39.0                  | 6         | 85.0 |
| •        | 2.CD.100305.CS | 3.05          | 30.5           | 39.7                  | 6         | 85.0 |
|          | 2.CD.100310.CS | 3.10          | 31.0           | 40.3                  | 6         | 85.0 |
| •        | 2.CD.100315.CS | 3.15          | 31.5           | 41.0                  | 6         | 86.5 |
| •        | 2.CD.100320.CS | 3.20          | 32.0           | 41.6                  | 6         | 86.5 |
|          | 2.CD.100325.CS | 3.25          | 32.5           | 42.3                  | 6         | 86.5 |
|          | 2.CD.100330.CS | 3.30          | 33.0           | 42.9                  | 6         | 86.5 |
| •        | 2.CD.100335.CS | 3.35          | 33.5           | 43.6                  | 6         | 89.0 |
|          | 2.CD.100340.CS | 3.40          | 34.0           | 44.2                  | 6         | 89.0 |
| •        | 2.CD.100345.CS | 3.45          | 34.5           | 44.9                  | 6         | 89.0 |
| •        | 2.CD.100350.CS | 3.50          | 35.0           | 45.5                  | 6         | 91.0 |
| •        | 2.CD.100355.CS | 3.55          | 35.5           | 46.2                  | 6         | 91.0 |








**Z**2







Ergänzende Produkte

CrazyDrill Pilot

CrazyDrill Crosspilot

CrazyDrill Coolpilot

CrazyDrill Pilot SST-Inox



# CrazyDrill Cool 10 x d - beschichtet

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                        | erkstoff-<br>uppe | Werkstoff                                           | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$  | Q <sub>x</sub> |  |
|----------------------------------------|-------------------|-----------------------------------------------------|--------|--------------------|-------------------------|----------------------------------|--------|----------------|--|
|                                        |                   |                                                     | 1.0301 | C10                | AISI 1010               |                                  |        |                |  |
| P                                      |                   |                                                     | 1.0401 | C15                | AISI 1015               |                                  |        |                |  |
| \ 0 /                                  |                   | Stähle unlegiert                                    | 1.1191 | C45E/CK45          | AISI 1045               | 80                               | 6xd1   | 2xd1           |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                   | Rm < 800 N/mm <sup>2</sup>                          | 1.0044 | S275JR             | AISI 1020               |                                  |        |                |  |
| ) <i>2</i> (                           |                   |                                                     | 1.0715 | 11SMn30            | AISI 1215               |                                  |        |                |  |
| <b>2</b>                               |                   |                                                     | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |        |                |  |
| <i>\$4</i>                             |                   |                                                     | 1.7131 | 16MnCr5            | AISI 5115               |                                  |        |                |  |
|                                        |                   | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6             | AISI 52100              | 80                               | 6xd1   | 2xd1           |  |
|                                        |                   | KIII > 900 IV/IIIII1*                               | 1.7225 | 42CrMo4            | AISI 4140               |                                  |        |                |  |
| , d <sub>1</sub> ,                     |                   |                                                     | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |        |                |  |
|                                        |                   |                                                     | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |  |
| Q <sub>1</sub>                         |                   | Werkzeugstähle                                      | 1.2436 | X210CrW12          | AISI D4/D6              | 60                               | Cld    | 211            |  |
|                                        |                   | hochlegiert<br>Rm < 1200 N/mm²                      | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 60                               | 6xd1   | 2xd1           |  |
| Qx                                     |                   | 1111 < 1200 14/11111                                | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |        |                |  |
| ĮQ <sub>x</sub>                        |                   | Rostfreie Stähle-                                   | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |        |                |  |
|                                        | VI                | ferritisch                                          | 1.4105 | X6CrMoS17          | AISI 430F               | 50                               | 0.5xd1 | 0.25xd1        |  |
|                                        | VI                | Rostfreie Stähle-                                   | 1.4034 | X46Cr13            | AISI 420C               |                                  |        |                |  |
|                                        |                   | martensitisch                                       | 1.4112 | X90CrMoV18         | AISI 440B               | 40                               | 0.5xd1 | 0.25xd1        |  |
|                                        |                   | Rostfreie Stähle-                                   | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |        |                |  |
|                                        |                   | martensitisch – PH                                  | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 40                               | 0.5xd1 | 0.25xd1        |  |
|                                        |                   |                                                     | 1.4301 | X5CrNi 18-10       | AISI 304                | 40                               | 0.5xd1 | 0.25xd1        |  |
|                                        |                   | Rostfreie Stähle-                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |        |                |  |
|                                        |                   | austenitisch                                        | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |        |                |  |
|                                        |                   |                                                     | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |        |                |  |
|                                        |                   |                                                     | 0.6020 | GG20               | ASTM 30                 |                                  |        |                |  |
| L L                                    | K                 | Gusseisen                                           | 0.6030 | GG30               | ASTM 40B                |                                  |        |                |  |
| l l                                    |                   |                                                     | 0.7040 | GGG40              | ASTM 60-40-18           | 80                               | 10xd1  | -              |  |
|                                        |                   |                                                     | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |        |                |  |
|                                        |                   | Aluminium                                           | 3.2315 | AlMqSi1            | ASTM 6351               |                                  |        |                |  |
| l l                                    |                   | Knetlegierungen                                     | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 300                              | 10xd1  | -              |  |
| N                                      | V                 | Aluminium                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |        |                |  |
|                                        |                   | Druckgusslegierungen                                |        | GD-AlSi10Mg        | UNS A03590              | 200                              | 10xd1  | -              |  |
|                                        |                   |                                                     | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                  |        |                |  |
|                                        |                   | Kupfer                                              | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 100                              | 1.5xd1 | 1xd1           |  |
|                                        |                   |                                                     | 2.0321 | CuZn37 CW508L      | UNS C27400              |                                  |        |                |  |
|                                        |                   | Messing bleifrei                                    | 2.036  | CuZn40 CW509L      | UNS C28000              | 140                              | 1xd1   | 0.5xd1         |  |
|                                        |                   | Messing, Bronze                                     | 2.0401 | CuZn39Pb3 / CW614N |                         |                                  |        |                |  |
|                                        |                   | Rm < 400 N/mm <sup>2</sup>                          | 2.102  | CuSn6              | UNS C51900              | 120                              | 2xd1   | 1xd1           |  |
|                                        |                   | Bronze                                              | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                                  |        |                |  |
|                                        |                   | Rm < 600 N/mm <sup>2</sup>                          | 2.096  | CuAl9Mn2           | UNS C63200              | 200                              | 10xd1  | -              |  |
|                                        |                   |                                                     | 2.4856 | Carustinia         | Inconel 625             |                                  |        |                |  |
|                                        |                   | 1.05                                                | 2.4668 |                    | Inconel 718             |                                  |        |                |  |
| 5                                      | 1                 | Hitzebeständige<br>Stähle                           | 2.4617 | NiMo28             | Hastelloy B-2           | 20                               | 0.5xd1 | 0.25xd1        |  |
|                                        |                   | Starric                                             | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |        |                |  |
|                                        |                   |                                                     | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |        |                |  |
|                                        | -                 | Titan rein                                          | 3.7065 | Gr.4               | ASTM B348 / F68         | 20                               | 0.5xd1 | 0.25xd1        |  |
| 3                                      | 2                 |                                                     | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |        |                |  |
|                                        | _                 | Titan Legierungen                                   | 9.9367 | TiAl6Nb7           | ASTM F1295              | 20                               | 0.5xd1 | 0.25xd1        |  |
|                                        |                   |                                                     | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |        |                |  |
| 5                                      | 3                 | CrCo-Legierungen                                    | 2.7304 | CrCoMo28           | ASTM F1537              | 20                               | 0.5xd1 | 0.25xd1        |  |
| F                                      | 1,                | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4        | AISI O1                 | 40                               | 0.5xd1 | 0.25xd1        |  |
| -                                      | <sub>2</sub>      | Stähle gehärtet<br>≥ 55 HRC                         | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |        |                |  |



ANWENDUNGSEMPFEHLUNG





|         |         |          |         | • •     | 0.13                 |         |         |         |         | X) |
|---------|---------|----------|---------|---------|----------------------|---------|---------|---------|---------|----|
| Ød1     | Ød1     | Ød1      | Ød1     | Ød1     | nm/U]<br>Ø <b>d1</b> | Ød1     | Ød1     | Ød1     | Ød1     |    |
| 0.80 mm | 1.00 mm | 1.25 mm  | 1.50 mm | 2.00 mm | 2.50 mm              | 3.00 mm | 4.00 mm | 5.00 mm | 6.00 mm |    |
| f       | f       | f        | f       | f       | f                    | f       | f       | f       | f       |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.050   | 0.080   | 0.110    | 0.140   | 0.180   | 0.210                | 0.240   | 0.280   | 0.310   | 0.340   |    |
| 0.030   | 0.000   | 0.110    | 0.140   | 0.100   | 0.210                | 0.240   | 0.200   | 0.510   | 0.540   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.050   | 0.080   | 0.100    | 0.120   | 0.150   | 0.170                | 0.190   | 0.220   | 0.240   | 0.260   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.020   | 0.050   | 0.065    | 0.080   | 0.110   | 0.130                | 0.150   | 0.180   | 0.200   | 0.220   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.011   | 0.030   | 0.045    | 0.060   | 0.080   | 0.090                | 0.100   | 0.120   | 0.130   | 0.140   |    |
| 0.020   | 0.050   | 0.065    | 0.080   | 0.110   | 0.130                | 0.150   | 0.180   | 0.200   | 0.220   |    |
| 0.040   | 0.020   | 0.000    | 0.040   | 0.050   | 0.000                | 0.000   | 0.440   | 0.420   | 0.420   |    |
| 0.010   | 0.020   | 0.030    | 0.040   | 0.060   | 0.080                | 0.090   | 0.110   | 0.120   | 0.130   |    |
| 0.010   | 0.020   | 0.030    | 0.040   | 0.060   | 0.080                | 0.090   | 0.110   | 0.120   | 0.130   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.065   | 0.090   | 0.110    | 0.130   | 0.160   | 0.180                | 0.200   | 0.230   | 0.250   | 0.270   |    |
| 0.003   | 0.090   | 0.110    | 0.130   | 0.100   | 0.160                | 0.200   | 0.230   | 0.230   | 0.270   |    |
| 0.040   | 0.050   | 0.050    | 0.075   | 0.000   | 0.400                | 0.420   | 0.140   | 0.470   | 0.200   |    |
| 0.040   | 0.050   | 0.060    | 0.075   | 0.080   | 0.100                | 0.120   | 0.140   | 0.170   | 0.200   |    |
| 0.060   | 0.070   | 0.080    | 0.100   | 0.120   | 0.150                | 0.170   | 0.200   | 0.220   | 0.250   |    |
| 0.045   | 0.055   | 0.070    | 0.080   | 0.090   | 0.100                | 0.110   | 0.130   | 0.150   | 0.190   |    |
| 0.045   | 0.055   | 0.070    | 0.080   | 0.090   | 0.100                | 0.110   | 0.130   | 0.150   | 0.190   |    |
| 0.043   | 0.055   | 0.070    | 0.060   | 0.030   | 0.100                | 0.110   | 0.130   | 0.130   | 0.130   |    |
| 0.070   | 0.090   | 0.100    | 0.120   | 0.135   | 0.150                | 0.170   | 0.190   | 0.200   | 0.220   |    |
| 0.015   | 0.025   | 0.035    | 0.050   | 0.065   | 0.085                | 0.100   | 0.120   | 0.140   | 0.190   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.007   | 0.010   | 0.012    | 0.015   | 0.018   | 0.020                | 0.022   | 0.032   | 0.037   | 0.042   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.010   | 0.020   | 0.035    | 0.050   | 0.065   | 0.080                | 0.090   | 0.100   | 0.120   | 0.140   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| 0.010   | 0.020   | 0.035    | 0.050   | 0.065   | 0.080                | 0.090   | 0.100   | 0.120   | 0.140   |    |
| 0.007   | 0.010   | 0.012    | 0.017   | 0.022   | 0.027                | 0.032   | 0.037   | 0.042   | 0.052   |    |
| 0.008   | 0.010   | 0.012    | 0.015   | 0.020   | 0.025                | 0.030   | 0.040   | 0.050   | 0.060   |    |
| 0.008   | 0.010   | 0.012    | U.U15   | 0.020   | 0.025                | 0.030   | 0.040   | 0.050   | 0.000   |    |
|         |         |          |         |         |                      |         |         |         |         |    |
| l       | I.      | <u>I</u> | 1       | l       | 1                    |         | l.      |         | I       | i  |



### CrazyDrill Cool 10 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool 10 x d in der unbeschichteten Version eignet sich vor allem für Nichteisenmetalle.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / CrazyDrill Crosspilot und Bohrer CrazyDrill Cool wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

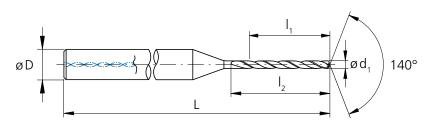
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.





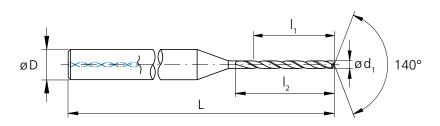



**Z**2



Nicht beschichtet




| ab Lager | Artikelnummer  | <b>d</b> ₁ k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|---------------|----------------|----------------|-----------|------|
| - e<br>■ |                | [mm]          | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.CD.100075.CA | 0.75          | 7.5            | 9.8            | 3         | 54.0 |
|          | 2.CD.100080.CA | 0.80          | 8.0            | 10.4           | 3         | 54.0 |
| •        | 2.CD.100085.CA | 0.85          | 8.5            | 11.1           | 3         | 56.0 |
| •        | 2.CD.100090.CA | 0.90          | 9.0            | 11.7           | 3         | 56.0 |
| -        | 2.CD.100095.CA | 0.95          | 9.5            | 12.4           | 3         | 56.0 |
| -        | 2.CD.100100.CA | 1.00          | 10.0           | 13.0           | 4         | 59.0 |
| -        | 2.CD.100105.CA | 1.05          | 10.5           | 13.7           | 4         | 59.0 |
| •        | 2.CD.100110.CA | 1.10          | 11.0           | 14.3           | 4         | 59.0 |
| •        | 2.CD.100115.CA | 1.15          | 11.5           | 15.0           | 4         | 59.0 |
| -        | 2.CD.100120.CA | 1.20          | 12.0           | 15.6           | 4         | 61.5 |
| -        | 2.CD.100125.CA | 1.25          | 12.5           | 16.3           | 4         | 61.5 |
| •        | 2.CD.100130.CA | 1.30          | 13.0           | 16.9           | 4         | 61.5 |
| -        | 2.CD.100135.CA | 1.35          | 13.5           | 17.6           | 4         | 61.5 |
| •        | 2.CD.100140.CA | 1.40          | 14.0           | 18.0           | 4         | 61.5 |
| •        | 2.CD.100145.CA | 1.45          | 14.5           | 18.9           | 4         | 63.5 |
| •        | 2.CD.100150.CA | 1.50          | 15.0           | 19.5           | 4         | 63.5 |
| •        | 2.CD.100155.CA | 1.55          | 15.5           | 20.2           | 4         | 63.5 |
| •        | 2.CD.100160.CA | 1.60          | 16.0           | 20.8           | 4         | 66.0 |
| •        | 2.CD.100165.CA | 1.65          | 16.5           | 21.5           | 4         | 66.0 |
| -        | 2.CD.100170.CA | 1.70          | 17.0           | 22.1           | 4         | 66.0 |
| •        | 2.CD.100175.CA | 1.75          | 17.5           | 22.8           | 4         | 66.0 |
| -        | 2.CD.100180.CA | 1.80          | 18.0           | 23.4           | 4         | 68.0 |
| -        | 2.CD.100185.CA | 1.85          | 18.5           | 24.1           | 4         | 68.0 |
| -        | 2.CD.100190.CA | 1.90          | 19.0           | 24.7           | 4         | 68.0 |
| -        | 2.CD.100195.CA | 1.95          | 19.5           | 25.0           | 4         | 68.0 |
| -        | 2.CD.100200.CA | 2.00          | 20.0           | 26.0           | 4         | 70.0 |
| -        | 2.CD.100205.CA | 2.05          | 20.5           | 26.7           | 4         | 70.0 |
|          | 2.CD.100210.CA | 2.10          | 21.0           | 27.3           | 4         | 70.0 |

Ergänzende Produkte CrazyDrill Pilot CrazyDrill Crosspilot



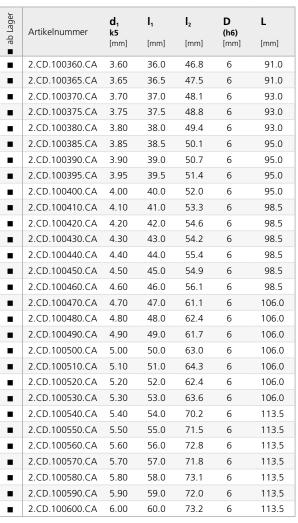
## CrazyDrill Cool 10 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ab Lager | Artikelnummer  | d₁<br>k5 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|----------|----------------|----------|----------------|----------------|-----------|------|
| е<br>=   |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •        | 2.CD.100215.CA | 2.15     | 21.5           | 28.0           | 4         | 72.0 |
| •        | 2.CD.100220.CA | 2.20     | 22.0           | 28.6           | 4         | 72.0 |
| •        | 2.CD.100225.CA | 2.25     | 22.5           | 29.3           | 4         | 72.0 |
| -        | 2.CD.100230.CA | 2.30     | 23.0           | 29.9           | 4         | 74.0 |
| •        | 2.CD.100235.CA | 2.35     | 23.5           | 30.6           | 4         | 74.0 |
| -        | 2.CD.100240.CA | 2.40     | 24.0           | 31.2           | 4         | 74.0 |
| •        | 2.CD.100245.CA | 2.45     | 24.5           | 31.9           | 4         | 75.5 |
| -        | 2.CD.100250.CA | 2.50     | 25.0           | 32.5           | 4         | 75.5 |
| •        | 2.CD.100255.CA | 2.55     | 25.5           | 33.2           | 4         | 75.5 |
| -        | 2.CD.100260.CA | 2.60     | 26.0           | 33.8           | 4         | 77.5 |
| •        | 2.CD.100265.CA | 2.65     | 26.5           | 34.5           | 4         | 77.5 |
| -        | 2.CD.100270.CA | 2.70     | 27.0           | 35.1           | 4         | 77.5 |
| •        | 2.CD.100275.CA | 2.75     | 27.5           | 35.8           | 4         | 79.0 |
| •        | 2.CD.100280.CA | 2.80     | 28.0           | 36.4           | 4         | 79.0 |
| •        | 2.CD.100285.CA | 2.85     | 28.5           | 37.1           | 4         | 79.0 |
| -        | 2.CD.100290.CA | 2.90     | 29.0           | 37.7           | 4         | 80.5 |
| •        | 2.CD.100295.CA | 2.95     | 29.5           | 38.4           | 4         | 80.5 |
| -        | 2.CD.100300.CA | 3.00     | 30.0           | 39.0           | 6         | 85.0 |
| •        | 2.CD.100305.CA | 3.05     | 30.5           | 39.7           | 6         | 85.0 |
| •        | 2.CD.100310.CA | 3.10     | 31.0           | 40.3           | 6         | 85.0 |
| •        | 2.CD.100315.CA | 3.15     | 31.5           | 41.0           | 6         | 86.5 |
| -        | 2.CD.100320.CA | 3.20     | 32.0           | 41.6           | 6         | 86.5 |
| •        | 2.CD.100325.CA | 3.25     | 32.5           | 42.3           | 6         | 86.5 |
| -        | 2.CD.100330.CA | 3.30     | 33.0           | 42.9           | 6         | 86.5 |
| •        | 2.CD.100335.CA | 3.35     | 33.5           | 43.6           | 6         | 89.0 |
| •        | 2.CD.100340.CA | 3.40     | 34.0           | 44.2           | 6         | 89.0 |
| •        | 2.CD.100345.CA | 3.45     | 34.5           | 44.9           | 6         | 89.0 |
| -        | 2.CD.100350.CA | 3.50     | 35.0           | 45.5           | 6         | 91.0 |
| •        | 2.CD.100355.CA | 3.55     | 35.5           | 46.2           | 6         | 91.0 |








**Z**2



Nicht beschichtet



Ergänzende Produkte

CrazyDrill Pilot

CrazyDrill Crosspilot



# CrazyDrill Cool 10 x d - unbeschichtet

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werksto<br>gruppe | ff-<br>Werkstoff                              | Wr.Nr.           | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_{\scriptscriptstyle{1}}$ | Q <sub>x</sub> |
|-------------------|-----------------------------------------------|------------------|--------------------|-------------------------|----------------------------------|--------------------------------------|----------------|
|                   |                                               | 1.0301           | C10                | AISI 1010               |                                  |                                      |                |
| P                 |                                               | 1.0401           | C15                | AISI 1015               |                                  |                                      |                |
|                   | Stähle unlegiert                              | 1.1191           | C45E/CK45          | AISI 1045               | 60                               | 6xd1                                 | 2xd1           |
| \0\               | Rm < 800 N/mm <sup>2</sup>                    | 1.0044           | S275JR             | AISI 1020               |                                  |                                      |                |
| <u> 2</u>         |                                               | 1.0715           | 11SMn30            | AISI 1215               |                                  |                                      |                |
|                   |                                               | 1.5752           | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                                      |                |
| - <del>C</del>    |                                               | 1.7131           | 16MnCr5            | AISI 5115               |                                  |                                      |                |
|                   | Stähle niedriglegiert                         | 1.3505           | 100Cr6             | AISI 52100              | 60                               | 6xd1                                 | 2xd1           |
|                   | Rm > 900 N/mm <sup>2</sup>                    | 1.7225           | 42CrMo4            | AISI 4140               |                                  |                                      |                |
| d <sub>1</sub>    |                                               | 1.2842           | 90MnCrV8           | AISI O2                 |                                  |                                      |                |
|                   |                                               | 1.2379           | X153CrMoV12        | AISI D2                 |                                  |                                      |                |
| 01                | Werkzeugstähle                                | 1.2436           | X210CrW12          | AISI D4/D6              |                                  |                                      |                |
|                   | hochlegiert<br>Rm < 1200 N/mm²                | 1.3343           | HS6-5-2C           | AISI M2 / UNS T11302    | 40                               | 6xd1                                 | 2xd1           |
| Qx                | KIII < 1200 N/IIIII12                         | 1.3355           | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                                      |                |
| Qx                | Rostfreie Stähle-                             | 1.4016           | X6Cr17             | AISI 430 / UNS S43000   |                                  |                                      |                |
|                   | ferritisch                                    | 1.4105           | X6CrMoS17          | AISI 430F               |                                  |                                      |                |
| M                 | Rostfreie Stähle-                             | 1.4034           | X46Cr13            | AISI 420C               |                                  |                                      |                |
|                   | martensitisch                                 | 1.4112           | X90CrMoV18         | AISI 440B               |                                  |                                      |                |
|                   | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                                      |                |
|                   | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                                      |                |
|                   |                                               | 1.4301           | X5CrNi 18-10       | AISI 304                |                                  |                                      |                |
|                   | Rostfreie Stähle-                             | 1.4435           | X2CrNiMo 18-14-3   | AISI 316L               |                                  |                                      |                |
|                   | austenitisch                                  | 1.4441           | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |                                      |                |
|                   |                                               | 1.4539           | X1NiCrMoCu 25-20-5 |                         |                                  |                                      |                |
|                   |                                               |                  |                    |                         |                                  |                                      |                |
| 1.7               | Curriera                                      | 0.6020<br>0.6030 | GG20<br>GG30       | ASTM 30<br>ASTM 40B     |                                  |                                      |                |
| K                 | Gusseisen                                     | 0.7040           | GGG40              | ASTM 60-40-18           |                                  |                                      |                |
|                   |                                               | 0.7040           | GGG60              | ASTM 80-60-03           |                                  |                                      |                |
|                   |                                               |                  |                    |                         |                                  |                                      |                |
|                   | Aluminium                                     | 3.2315           | AlMgSi1            | ASTM 6351               | 300                              | 10xd1                                | _              |
| N                 | Knetlegierungen                               | 3.4365           | AlZnMgCu1.5        | ASTM 7075               |                                  |                                      |                |
|                   | Aluminium                                     | 3.2163           | GD-AlSi9Cu3        | ASTM A380               | 200                              | 10xd1                                | _              |
|                   | Druckgusslegierungen                          |                  | GD-AlSi10Mg        | UNS A03590              |                                  |                                      |                |
|                   | Kupfer                                        | 2.004            | Cu-OF / CW008A     | UNS C10100              | 100                              | 1.5xd1                               | 1xd1           |
|                   |                                               | 2.0065           | Cu-ETP / CW004A    | UNS C11000              |                                  |                                      |                |
|                   | Messing bleifrei                              | 2.0321           | CuZn37 CW508L      | UNS C27400              | 140                              | 1xd1                                 | 0.5xd1         |
|                   |                                               | 2.036            | CuZn40 CW509L      | UNS C28000              |                                  |                                      |                |
|                   | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N |                         | 120                              | 2xd1                                 | 1xd1           |
|                   |                                               | 2.102            | CuSn6              | UNS C51900              |                                  |                                      |                |
|                   | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966           | CuAl10Ni5Fe4       | UNS C63000              | 120                              | 10xd1                                | _              |
|                   | NIII < OUU IV/IIIIII²                         | 2.096            | CuAl9Mn2           | UNS C63200              |                                  |                                      |                |
|                   |                                               | 2.4856           |                    | Inconel 625             |                                  |                                      |                |
| $S_1$             | Hitzebeständige                               | 2.4668           |                    | Inconel 718             |                                  |                                      |                |
| 71                | Stähle                                        | 2.4617           | NiMo28             | Hastelloy B-2           |                                  |                                      |                |
|                   |                                               | 2.4665           | NiCr22Fe18Mo       | Hastelloy X             |                                  |                                      |                |
|                   | Titan rein                                    | 3.7035           | Gr.2               | ASTM B348 / F67         | 20                               | 0.5xd1                               | 0.25xd1        |
| S <sub>2</sub>    |                                               | 3.7065           | Gr.4               | ASTM B348 / F68         |                                  | 1                                    |                |
|                   | Titan Legierungen                             | 3.7165           | TiAl6V4            | ASTM B348 / F136        | 20                               | 0.5xd1                               | 0.25xd1        |
|                   |                                               | 9.9367           | TiAl6Nb7           | ASTM F1295              | -                                | 1                                    |                |
| S <sub>3</sub>    | CrCo-Legierungen                              | 2.4964           | CrCoMo28           | Haynes 25               |                                  |                                      |                |
|                   | Stähle gehärtet                               | 4.2512           | CrCoMo28           | ASTM F1537              |                                  |                                      |                |
| H₁                | < 55 HRC                                      | 1.2510           | 100MnCrMoW4        | AISI O1                 |                                  |                                      |                |
|                   | Stähle gehärtet                               |                  |                    |                         |                                  |                                      |                |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> [mm/U]                          |                     |                            |                            |                  |                       |                     |                            |                            |                     | α_ |  |
|------------------------------------------|---------------------|----------------------------|----------------------------|------------------|-----------------------|---------------------|----------------------------|----------------------------|---------------------|----|--|
| Ød1<br>0.80 mm<br><b>f</b>               | Ød1<br>1.00 mm<br>f | Ød1<br>1.25 mm<br><b>f</b> | Ød1<br>1.50 mm<br><b>f</b> | Ød1 2.00 mm      | M/U]  Ød1  2.50 mm  f | Ød1<br>3.00 mm<br>f | Ød1<br>4.00 mm<br><b>f</b> | Ød1<br>5.00 mm<br><b>f</b> | Ød1<br>6.00 mm<br>f |    |  |
| 0.055                                    | 0.080               | 0.110                      | 0.140                      | 0.180            | 0.210                 | 0.240               | 0.280                      | 0.310                      | 0.340               |    |  |
| 0.055                                    | 0.080               | 0.100                      | 0.120                      | 0.150            | 0.170                 | 0.190               | 0.220                      | 0.240                      | 0.260               |    |  |
| 0.020                                    | 0.050               | 0.065                      | 0.080                      | 0.110            | 0.130                 | 0.150               | 0.180                      | 0.200                      | 0.220               |    |  |
| Empfohlen: CrazyDrill Cool - beschichtet |                     |                            |                            |                  |                       |                     |                            |                            |                     |    |  |
|                                          |                     |                            | Em                         | pfohlen: CrazyDr | ill Cool - beschich   | ntet                |                            |                            |                     |    |  |
| 0.040                                    | 0.050               | 0.060                      | 0.075                      | 0.080            | 0.100                 | 0.120               | 0.140                      | 0.170                      | 0.200               |    |  |
| 0.060                                    | 0.070               | 0.080                      | 0.100                      | 0.120            | 0.150                 | 0.170               | 0.200                      | 0.220                      | 0.250               |    |  |
| 0.045                                    | 0.055               | 0.070                      | 0.080                      | 0.090            | 0.100                 | 0.110               | 0.130                      | 0.150                      | 0.190               |    |  |
| 0.045                                    | 0.055               | 0.070                      | 0.080                      | 0.090            | 0.100                 | 0.110               | 0.130                      | 0.150                      | 0.190               |    |  |
| 0.070                                    | 0.090               | 0.100                      | 0.120                      | 0.135            | 0.150                 | 0.170               | 0.190                      | 0.200                      | 0.220               |    |  |
| 0.015                                    | 0.025               | 0.035                      | 0.050                      | 0.065            | 0.085                 | 0.100               | 0.120                      | 0.140                      | 0.190               |    |  |
|                                          |                     |                            | Em                         | pfohlen: CrazyDr | ill Cool - beschich   | ntet                |                            |                            |                     |    |  |
| 0.010                                    | 0.020               | 0.035                      | 0.050                      | 0.065            | 0.080                 | 0.090               | 0.100                      | 0.120                      | 0.140               |    |  |
| 0.010                                    | 0.020               | 0.035                      | 0.050                      | 0.065            | 0.080                 | 0.090               | 0.100                      | 0.120                      | 0.140               |    |  |
|                                          |                     |                            | Em                         | pfohlen: CrazyDr | ill Cool - beschich   | ntet                |                            |                            |                     |    |  |
|                                          |                     |                            | Em                         | pfohlen: CrazyDr | ill Cool - beschich   | ntet                |                            |                            |                     |    |  |
|                                          |                     |                            |                            |                  |                       |                     |                            |                            |                     |    |  |



## CrazyDrill Cool 15 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool in der beschichteten Version eignet sich vor allem für unlegierte, legierte und rostfreie Stähle, für Gusseisen und sogar gehärtete Stähle bis 55 HRC.

Mit Bohrtiefen bis zu 15 x d ersetzt er in vielen Fällen das aufwändige Tieflochbohren mit Einlippenbohrern.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot, oder in schwer zerspanbaren Materialien mit CrazyDrill Coolpilot und CrazyDrill Pilot SST-Inox, bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Pilot SST-Inox / Crosspilot und Bohrer CrazyDrill Cool wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

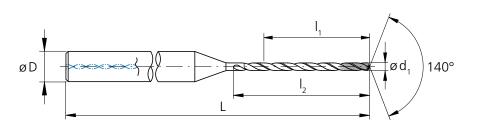
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Cool - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.








**Z**2

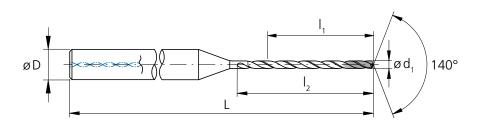






| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|-----------------------|------------------------------|--------------------------|-----------|
| -          | 2.CD.150075.CS | 0.75                                       | 11.25                 | 13.5                         | 3                        | 58.0      |
| •          | 2.CD.150080.CS | 0.80                                       | 12.00                 | 14.4                         | 3                        | 58.0      |
| •          | 2.CD.150085.CS | 0.85                                       | 12.75                 | 15.3                         | 3                        | 60.0      |
| •          | 2.CD.150090.CS | 0.90                                       | 13.50                 | 16.2                         | 3                        | 60.0      |
| •          | 2.CD.150095.CS | 0.95                                       | 14.25                 | 17.1                         | 3                        | 60.0      |
| •          | 2.CD.150100.CS | 1.00                                       | 15.00                 | 18.0                         | 4                        | 64.0      |
| •          | 2.CD.150105.CS | 1.05                                       | 15.75                 | 18.9                         | 4                        | 64.0      |
| •          | 2.CD.150110.CS | 1.10                                       | 16.50                 | 19.8                         | 4                        | 64.0      |
| •          | 2.CD.150115.CS | 1.15                                       | 17.25                 | 20.7                         | 4                        | 66.5      |
| •          | 2.CD.150120.CS | 1.20                                       | 18.00                 | 21.6                         | 4                        | 66.5      |
| •          | 2.CD.150125.CS | 1.25                                       | 18.75                 | 22.5                         | 4                        | 66.5      |
| •          | 2.CD.150130.CS | 1.30                                       | 19.50                 | 23.4                         | 4                        | 69.0      |
| •          | 2.CD.150135.CS | 1.35                                       | 20.25                 | 24.3                         | 4                        | 69.0      |
| •          | 2.CD.150140.CS | 1.40                                       | 21.00                 | 25.2                         | 4                        | 69.0      |
| •          | 2.CD.150145.CS | 1.45                                       | 21.75                 | 26.1                         | 4                        | 71.5      |
| •          | 2.CD.150150.CS | 1.50                                       | 22.50                 | 27.0                         | 4                        | 71.5      |
| •          | 2.CD.150155.CS | 1.55                                       | 23.25                 | 27.9                         | 4                        | 71.5      |
| •          | 2.CD.150160.CS | 1.60                                       | 24.00                 | 28.8                         | 4                        | 74.0      |
| •          | 2.CD.150165.CS | 1.65                                       | 24.75                 | 29.7                         | 4                        | 74.0      |
| •          | 2.CD.150170.CS | 1.70                                       | 25.50                 | 30.6                         | 4                        | 74.0      |
| •          | 2.CD.150175.CS | 1.75                                       | 26.25                 | 31.5                         | 4                        | 76.5      |
| •          | 2.CD.150180.CS | 1.80                                       | 27.00                 | 32.4                         | 4                        | 76.5      |
| •          | 2.CD.150185.CS | 1.85                                       | 27.75                 | 33.3                         | 4                        | 76.5      |
| •          | 2.CD.150190.CS | 1.90                                       | 28.50                 | 34.2                         | 4                        | 79.0      |
| •          | 2.CD.150195.CS | 1.95                                       | 29.25                 | 35.1                         | 4                        | 79.0      |
| •          | 2.CD.150200.CS | 2.00                                       | 30.00                 | 36.0                         | 4                        | 79.0      |
| •          | 2.CD.150205.CS | 2.05                                       | 30.75                 | 36.9                         | 4                        | 81.5      |
| •          | 2.CD.150210.CS | 2.10                                       | 31.50                 | 37.8                         | 4                        | 81.5      |

### Ergänzende Produkte


CrazyDrill Pilot CrazyDrill Crosspilot

CrazyDrill Coolpilot
CrazyDrill Pilot SST-Inox



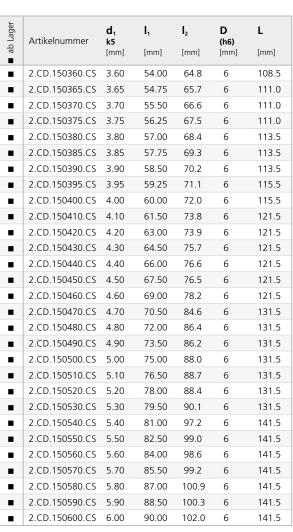
# CrazyDrill Cool 15 x d - beschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|-------------------------------|--------------------------|-----------|
| •          | 2.CD.150215.CS | 2.15                                       | 32.25                      | 38.7                          | 4                        | 81.5      |
| •          | 2.CD.150220.CS | 2.20                                       | 33.00                      | 39.6                          | 4                        | 84.0      |
| •          | 2.CD.150225.CS | 2.25                                       | 33.75                      | 40.5                          | 4                        | 84.0      |
|            | 2.CD.150230.CS | 2.30                                       | 34.50                      | 41.4                          | 4                        | 84.0      |
|            | 2.CD.150235.CS | 2.35                                       | 35.25                      | 42.3                          | 4                        | 86.5      |
| •          | 2.CD.150240.CS | 2.40                                       | 36.00                      | 43.2                          | 4                        | 86.5      |
| •          | 2.CD.150245.CS | 2.45                                       | 36.75                      | 44.1                          | 4                        | 86.5      |
|            | 2.CD.150250.CS | 2.50                                       | 37.50                      | 45.0                          | 4                        | 89.0      |
|            | 2.CD.150255.CS | 2.55                                       | 38.25                      | 45.9                          | 4                        | 89.0      |
| •          | 2.CD.150260.CS | 2.60                                       | 39.00                      | 46.8                          | 4                        | 89.0      |
| •          | 2.CD.150265.CS | 2.65                                       | 39.75                      | 47.7                          | 4                        | 91.0      |
|            | 2.CD.150270.CS | 2.70                                       | 40.50                      | 48.6                          | 4                        | 91.0      |
|            | 2.CD.150275.CS | 2.75                                       | 41.25                      | 49.5                          | 4                        | 92.5      |
|            | 2.CD.150280.CS | 2.80                                       | 42.00                      | 50.4                          | 4                        | 92.5      |
| •          | 2.CD.150285.CS | 2.85                                       | 42.75                      | 51.3                          | 4                        | 94.5      |
|            | 2.CD.150290.CS | 2.90                                       | 43.50                      | 52.2                          | 4                        | 94.5      |
|            | 2.CD.150295.CS | 2.95                                       | 44.25                      | 53.1                          | 4                        | 96.0      |
|            | 2.CD.150300.CS | 3.00                                       | 45.00                      | 54.0                          | 6                        | 100.0     |
|            | 2.CD.150305.CS | 3.05                                       | 45.75                      | 54.9                          | 6                        | 100.0     |
| •          | 2.CD.150310.CS | 3.10                                       | 46.50                      | 55.8                          | 6                        | 100.0     |
|            | 2.CD.150315.CS | 3.15                                       | 47.25                      | 56.7                          | 6                        | 103.0     |
|            | 2.CD.150320.CS | 3.20                                       | 48.00                      | 57.6                          | 6                        | 103.0     |
|            | 2.CD.150325.CS | 3.25                                       | 48.75                      | 58.5                          | 6                        | 103.0     |
| •          | 2.CD.150330.CS | 3.30                                       | 49.50                      | 59.4                          | 6                        | 103.0     |
|            | 2.CD.150335.CS | 3.35                                       | 50.25                      | 60.3                          | 6                        | 106.0     |
|            | 2.CD.150340.CS | 3.40                                       | 51.00                      | 61.2                          | 6                        | 106.0     |
| •          | 2.CD.150345.CS | 3.45                                       | 51.75                      | 62.1                          | 6                        | 106.0     |
|            | 2.CD.150350.CS | 3.50                                       | 52.50                      | 63.0                          | 6                        | 108.5     |
|            | 2.CD.150355.CS | 3.55                                       | 53.25                      | 63.9                          | 6                        | 108.5     |








**Z**2







Ergänzende Produkte

CrazyDrill Pilot

CrazyDrill Crosspilot

CrazyDrill Coolpilot

CrazyDrill Pilot SST-Inox



# CrazyDrill Cool 15 x d - beschichtet

### BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                   | Wr.Nr.              | DIN                | AISI/ASTM/UNS              | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_{\scriptscriptstyle{1}}$ | $\mathbf{Q}_{x}$ |   |
|----------------------|-----------------------------|---------------------|--------------------|----------------------------|----------------------------------|--------------------------------------|------------------|---|
|                      |                             | 1.0301              | C10                | AISI 1010                  |                                  |                                      |                  |   |
| P                    |                             | 1.0401              | C15                | AISI 1015                  |                                  |                                      |                  |   |
| \ \ \ \ \ \ \ \   P  | Stähle unlegiert            | 1.1191              | C45E/CK45          | AISI 1045                  | 80                               | 6xd1                                 | 2xd1             |   |
|                      | Rm < 800 N/mm <sup>2</sup>  | 1.0044              | S275JR             | AISI 1020                  | 00                               | ona i                                | ZAG I            |   |
| 191                  |                             | 1.0715              | 11SMn30            | AISI 1215                  |                                  |                                      |                  |   |
|                      |                             | 1.5752              | 15NiCr13           | ASTM 3415 / AISI 3310      |                                  |                                      |                  |   |
| 22                   |                             | 1.7131              | 16MnCr5            | AISI 5115                  |                                  |                                      |                  |   |
|                      | Stähle niedriglegiert       | 1.3505              | 100Cr6             | AISI 52100                 | 80                               | 6xd1                                 | 2xd1             |   |
|                      | Rm > 900 N/mm <sup>2</sup>  | 1.7225              | 42CrMo4            | AISI 4140                  | 00                               | ona i                                | ZAG I            |   |
| d.                   |                             | 1.2842              | 90MnCrV8           | AISI O2                    |                                  |                                      |                  |   |
| u1<br>               |                             | 1.2379              | X153CrMoV12        | AISI D2                    |                                  |                                      |                  |   |
|                      | Werkzeugstähle              | 1.2436              | X210CrW12          | AISI D4/D6                 |                                  |                                      |                  |   |
| Q1                   | hochlegiert                 | 1.3343              | HS6-5-2C           | AISI M2 / UNS T11302       | 60                               | 6xd1                                 | 2xd1             |   |
| to                   | Rm < 1200 N/mm <sup>2</sup> | 1.3345              | HS18-0-1           | AISI T1 / UNS T12001       |                                  |                                      |                  |   |
| Q <sub>x</sub>       |                             |                     |                    |                            |                                  |                                      |                  |   |
|                      | Rostfreie Stähle-           | 1.4016              | X6Cr17             | AISI 430 / UNS S43000      | 50                               | 0.5xd1                               | 0.25xd1          |   |
| M                    | ferritisch                  | 1.4105              | X6CrMoS17          | AISI 430F                  |                                  |                                      |                  |   |
| 101                  | Rostfreie Stähle-           | 1.4034              | X46Cr13            | AISI 420C                  | 40                               | 0.5xd1                               | 0.25xd1          |   |
|                      | martensitisch               | 1.4112              | X90CrMoV18         | AISI 440B                  |                                  |                                      |                  |   |
|                      | Rostfreie Stähle-           | 1.4542              | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH    | 40                               | 0.5xd1                               | 0.25xd1          |   |
|                      | martensitisch – PH          | 1.4545              | X5CrNiCuNb 15-5    | ASTM 15-5 PH               |                                  |                                      |                  |   |
|                      |                             | 1.4301              | X5CrNi 18-10       | AISI 304                   | 40                               | 0.5xd1                               | 0.25xd1          |   |
|                      | Rostfreie Stähle-           | 1.4435              | X2CrNiMo 18-14-3   | AISI 316L                  |                                  |                                      |                  |   |
|                      | austenitisch                | 1.4441              | X2CrNiMo 18-15-3   | AISI 316LM                 |                                  |                                      |                  |   |
|                      |                             | 1.4539              | X1NiCrMoCu 25-20-5 | AISI 904L                  |                                  |                                      |                  |   |
|                      |                             | 0.6020 GG20 ASTM 30 |                    |                            |                                  |                                      |                  |   |
| K                    |                             | 0.6030              | GG30               | ASTM 40B                   | 80                               |                                      |                  |   |
|                      |                             | 0.7040              | GGG40              | ASTM 60-40-18              | 80                               | 15xd1                                | _                |   |
|                      |                             | 0.7060              | GGG60              | ASTM 80-60-03              |                                  |                                      |                  |   |
|                      | Aluminium                   | 3.2315              | AlMgSi1            | ASTM 6351                  | 200                              |                                      |                  |   |
| N.I.                 | Knetlegierungen             | 3.4365              | AlZnMgCu1.5        | ASTM 7075                  | 300                              | 5xd1                                 | 1xd1             |   |
| N                    | Aluminium                   | 3.2163              | GD-AlSi9Cu3        | ASTM A380                  |                                  |                                      |                  |   |
|                      | Druckgusslegierungen        |                     | GD-AlSi10Mg        | UNS A03590                 | 200                              | 5xd1                                 | 1xd1             |   |
|                      |                             | 2.004               | Cu-OF / CW008A     | UNS C10100                 |                                  |                                      |                  |   |
|                      | Kupfer                      | 2.0065              | Cu-ETP / CW004A    | UNS C11000                 | 100                              | 1.5xd1                               | 1xd1             |   |
|                      |                             | 2.0321              | CuZn37 CW508L      | UNS C27400                 |                                  |                                      |                  |   |
|                      | Messing bleifrei            | 2.036               | CuZn40 CW509L      | UNS C28000                 | 140                              | 1xd1                                 | 0.5xd1           |   |
|                      | Messing, Bronze             | 2.0401              | CuZn39Pb3 / CW614N |                            |                                  |                                      |                  |   |
|                      | Rm < 400 N/mm <sup>2</sup>  | 2.102               | CuSn6              | UNS C51900                 | 120                              | 2xd1                                 | 1xd1             |   |
|                      | Bronze                      | 2.0966              | CuAl10Ni5Fe4       | UNS C63000                 |                                  |                                      |                  |   |
|                      | Rm < 600 N/mm <sup>2</sup>  | 2.096               | CuAl9Mn2           | UNS C63200                 | 200                              | 10xd1                                | 5xd1             |   |
|                      |                             |                     |                    |                            |                                  |                                      |                  |   |
| <u></u>              | 1.05                        | 2.4856<br>2.4668    |                    | Inconel 625<br>Inconel 718 |                                  |                                      |                  |   |
| $ S_1 $              | Hitzebeständige<br>Stähle   | 2.4617              | NiMo28             | Hastelloy B-2              | 20                               | 0.5xd1                               | 0.25xd1          |   |
|                      | Starile                     | 2.4665              | NiCr22Fe18Mo       | Hastelloy X                |                                  |                                      |                  |   |
|                      |                             | 3.7035              | Gr.2               | ASTM B348 / F67            |                                  |                                      |                  |   |
| <u>C</u>             | Titan rein                  |                     | Gr.4               |                            | 20                               | 0.5xd1                               | 0.25xd1          |   |
| $S_2$                |                             | 3.7065              | TiAl6V4            | ASTM B348 / F68            |                                  |                                      |                  | - |
| _                    | Titan Legierungen           | 3.7165              |                    | ASTM B348 / F136           | 20                               | 0.5xd1                               | 0.25xd1          |   |
|                      |                             | 9.9367              | TiAl6Nb7           | ASTM F1295                 |                                  |                                      |                  | - |
| $S_3$                | CrCo-Legierungen            | 2.4964              | CoCr20W15Ni        | Haynes 25                  | 20                               | 0.5xd1                               | 0.25xd1          |   |
| - 3                  |                             |                     | CrCoMo28           | ASTM F1537                 |                                  |                                      |                  | - |
| H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC | 1.2510              | 100MnCrMoW4        | AISI O1                    | 40                               | 0.5xd1                               | 0.25xd1          |   |
| $H_2$                | Stähle gehärtet<br>≥ 55 HRC | 1.2379              | X153CrMoV12        | AISI D2                    |                                  |                                      |                  |   |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> [mm/U]     |                            |                            |                            |                            |                            |                            |                     |                            |                     |  |  |  |
|---------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------|----------------------------|---------------------|--|--|--|
| Ød1<br>0.80 mm<br>f | Ød1<br>1.00 mm<br><b>f</b> | Ød1<br>1.25 mm<br><b>f</b> | Ød1<br>1.50 mm<br><b>f</b> | Ød1<br>2.00 mm<br><b>f</b> | Ød1<br>2.50 mm<br><b>f</b> | Ød1<br>3.00 mm<br><b>f</b> | Ød1<br>4.00 mm<br>f | Ød1<br>5.00 mm<br><b>f</b> | Ød1<br>6.00 mm<br>f |  |  |  |
| I                   |                            | <u> </u>                   | <u> </u>                   |                            |                            |                            | <u> </u>            |                            | <u> </u>            |  |  |  |
| 0.050               | 0.080                      | 0.110                      | 0.140                      | 0.180                      | 0.210                      | 0.240                      | 0.280               | 0.310                      | 0.340               |  |  |  |
| 0.050               | 0.080                      | 0.100                      | 0.120                      | 0.150                      | 0.170                      | 0.190                      | 0.220               | 0.240                      | 0.260               |  |  |  |
| 0.020               | 0.050                      | 0.065                      | 0.080                      | 0.110                      | 0.130                      | 0.150                      | 0.180               | 0.200                      | 0.220               |  |  |  |
| 0.011               | 0.030                      | 0.045                      | 0.060                      | 0.080                      | 0.090                      | 0.100                      | 0.120               | 0.130                      | 0.140               |  |  |  |
| 0.020               | 0.050                      | 0.065                      | 0.080                      | 0.110                      | 0.130                      | 0.150                      | 0.180               | 0.200                      | 0.220               |  |  |  |
| 0.010               | 0.020                      | 0.030                      | 0.040                      | 0.050                      | 0.060                      | 0.080                      | 0.100               | 0.110                      | 0.120               |  |  |  |
| 0.010               | 0.020                      | 0.030                      | 0.040                      | 0.050                      | 0.060                      | 0.080                      | 0.100               | 0.110                      | 0.120               |  |  |  |
|                     |                            |                            |                            |                            |                            |                            |                     |                            |                     |  |  |  |
| 0.055               | 0.080                      | 0.100                      | 0.120                      | 0.150                      | 0.170                      | 0.190                      | 0.220               | 0.240                      | 0.260               |  |  |  |
| 0.030               | 0.040                      | 0.050                      | 0.065                      | 0.070                      | 0.090                      | 0.110                      | 0.130               | 0.160                      | 0.190               |  |  |  |
| 0.050               | 0.060                      | 0.070                      | 0.090                      | 0.110                      | 0.140                      | 0.160                      | 0.190               | 0.210                      | 0.240               |  |  |  |
| 0.035               | 0.045                      | 0.060                      | 0.070                      | 0.080                      | 0.090                      | 0.100                      | 0.120               | 0.140                      | 0.180               |  |  |  |
| 0.035               | 0.045                      | 0.060                      | 0.070                      | 0.080                      | 0.090                      | 0.100                      | 0.120               | 0.140                      | 0.180               |  |  |  |
| 0.060               | 0.080                      | 0.090                      | 0.110                      | 0.125                      | 0.140                      | 0.160                      | 0.180               | 0.190                      | 0.210               |  |  |  |
| 0.010               | 0.020                      | 0.030                      | 0.045                      | 0.060                      | 0.080                      | 0.090                      | 0.110               | 0.130                      | 0.180               |  |  |  |
| 0.005               | 0.008                      | 0.010                      | 0.013                      | 0.016                      | 0.018                      | 0.020                      | 0.030               | 0.035                      | 0.040               |  |  |  |
| 0.005               | 0.010                      | 0.025                      | 0.040                      | 0.055                      | 0.070                      | 0.080                      | 0.090               | 0.110                      | 0.130               |  |  |  |
| 0.005               | 0.010                      | 0.025                      | 0.040                      | 0.055                      | 0.070                      | 0.080                      | 0.090               | 0.110                      | 0.130               |  |  |  |
| 0.005               | 0.008                      | 0.010                      | 0.015                      | 0.020                      | 0.025                      | 0.030                      | 0.035               | 0.040                      | 0.050               |  |  |  |
| 0.008               | 0.010                      | 0.012                      | 0.015                      | 0.020                      | 0.025                      | 0.030                      | 0.040               | 0.050                      | 0.060               |  |  |  |
|                     |                            |                            |                            |                            |                            |                            |                     |                            |                     |  |  |  |
|                     |                            |                            |                            |                            |                            |                            |                     |                            |                     |  |  |  |



### CrazyDrill Cool 15 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



Der VHM-Kleinbohrer CrazyDrill Cool in der unbeschichteten Version eignet sich vor allem für Nichteisenmetalle. Mit Bohrtiefen bis zu 15 x d ersetzt er in vielen Fällen das aufwändige Tieflochbohren mit Einlippenbohrern.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt ausserdem eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. Dadurch fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / CrazyDrill Crosspilot und Bohrer CrazyDrill Cool wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

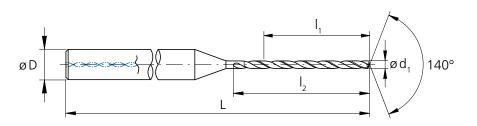
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.4 mm.







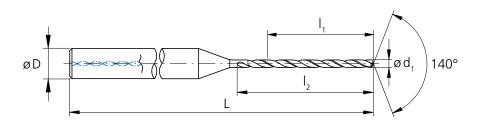

**Z**2



Nicht beschichtet



| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|-------------------------------|--------------------------|-----------|
| •          | 2.CD.150075.CA | 0.75                                       | 11.25                      | 13.5                          | 3                        | 58.0      |
|            | 2.CD.150080.CA | 0.80                                       | 12.00                      | 14.4                          | 3                        | 58.0      |
| •          | 2.CD.150085.CA | 0.85                                       | 12.75                      | 15.3                          | 3                        | 60.0      |
| •          | 2.CD.150090.CA | 0.90                                       | 13.50                      | 16.2                          | 3                        | 60.0      |
| •          | 2.CD.150095.CA | 0.95                                       | 14.25                      | 17.1                          | 3                        | 60.0      |
| -          | 2.CD.150100.CA | 1.00                                       | 15.00                      | 18.0                          | 4                        | 64.0      |
| •          | 2.CD.150105.CA | 1.05                                       | 15.75                      | 18.9                          | 4                        | 64.0      |
| •          | 2.CD.150110.CA | 1.10                                       | 16.50                      | 19.8                          | 4                        | 64.0      |
| •          | 2.CD.150115.CA | 1.15                                       | 17.25                      | 20.7                          | 4                        | 66.5      |
| -          | 2.CD.150120.CA | 1.20                                       | 18.00                      | 21.6                          | 4                        | 66.5      |
| •          | 2.CD.150125.CA | 1.25                                       | 18.75                      | 22.5                          | 4                        | 66.5      |
| •          | 2.CD.150130.CA | 1.30                                       | 19.50                      | 23.4                          | 4                        | 69.0      |
| •          | 2.CD.150135.CA | 1.35                                       | 20.25                      | 24.3                          | 4                        | 69.0      |
| -          | 2.CD.150140.CA | 1.40                                       | 21.00                      | 25.2                          | 4                        | 69.0      |
| •          | 2.CD.150145.CA | 1.45                                       | 21.75                      | 26.1                          | 4                        | 71.5      |
| •          | 2.CD.150150.CA | 1.50                                       | 22.50                      | 27.0                          | 4                        | 71.5      |
| •          | 2.CD.150155.CA | 1.55                                       | 23.25                      | 27.9                          | 4                        | 71.5      |
| •          | 2.CD.150160.CA | 1.60                                       | 24.00                      | 28.8                          | 4                        | 74.0      |
| •          | 2.CD.150165.CA | 1.65                                       | 24.75                      | 29.7                          | 4                        | 74.0      |
| -          | 2.CD.150170.CA | 1.70                                       | 25.50                      | 30.6                          | 4                        | 74.0      |
| •          | 2.CD.150175.CA | 1.75                                       | 26.25                      | 31.5                          | 4                        | 76.5      |
| •          | 2.CD.150180.CA | 1.80                                       | 27.00                      | 32.4                          | 4                        | 76.5      |
| •          | 2.CD.150185.CA | 1.85                                       | 27.75                      | 33.3                          | 4                        | 76.5      |
|            | 2.CD.150190.CA | 1.90                                       | 28.50                      | 34.2                          | 4                        | 79.0      |
| -          | 2.CD.150195.CA | 1.95                                       | 29.25                      | 35.1                          | 4                        | 79.0      |
|            | 2.CD.150200.CA | 2.00                                       | 30.00                      | 36.0                          | 4                        | 79.0      |
| •          | 2.CD.150205.CA | 2.05                                       | 30.75                      | 36.9                          | 4                        | 81.5      |
|            | 2.CD.150210.CA | 2.10                                       | 31.50                      | 37.8                          | 4                        | 81.5      |


Ergänzende Produkte

CrazyDrill Pilot
CrazyDrill Crosspilot



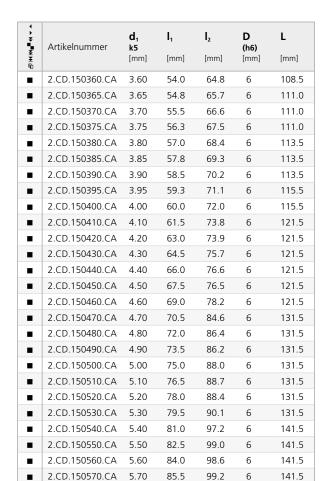
# CrazyDrill Cool 15 x d - unbeschichtet

### **BOHREN MIT INNENKÜHLUNG**



| ₽ ₹ <b>₹ *</b> * * • | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k5</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|----------------------|----------------|--------------------------------------------|----------------------------|------------------------------|--------------------------|------------------|
| •                    | 2.CD.150215.CA | 2.15                                       | 32.3                       | 38.7                         | 4                        | 81.5             |
|                      | 2.CD.150220.CA | 2.20                                       | 33.0                       | 39.6                         | 4                        | 84.0             |
| •                    | 2.CD.150225.CA | 2.25                                       | 33.8                       | 40.5                         | 4                        | 84.0             |
|                      | 2.CD.150230.CA | 2.30                                       | 34.5                       | 41.4                         | 4                        | 84.0             |
| •                    | 2.CD.150235.CA | 2.35                                       | 35.3                       | 42.3                         | 4                        | 86.5             |
|                      | 2.CD.150240.CA | 2.40                                       | 36.0                       | 43.2                         | 4                        | 86.5             |
| •                    | 2.CD.150245.CA | 2.45                                       | 36.8                       | 44.1                         | 4                        | 86.5             |
|                      | 2.CD.150250.CA | 2.50                                       | 37.5                       | 45.0                         | 4                        | 89.0             |
| •                    | 2.CD.150255.CA | 2.55                                       | 38.3                       | 45.9                         | 4                        | 89.0             |
|                      | 2.CD.150260.CA | 2.60                                       | 39.0                       | 46.8                         | 4                        | 89.0             |
| •                    | 2.CD.150265.CA | 2.65                                       | 39.8                       | 47.7                         | 4                        | 91.0             |
|                      | 2.CD.150270.CA | 2.70                                       | 40.5                       | 48.6                         | 4                        | 91.0             |
| •                    | 2.CD.150275.CA | 2.75                                       | 41.3                       | 49.5                         | 4                        | 92.5             |
|                      | 2.CD.150280.CA | 2.80                                       | 42.0                       | 50.4                         | 4                        | 92.5             |
| •                    | 2.CD.150285.CA | 2.85                                       | 42.8                       | 51.3                         | 4                        | 94.5             |
|                      | 2.CD.150290.CA | 2.90                                       | 43.5                       | 52.2                         | 4                        | 94.5             |
|                      | 2.CD.150295.CA | 2.95                                       | 44.3                       | 53.1                         | 4                        | 96.0             |
|                      | 2.CD.150300.CA | 3.00                                       | 45.0                       | 54.0                         | 6                        | 100.0            |
| •                    | 2.CD.150305.CA | 3.05                                       | 45.8                       | 54.9                         | 6                        | 100.0            |
|                      | 2.CD.150310.CA | 3.10                                       | 46.5                       | 55.8                         | 6                        | 100.0            |
|                      | 2.CD.150315.CA | 3.15                                       | 47.3                       | 56.7                         | 6                        | 103.0            |
|                      | 2.CD.150320.CA | 3.20                                       | 48.0                       | 57.6                         | 6                        | 103.0            |
| -                    | 2.CD.150325.CA | 3.25                                       | 48.8                       | 58.5                         | 6                        | 103.0            |
|                      | 2.CD.150330.CA | 3.30                                       | 49.5                       | 59.4                         | 6                        | 103.0            |
|                      | 2.CD.150335.CA | 3.35                                       | 50.3                       | 60.3                         | 6                        | 106.0            |
|                      | 2.CD.150340.CA | 3.40                                       | 51.0                       | 61.2                         | 6                        | 106.0            |
|                      | 2.CD.150345.CA | 3.45                                       | 51.8                       | 62.1                         | 6                        | 106.0            |
|                      | 2.CD.150350.CA | 3.50                                       | 52.5                       | 63.0                         | 6                        | 108.5            |
|                      | 2.CD.150355.CA | 3.55                                       | 53.3                       | 63.9                         | 6                        | 108.5            |








**Z**2



Nicht



Ergänzende Produkte

2.CD.150580.CA

2.CD.150590.CA

2.CD.150600.CA

5.80

5.90

6.00

87.0

88.5

90.0

100.9

100.3

102.0

6

6

CrazyDrill Pilot

CrazyDrill Crosspilot

141.5

141.5

141.5



# CrazyDrill Cool 15 x d - unbeschichtet

# BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                                     | Wr.Nr.           | DIN                     | AISI/ASTM/UNS                  | <b>V</b> <sub>c</sub><br>[m/min] | $\mathbf{Q}_{\scriptscriptstyle{1}}$ | Q <sub>x</sub> |
|----------------------|-----------------------------------------------|------------------|-------------------------|--------------------------------|----------------------------------|--------------------------------------|----------------|
|                      |                                               | 1.0301           | C10                     | AISI 1010                      |                                  |                                      |                |
| P                    |                                               | 1.0401           | C15                     | AISI 1015                      |                                  |                                      |                |
| ( Û /                | Stähle unlegiert                              | 1.1191           | C45E/CK45               | AISI 1045                      | 60                               | 6xd1                                 | 2xd1           |
| \0\                  | Rm < 800 N/mm <sup>2</sup>                    | 1.0044           | S275JR                  | AISI 1020                      |                                  |                                      |                |
| )2(                  |                                               | 1.0715           | 11SMn30                 | AISI 1215                      |                                  |                                      |                |
|                      |                                               | 1.5752           | 15NiCr13                | ASTM 3415 / AISI 3310          |                                  |                                      |                |
| ζ <u>υ</u>           |                                               | 1.7131           | 16MnCr5                 | AISI 5115                      |                                  |                                      |                |
|                      | Stähle niedriglegiert                         | 1.3505           | 100Cr6                  | AISI 52100                     | 60                               | 6xd1                                 | 2xd1           |
|                      | Rm > 900 N/mm <sup>2</sup>                    | 1.7225           | 42CrMo4                 | AISI 4140                      |                                  |                                      |                |
| d <sub>1</sub>       |                                               | 1.2842           | 90MnCrV8                | AISI O2                        |                                  |                                      |                |
| 1                    |                                               | 1.2379           | X153CrMoV12             | AISI D2                        |                                  |                                      |                |
| 0,                   | Werkzeugstähle                                | 1.2436           | X210CrW12               | AISI D4/D6                     |                                  |                                      |                |
|                      | hochlegiert                                   | 1.3343           | HS6-5-2C                | AISI M2 / UNS T11302           | 40                               | 6xd1                                 | 2xd1           |
| Qx                   | Rm < 1200 N/mm <sup>2</sup>                   | 1.3355           | HS18-0-1                | AISI T1 / UNS T12001           |                                  |                                      |                |
| Q <sub>x</sub>       | Doctfrois Ctil-1-                             | 1.4016           | X6Cr17                  | AISI 430 / UNS S43000          |                                  |                                      |                |
|                      | Rostfreie Stähle-<br>ferritisch               | 1.4105           | X6CrMoS17               | AISI 4307 0NS 543000           |                                  |                                      |                |
| M                    | Rostfreie Stähle-                             | 1.4034           | X46Cr13                 | AISI 420C                      |                                  |                                      |                |
|                      | martensitisch                                 | 1.4112           | X90CrMoV18              | AISI 440B                      |                                  |                                      |                |
|                      | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4         | AISI 630 / ASTM 17-4 PH        |                                  |                                      |                |
|                      | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5         | ASTM 15-5 PH                   |                                  |                                      |                |
|                      | Rostfreie Stähle-                             | 1.4343           | X5CrNi 18-10            | AISI 304                       |                                  |                                      |                |
|                      |                                               | 1.4301           | X2CrNiMo 18-14-3        | AISI 316L                      |                                  |                                      |                |
|                      | austenitisch                                  | 1.4441           | X2CrNiMo 18-15-3        | AISI 316LM                     |                                  |                                      |                |
|                      |                                               | 1.4539           | X1NiCrMoCu 25-20-5      |                                |                                  |                                      |                |
|                      |                                               |                  |                         |                                |                                  |                                      |                |
| 1/                   | Gusseisen                                     | 0.6020           | GG20                    | ASTM 40D                       |                                  |                                      |                |
| K                    |                                               | 0.6030           | GG30                    | ASTM 40B                       |                                  |                                      |                |
|                      |                                               | 0.7040<br>0.7060 | GGG40<br>GGG60          | ASTM 60-40-18<br>ASTM 80-60-03 |                                  |                                      |                |
|                      |                                               |                  |                         |                                |                                  |                                      |                |
|                      | Aluminium                                     | 3.2315           | AlMgSi1                 | ASTM 6351                      | 300                              | 5xd1                                 | 1xd1           |
| N                    | Knetlegierungen                               | 3.4365           | AlZnMgCu1.5             | ASTM 7075                      |                                  |                                      |                |
|                      | Aluminium                                     | 3.2163           | GD-AlSi9Cu3             | ASTM A380                      |                                  | 5xd1                                 | 1xd1           |
|                      | Druckgusslegierungen                          |                  | GD-AlSi10Mg             | UNS A03590                     |                                  |                                      |                |
|                      | Kupfer                                        | 2.004            | Cu-OF / CW008A          | UNS C10100                     | 100                              | 1.5xd1                               | 1xd1           |
|                      |                                               | 2.0065           | Cu-ETP / CW004A         | UNS C11000                     |                                  |                                      |                |
|                      | Messing bleifrei                              | 2.0321           | CuZn37 CW508L           | UNS C27400                     | 140                              | 1xd1                                 | 0.5xd1         |
|                      | -                                             | 2.036            | CuZn40 CW509L           | UNS C28000                     |                                  |                                      |                |
|                      | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N      |                                | 120                              | 2xd1                                 | 1xd1           |
|                      |                                               | 2.102            | CuSn6                   | UNS C51900                     |                                  |                                      |                |
|                      | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966           | CuAl0Ni5Fe4             | UNS C63000                     | 120                              | 10xd1                                | 5xd1           |
|                      | MAT < OUG IN/IIIIII                           | 2.096            | CuAl9Mn2                | UNS C63200                     |                                  |                                      |                |
|                      |                                               | 2.4856           |                         | Inconel 625                    |                                  |                                      |                |
| $ S_1 $              | Hitzebeständige                               | 2.4668           | N:M-20                  | Inconel 718                    |                                  |                                      |                |
|                      | Stähle                                        | 2.4617           | NiMo28                  | Hastelloy B-2                  |                                  |                                      |                |
|                      |                                               | 2.4665           | NiCr22Fe18Mo            | Hastelloy X                    |                                  |                                      |                |
|                      | Titan rein                                    | 3.7035           | Gr.2                    | ASTM B348 / F67                | 20                               | 0.5xd1                               | 0.25xd1        |
| S <sub>2</sub>       |                                               | 3.7065           | Gr.4                    | ASTM B348 / F68                |                                  |                                      | -              |
| - 2                  | Titan Legierungen                             | 3.7165           | TiAl6V4                 | ASTM B348 / F136               | 20                               | 0.5xd1                               | 0.25xd1        |
|                      |                                               | 9.9367           | TiAl6Nb7                | ASTM F1295                     |                                  |                                      |                |
| $S_3$                | CrCo-Legierungen                              | 2.4964           | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537        |                                  |                                      |                |
| H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC                   | 1.2510           | 100MnCrMoW4             | AISI O1                        |                                  |                                      |                |
| H <sub>2</sub>       | Stähle gehärtet                               | 1.2379           | X153CrMoV12             | AISI D2                        |                                  |                                      |                |



ANWENDUNGSEMPFEHLUNG





|         |         |          |         |                        |                     |         |          |         |         | X        |
|---------|---------|----------|---------|------------------------|---------------------|---------|----------|---------|---------|----------|
|         |         |          |         |                        | m/U]                |         |          |         |         |          |
| Ød1     | Ød1     | Ød1      | Ød1     | Ød1                    | Ød1                 | Ød1     | Ød1      | Ød1     | Ød1     |          |
| 0.80 mm | 1.00 mm | 1.25 mm  | 1.50 mm | 2.00 mm                | 2.50 mm             | 3.00 mm | 4.00 mm  | 5.00 mm | 6.00 mm |          |
| f       | f       | f        | f       | f                      | f                   | f       | f        | f       | f       |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
| 0.040   | 0.060   | 0.090    | 0.120   | 0.160                  | 0.180               | 0.220   | 0.260    | 0.280   | 0.300   |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
| 0.030   | 0.050   | 0.080    | 0.100   | 0.140                  | 0.160               | 0.180   | 0.200    | 0.220   | 0.240   |          |
| 0.030   | 0.050   | 0.000    | 0.100   | 0.140                  | 0.100               | 0.100   | 0.200    | 0.220   | 0.240   |          |
|         |         |          |         |                        |                     |         |          |         |         | _        |
| 0.000   | 0.010   | 0.000    | 0.000   | 0.400                  | 0.430               | 0.440   | 0.450    | 0.100   | 0.333   |          |
| 0.020   | 0.040   | 0.060    | 0.080   | 0.100                  | 0.120               | 0.140   | 0.160    | 0.180   | 0.200   |          |
|         |         |          |         |                        |                     |         |          |         |         | $\dashv$ |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          | Em      | pfohlen: CrazyDr       | ill Cool - beschich | ntet    |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          | Em      | pfohlen: CrazyDr       | ill Cool - beschich | ntet    |          |         |         |          |
|         |         |          |         |                        |                     |         | ,        | ,       |         |          |
| 0.030   | 0.040   | 0.050    | 0.065   | 0.070                  | 0.090               | 0.110   | 0.130    | 0.160   | 0.190   |          |
| 0.050   | 0.000   | 0.070    | 0.000   | 0.110                  | 0.140               | 0.150   | 0.100    | 0.310   | 0.240   | -        |
| 0.050   | 0.060   | 0.070    | 0.090   | 0.110                  | 0.140               | 0.160   | 0.190    | 0.210   | 0.240   | _        |
| 0.035   | 0.045   | 0.060    | 0.070   | 0.080                  | 0.090               | 0.100   | 0.120    | 0.140   | 0.180   |          |
| 0.035   | 0.045   | 0.060    | 0.070   | 0.080                  | 0.090               | 0.100   | 0.120    | 0.140   | 0.180   |          |
|         |         |          |         |                        |                     |         |          |         |         | -        |
| 0.060   | 0.080   | 0.090    | 0.110   | 0.125                  | 0.140               | 0.160   | 0.180    | 0.190   | 0.210   |          |
| 0.010   | 0.020   | 0.030    | 0.045   | 0.060                  | 0.080               | 0.090   | 0.110    | 0.130   | 0.180   |          |
|         |         |          |         |                        |                     |         |          |         |         | +        |
|         |         |          | Fm      | pfohlen: CrazyDr       | ill Cool - heschick | ntet    |          |         |         |          |
|         |         |          | Liii    | r. 51.11.01.11 C102/D1 | 200. Describer      |         |          |         |         |          |
| 0.005   | 0.010   | 0.035    | 0.040   | 0.055                  | 0.070               | 0.000   | 0.000    | 0.110   | 0.430   | +        |
| 0.005   | 0.010   | 0.025    | 0.040   | 0.055                  | 0.070               | 0.080   | 0.090    | 0.110   | 0.130   | _        |
| 0.005   | 0.010   | 0.025    | 0.040   | 0.055                  | 0.070               | 0.080   | 0.090    | 0.110   | 0.130   |          |
|         | I.      | <u> </u> | F       | pfohlen: CrazyDr       | ill Cool basshish   | atot    | <u> </u> | 1       |         | +        |
|         |         |          | EIII    | ртоппен. Стагург       | III COOI - DESCINCI | net     |          |         |         | _        |
|         |         |          | Em      | pfohlen: CrazyDr       | ill Cool - beschich | ntet    |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         | +        |
|         |         |          |         |                        |                     |         |          |         |         |          |
|         |         |          |         |                        |                     |         |          |         |         |          |



### PRÄZISES UND SCHNELLES BOHREN BIS 15 X D

# Kühlschmierstoff, Filter und Druck

**Kühlschmierung:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen. Speziell bei kleinen Durchmessern müssen folgende Filterqualitäten eingehalten werden:

- Bohrer mit Ø < 2 mm Filterqualität ≤ 0.010 mm.
- Bohrer mit Ø < 3 mm Filterqualität ≤ 0.020 mm.
- Bohrer mit Ø < 6 mm Filterqualität ≤ 0.050 mm.

**Kühlmitteldruck:** Um prozesssicher zu bohren, werden Mindestdrücke (siehe Tabelle) benötigt. Bei kleineren Bohrerdurchmessern werden generell höhere Drücke benötigt. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.

| Ø d₁ Werkzeug | Minimaler Kühlmitteldruck |
|---------------|---------------------------|
| [mm]          | [bar]                     |
| 0.75          | 70                        |
| 3.00          | 40                        |
| 6.00          | 30                        |

#### **Spannmittel**

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".





# CrazyDrill Cool 6 x d

Bei der Version bis Bohrtiefe 6 x d erübrigt sich eine vorgehende Zentrierung auf geraden Oberflächen. Das Pilotbohren oder auch Zentrieren wird empfohlen bei unregelmässiger, rauer oder schräger Materialoberfläche, oder bei Bedarf an hoher Positionsgenauigkeit.

06

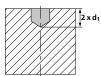
## CrazyDrill Cool 10 x d / 15 x d

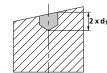
Mikron Tool empfiehlt für diese Bohrtiefen von CrazyDrill Cool eine Pilotbohrung:

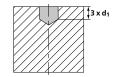
- CrazyDrill Pilot als Pilotbohrer
- **CrazyDrill Crosspilot** als Pilotbohrer auf schrägen Oberflächen
- **CrazyDrill Coolpilot** als Pilotbohrer für schwer zerspanbare Materialien
- CrazyDrill Pilot SST-Inox als Pilotbohrer für schwer zerspanbare Materialien

### **Pilotbohren und Bohren**

Die Pilotbohrung mit CrazyDrill Pilot / CrazyDrill Coolpilot / CrazyDrill Pilot SST-Inox ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.

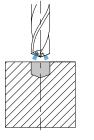

Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.

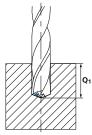




# BOHRUNG IN EINEM BOHRSTOSS (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)

# 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot / Crazy Drill Coolpilot / CrazyDrill Pilot SST-Inox (gerade Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).






# 2 | BOHRUNG

- Interne Kühlung einschalten.
- Bohren mit CrazyDrill Cool bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss.

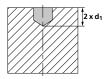


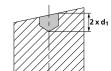


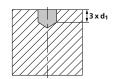
# Bemerkung:

Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



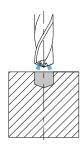


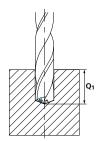


G83 Tiefbohrzyklus mit Spänebruch und Entspänen


Q = Tiefe des jeweiligen Bohrschrittes

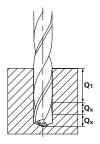
# 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot / CrazyDrill Coolpilot / CrazyDrill Pilot SST-Inox (gerade Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).





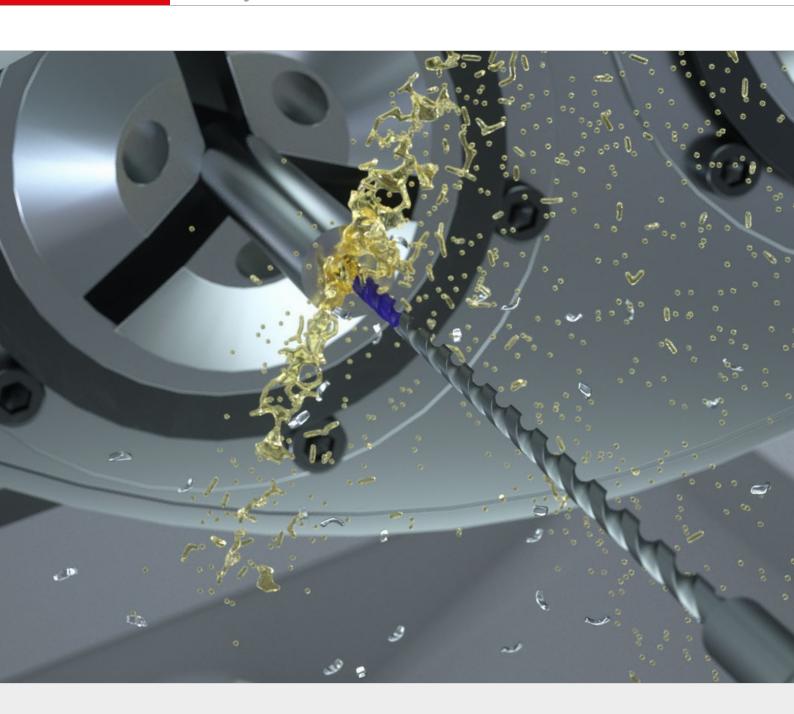


### 2 | BOHRUNG

- Interne Kühlung einschalten.
- Bohren mit CrazyDrill Cool bis maximale Bohrtiefe Q<sub>1</sub> in einem einzigen Bohrstoss, danach entspänen.

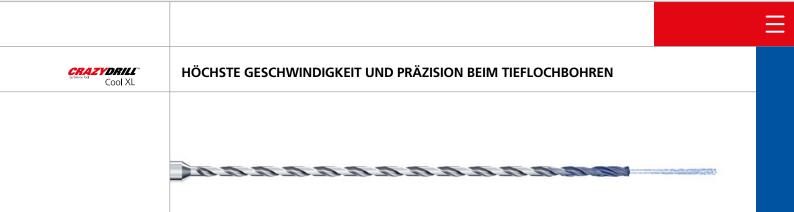




Weitere Bohrstösse  $\mathsf{Q}_\mathsf{X}$  gemäss Schnittdatentabelle, anschliessend entspänen.




# Bemerkung:


Zwischen den Bohrstössen kann komplett aus der Bohrung gefahren werden. Beim Auftreten von Aufschwingungen empfehlen wir, nicht komplett aus der Bohrung zu fahren. Nach dem Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.



# CrazyDrill Cool XL







Mit CrazyDrill Cool XL bietet Mikron Tool einen Tieflochbohrer aus Vollhartmetall im Durchmesserbereich von 1.0 bis 6.0 mm und für Bohrtiefen bis 40 x d an. Alle Bohrer sind beschichtet und verfügen über eine Innenkühlung und eine doppelte Führungsfase.

Eingesetzt in Kombination mit dem Pilotbohrer CrazyDrill Pilot oder CrazyDrill Coolpilot, eignet sich dieser Bohrer für präzise, tiefe Bohrungen. Dank seiner speziell entwickelten Geometrie, meistert CrazyDrill Cool XL die Herausforderungen einer Tieflochbohrung bis 40 x d perfekt. Er produziert kurze Späne und bohrt mit unverändertem Drehmoment bis in Bohrtiefen von 40 x d. So sind hohe Bohrgeschwindigkeiten und Prozesssicherheit gewährleistet.

Bei den meisten Materialien können die Bohrungen bis zu maximalen Tiefen in einem einzigen Bohrstoss - ohne Entspänen - realisiert werden - bei höchsten Schnittgeschwindigkeiten und Vorschüben.

Zwei spiralisierte Kühlkanäle führen das Kühlmittel bis zur Spitze und garantieren eine konstante Kühlung, Schmierung und Späneabfuhr. Hohe Bohrgeschwindigkeiten und Standzeiten sind das Resultat.



# Tiefer, schneller, präziser

# **BOHREN BIS 40 X D IN EINEM BOHRSTOSS**

Mit CrazyDrill Cool XL, bietet Mikron Tool einen Tieflochbohrer aus Vollhartmetall im Durchmesserbereich von 1.0 bis 6.0 mm und für Bohrtiefen bis 40 x d an. Alle Bohrer sind beschichtet und verfügen über eine Innenkühlung und eine doppelte Führungsfase.

CrazyDrill Cool XL, Bohrtiefen 15 x d / 20 x d / 30 x d / 40 x d, mit Innenkühlung.





#### 1 | SCHAFT

Der robuste Hartmetallschaft garantiert hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.

#### 2 | HARTMETALL

Ein Hartmetall der neuesten Generation ermöglicht hohe Bearbeitungsgeschwindigkeiten.

#### 3 | BESCHICHTUNG

Die Hochleistungsbeschichtung (eXedur SL) mit niedrigem Reibungskoeffizient verringert Wärmeentwicklung, schützt vor Schneidenausbruch und Verschleiss. Geringe Adhäsion zum Werkstoff verhindert Verkleben. Das Ergebnis ist ein perfekter Spänetransport und eine hohe Standzeit.

# 4 | KÜHLUNG MIT POWERKAMMER

Die zwei internen Kühlkanäle, bis an die Bohrerspitze geführt, sorgen für eine konstante Kühlung / Schmierung und gleichzeitig für eine gute Spanabfuhr. Bei kleinen Dimensionen sorgt ausserdem eine Powerkammer für guten Kühlmittelfluss.

### 5 | GEOMETRIE

Dank der speziellen Spannutengeometrie erzeugt der Bohrer kurze Späne, ein Aufwickeln wird verhindert. So sind hohe Bearbeitungsgschwindigkeiten möglich, ein Entspänen erübrigt sich in den meisten Fällen. Die doppelte Führungsfase garantiert hohe Geradheit und Rundheit der Bohrung.

#### 6 | SCHNEIDKANTENBEHANDLUNG

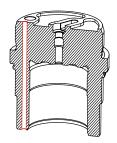
Eine gezielte Schneidkantenbehandlung stellt hervorragende Schnittbedingungen und Standzeiten sicher.

Bohrerspitze





# Vorteile und Anwendungen


# EXTRA LANGER BOHRER MIT INNENKÜHLUNG FÜR TIEFE BOHRUNGEN

KÜRZERE BEARBEITUNGSZEIT | Tieflochbohren in einem Bohrstoss

ERHÖHTE STANDZEIT | Durch effiziente Kühlung

HOHE PROZESSSICHERHEIT | Dank kurzer Späne

HOHE PRÄZISION Dank doppelter Führungsfase



# TEIL

Einspritzkörper

#### WERKSTOFF

100Cr6 / 1.3505 / AISI 52100

#### **BEARBEITUNG**

- Pilotbohren und Tieflochbohren
- d = 2.0 mm
- Bohrtiefe 76 mm

# WERKZEUG

Mikron Tool - CrazyDrill Cool XL -  $40 \times d$ 

| DATEN         | MIKRON TOOL                                                                   |
|---------------|-------------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyDrill Pilot CrazyDrill Cool XL - Hartmetall - Beschichtet - Innenkühlung |
| Artikelnummer | 2.CD.400200.XL                                                                |
| Schnittdaten  | $v_c = 70 \text{ m/min}$ $f = 0.08 \text{ mm/U}$ $Q_1 = 76 \text{ mm}$        |







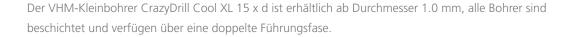











| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE                  |
|-----------------------|-------------------------------------------|
| Raum- und Luftfahrt   | Komponente für Flugzeug                   |
| Medizintechnik        | Knochenschraube                           |
| Formenbau             | Bauteil für Spritzgussformen              |
| Automobilbau          | Pumpengehäuse                             |
| Maschinenbau          | Düsenkörper                               |
| Lebensmittelindustrie | Entlüftungsbohrungen für<br>Glasformenbau |

| MATERIALGRUPPE                       |         | BEISPIELE      |                   |
|--------------------------------------|---------|----------------|-------------------|
|                                      | Wr. Nr. | DIN            | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.            | 1.0401  | C15            | 1015              |
| legierte Stähle                      | 1.3505  | 100Cr6         | 52100             |
|                                      | 1.2436  | X210CrW12      | D4 / D6           |
| <b>Gruppe M</b><br>Rostfreie Stähle  | 1.4105  | X6CrMoS17      | 430F              |
|                                      | 1.4034  | X46Cr13        | 420C              |
|                                      | 1.4301  | X5CrNi 18-10   | 304               |
| <b>Gruppe K</b><br>Gusseisen         | 0.7040  | GGG40          | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle | 3.2315  | AlMgSi1        | 6351              |
|                                      | 3.2163  | GD-AlSi9Cu3    | A380              |
|                                      | 2.004   | Cu-OF / CW008A | C10100            |
|                                      | 2.0321  | CuZn37 CW508L  | C27400            |
|                                      | 2.102   | CuSn6          | C51900            |
|                                      | 2.096   | CuAl9Mn2       | C63200            |
| Gruppe S2<br>Titan rein u.           | 3.7035  | Gr.2           | B348 / F67        |
| Titan Legierungen                    | 3.7165  | TiAl6V4        | B348 / F136       |
| <b>Gruppe S3</b><br>CrCo Legierungen | 2.4964  | CoCr20W15Ni    | HAYNES 25         |
| Gruppe H1<br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4    | 01                |



# CrazyDrill Cool XL 15 x d

# **BOHREN MIT INNENKÜHLUNG**



Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. So fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Durch seine speziell entwickelte Spannutengeometrie erzeugt der Bohrer kurze Späne, ein wichtige Voraussetzung für prozesssicheres tiefes Bohren. Die maximale Bohrtiefe von 15 x d wird in den meisten Materialien in einem Bohrstoss erreicht. Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot oder CrazyDrill Coolpilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Crosspilot und Bohrer CrazyDrill Cool XL wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

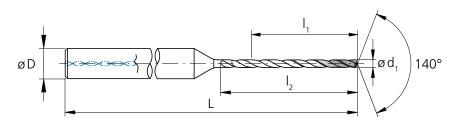
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool XL (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.45 mm.







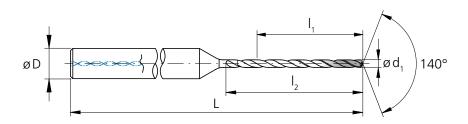

**Z**2







| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k6</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|----------------------------|--------------------------|-----------|
| •          | 2.CD.150100.XL | 1.00                                       | 15.00                      | 18.0                       | 4                        | 58        |
| •          | 2.CD.150105.XL | 1.05                                       | 15.75                      | 18.9                       | 4                        | 59        |
| •          | 2.CD.150110.XL | 1.10                                       | 16.50                      | 19.8                       | 4                        | 60        |
| •          | 2.CD.150115.XL | 1.15                                       | 17.25                      | 20.7                       | 4                        | 61        |
| •          | 2.CD.150120.XL | 1.20                                       | 18.00                      | 21.6                       | 4                        | 62        |
| •          | 2.CD.150125.XL | 1.25                                       | 18.75                      | 22.5                       | 4                        | 62        |
| •          | 2.CD.150130.XL | 1.30                                       | 19.50                      | 23.4                       | 4                        | 63        |
| •          | 2.CD.150135.XL | 1.35                                       | 20.25                      | 24.3                       | 4                        | 64        |
| •          | 2.CD.150140.XL | 1.40                                       | 21.00                      | 25.2                       | 4                        | 65        |
| •          | 2.CD.150145.XL | 1.45                                       | 21.75                      | 26.1                       | 4                        | 66        |
| •          | 2.CD.150150.XL | 1.50                                       | 22.50                      | 27.0                       | 4                        | 67        |
| •          | 2.CD.150155.XL | 1.55                                       | 23.25                      | 27.9                       | 4                        | 68        |
| •          | 2.CD.150160.XL | 1.60                                       | 24.00                      | 28.8                       | 4                        | 68        |
| •          | 2.CD.150165.XL | 1.65                                       | 24.75                      | 29.7                       | 4                        | 69        |
| •          | 2.CD.150170.XL | 1.70                                       | 25.50                      | 30.6                       | 4                        | 70        |
| •          | 2.CD.150175.XL | 1.75                                       | 26.25                      | 31.5                       | 4                        | 71        |
| •          | 2.CD.150180.XL | 1.80                                       | 27.00                      | 32.4                       | 4                        | 72        |
| •          | 2.CD.150185.XL | 1.85                                       | 27.75                      | 33.3                       | 4                        | 73        |
| •          | 2.CD.150190.XL | 1.90                                       | 28.50                      | 34.2                       | 4                        | 74        |
| •          | 2.CD.150195.XL | 1.95                                       | 29.25                      | 35.1                       | 4                        | 74        |
| •          | 2.CD.150200.XL | 2.00                                       | 30.00                      | 36.0                       | 4                        | 75        |
| •          | 2.CD.150205.XL | 2.05                                       | 30.75                      | 36.9                       | 4                        | 76        |
| •          | 2.CD.150210.XL | 2.10                                       | 31.50                      | 37.8                       | 4                        | 77        |
| •          | 2.CD.150215.XL | 2.15                                       | 32.25                      | 38.7                       | 4                        | 78        |
| •          | 2.CD.150220.XL | 2.20                                       | 33.00                      | 39.6                       | 4                        | 79        |
| •          | 2.CD.150225.XL | 2.25                                       | 33.75                      | 40.5                       | 4                        | 80        |
| •          | 2.CD.150230.XL | 2.30                                       | 34.50                      | 41.4                       | 4                        | 80        |
| •          | 2.CD.150235.XL | 2.35                                       | 35.25                      | 42.3                       | 4                        | 81        |


# Ergänzende Produkte

CrazyDrill Pilot
CrazyDrill Coolpilot
CrazyDrill Crosspilot



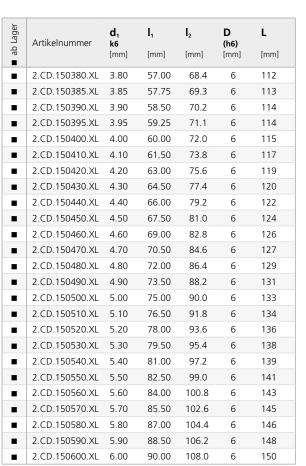
# CrazyDrill Cool XL 15 x d

# **BOHREN MIT INNENKÜHLUNG**



| ■ ab Lager | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k6</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|------------|----------------|--------------------------------------------|----------------------------|-------------------------------|--------------------------|------------------|
| •          | 2.CD.150240.XL | 2.40                                       | 36.00                      | 43.2                          | 4                        | 82               |
|            | 2.CD.150245.XL | 2.45                                       | 36.75                      | 44.1                          | 4                        | 83               |
| •          | 2.CD.150250.XL | 2.50                                       | 37.50                      | 45.0                          | 4                        | 84               |
|            | 2.CD.150255.XL | 2.55                                       | 38.25                      | 45.9                          | 4                        | 85               |
| •          | 2.CD.150260.XL | 2.60                                       | 39.00                      | 46.8                          | 4                        | 86               |
|            | 2.CD.150265.XL | 2.65                                       | 39.75                      | 47.7                          | 4                        | 86               |
| •          | 2.CD.150270.XL | 2.70                                       | 40.50                      | 48.6                          | 4                        | 87               |
|            | 2.CD.150275.XL | 2.75                                       | 41.25                      | 49.5                          | 4                        | 88               |
|            | 2.CD.150280.XL | 2.80                                       | 42.00                      | 50.4                          | 4                        | 89               |
|            | 2.CD.150285.XL | 2.85                                       | 42.75                      | 51.3                          | 4                        | 90               |
| •          | 2.CD.150290.XL | 2.90                                       | 43.50                      | 52.2                          | 4                        | 91               |
|            | 2.CD.150295.XL | 2.95                                       | 44.25                      | 53.1                          | 4                        | 92               |
|            | 2.CD.150300.XL | 3.00                                       | 45.00                      | 54.0                          | 4                        | 92               |
|            | 2.CD.150305.XL | 3.05                                       | 45.75                      | 54.9                          | 6                        | 99               |
| •          | 2.CD.150310.XL | 3.10                                       | 46.50                      | 55.8                          | 6                        | 100              |
|            | 2.CD.150315.XL | 3.15                                       | 47.25                      | 56.7                          | 6                        | 101              |
|            | 2.CD.150320.XL | 3.20                                       | 48.00                      | 57.6                          | 6                        | 102              |
|            | 2.CD.150325.XL | 3.25                                       | 48.75                      | 58.5                          | 6                        | 102              |
| •          | 2.CD.150330.XL | 3.30                                       | 49.50                      | 59.4                          | 6                        | 103              |
|            | 2.CD.150335.XL | 3.35                                       | 50.25                      | 60.3                          | 6                        | 104              |
| •          | 2.CD.150340.XL | 3.40                                       | 51.00                      | 61.2                          | 6                        | 105              |
|            | 2.CD.150345.XL | 3.45                                       | 51.75                      | 62.1                          | 6                        | 106              |
|            | 2.CD.150350.XL | 3.50                                       | 52.50                      | 63.0                          | 6                        | 107              |
|            | 2.CD.150355.XL | 3.55                                       | 53.25                      | 63.9                          | 6                        | 108              |
|            | 2.CD.150360.XL | 3.60                                       | 54.00                      | 64.8                          | 6                        | 108              |
|            | 2.CD.150365.XL | 3.65                                       | 54.75                      | 65.7                          | 6                        | 109              |
|            | 2.CD.150370.XL | 3.70                                       | 55.50                      | 66.6                          | 6                        | 110              |
|            | 2.CD.150375.XL | 3.75                                       | 56.25                      | 67.5                          | 6                        | 111              |








**Z**2







Ergänzende Produkte CrazyDrill Pilot CrazyDrill Coolpilot CrazyDrill Crosspilot



# CrazyDrill Cool XL 15 x d

# BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                | Verkstoff-<br>ruppe   | Werkstoff                                     | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$ | $\mathbf{Q}_{x}$ |
|----------------|-----------------------|-----------------------------------------------|--------|--------------------|-------------------------|----------------------------------|-------|------------------|
|                |                       |                                               | 1.0301 | C10                | AISI 1010               |                                  |       |                  |
|                | P                     |                                               | 1.0401 | C15                | AISI 1015               |                                  |       |                  |
| \ \ \ \\ \\ \\ |                       | Stähle unlegiert                              | 1.1191 | C45E/CK45          | AISI 1045               | 50-100                           | 15xd1 | _                |
|                |                       | Rm < 800 N/mm <sup>2</sup>                    | 1.0044 | S275JR             | AISI 1020               |                                  |       |                  |
|                |                       |                                               | 1.0715 | 11SMn30            | AISI 1215               |                                  |       |                  |
|                |                       |                                               | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |       |                  |
|                |                       |                                               | 1.7131 | 16MnCr5            | AISI 5115               |                                  |       |                  |
|                |                       | Stähle niedriglegiert                         | 1.3505 | 100Cr6             | AISI 52100              | 50-100                           | 15xd1 | _                |
|                |                       | Rm > 900 N/mm <sup>2</sup>                    | 1.7225 | 42CrMo4            | AISI 4140               |                                  |       |                  |
| d <sub>1</sub> |                       |                                               | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |       |                  |
|                |                       |                                               | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |       |                  |
| Q <sub>1</sub> |                       | Werkzeugstähle                                | 1.2436 | X210CrW12          | AISI D4/D6              |                                  |       |                  |
|                |                       | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>    | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 40-80                            | 15xd1 | -                |
| Qx             |                       | KIII < 1200 IV/IIIII12                        | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |       |                  |
| Qx             |                       | Rostfreie Stähle-                             | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |       |                  |
|                | ΝЛ                    | ferritisch                                    | 1.4105 | X6CrMoS17          | AISI 4307 ONS 343000    | 30-60                            | 15xd1 | -                |
|                | W                     | Rostfreie Stähle-                             | 1.4034 | X46Cr13            | AISI 420C               |                                  |       |                  |
|                |                       | martensitisch                                 | 1.4112 | X90CrMoV18         | AISI 440B               | 40-80                            | 15xd1 | -                |
|                |                       | Rostfreie Stähle-                             | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |       |                  |
|                |                       | martensitisch – PH                            | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |       |                  |
|                | That terisitises      |                                               | 1.4301 | X5CrNi 18-10       | AISI 304                | 30-60                            | 5xd1  | 2xd1             |
|                |                       | Rostfreie Stähle-                             | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               | 30-00 3x41                       | 2AG I |                  |
|                |                       | austenitisch                                  | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |       |                  |
|                |                       |                                               | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |       |                  |
| _              |                       |                                               | 0.6020 | GG20               | ASTM 30                 |                                  |       |                  |
| l l            | <b>/</b>              |                                               | 0.6020 | GG30               | ASTM 40B                |                                  |       |                  |
|                | K                     | Gusseisen                                     | 0.7040 | GGG40              | ASTM 60-40-18           | 100-200                          | 15xd1 | -                |
|                |                       |                                               | 0.7040 | GGG60              | ASTM 80-60-03           |                                  |       |                  |
|                |                       |                                               |        |                    |                         |                                  |       |                  |
|                |                       | Aluminium                                     | 3.2315 | AlMgSi1            | ASTM 6351               | 100-200                          | 15xd1 | _                |
|                | N                     | Knetlegierungen                               | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |       |                  |
|                |                       | Aluminium                                     | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 80-150                           | 15xd1 | -                |
|                |                       | Druckgusslegierungen                          |        | GD-AlSi10Mg        | UNS A03590              |                                  |       |                  |
|                |                       | Kupfer                                        | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40-80                            | 2xd1  | 2xd1             |
|                |                       |                                               | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |       |                  |
|                |                       | Messing bleifrei                              | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40-80                            | 2xd1  | 2xd1             |
|                |                       |                                               | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |       |                  |
|                |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401 | CuSn6              |                         | 50-120                           | 15xd1 | -                |
|                |                       |                                               | 2.102  | CuAl10NiEE04       | UNS C51900              |                                  |       |                  |
|                |                       | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966 | CuAl0Ni5Fe4        | UNS C63000              | 40-80                            | 15xd1 | -                |
| _              |                       | MIT < 000 IV/IIIII                            | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |       |                  |
|                |                       |                                               | 2.4856 |                    | Inconel 625             |                                  |       |                  |
|                | <b>S</b> <sub>1</sub> | Hitzebeständige                               | 2.4668 |                    | Inconel 718             |                                  |       |                  |
| "              | 7                     | Stähle                                        | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |       |                  |
|                |                       |                                               | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |       |                  |
|                |                       | Titan rein                                    | 3.7035 | Gr.2               | ASTM B348 / F67         | 25-50                            | 3xd1  | 1xd1             |
|                | <b>S</b> <sub>2</sub> |                                               | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |       |                  |
| "              | - 2                   | Titan Legierungen                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 20-40                            | 5xd1  | 1xd1             |
|                |                       |                                               | 9.9367 | TiAl6Nb7           | ASTM F1295              | -                                |       |                  |
|                | <b>S</b> <sub>3</sub> | CrCo-Legierungen                              | 2.4964 | CoCr20W15Ni        | Haynes 25               | 20-40                            | 5xd1  | 2xd1             |
|                | 3                     |                                               |        | CrCoMo28           | ASTM F1537              |                                  | 1     |                  |
|                | H₁                    | Stähle gehärtet<br>< 55 HRC                   | 1.2510 | 100MnCrMoW4        | AISI O1                 | 30-60                            | 5xd1  | 1xd1             |
| l l            | $H_2$                 | Stähle gehärtet<br>≥ 55 HRC                   | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |       |                  |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



|                |                       |                       |                    | <b>6</b> 5 11 13                  |                |                       |                       |                |
|----------------|-----------------------|-----------------------|--------------------|-----------------------------------|----------------|-----------------------|-----------------------|----------------|
| Ød1<br>1.00 mm | <b>Ød1</b><br>1.25 mm | <b>Ød1</b><br>1.50 mm | <b>Ød1</b> 2.00 mm | <b>f</b> [mm/U]<br>Ød1<br>2.50 mm | Ød1<br>3.00 mm | <b>Ød1</b><br>4.00 mm | <b>Ød1</b><br>5.00 mm | Ød1<br>6.00 mm |
| f              | f                     | f                     | f                  | f                                 | f              | f                     | f                     | f              |
| 0.060          | 0.060                 | 0.080                 | 0.100              | 0.120                             | 0.150          | 0.180                 | 0.220                 | 0.250          |
| 0.060          | 0.060                 | 0.080                 | 0.100              | 0.120                             | 0.150          | 0.150                 | 0.180                 | 0.200          |
| 0.040          | 0.060                 | 0.080                 | 0.100              | 0.120                             | 0.150          | 0.180                 | 0.200                 | 0.220          |
| 0.020          | 0.040                 | 0.060                 | 0.080              | 0.100                             | 0.130          | 0.150                 | 0.200                 | 0.220          |
| 0.040          | 0.060                 | 0.080                 | 0.100              | 0.120                             | 0.150          | 0.180                 | 0.200                 | 0.220          |
|                |                       |                       |                    |                                   |                |                       |                       |                |
| 0.020          | 0.030                 | 0.040                 | 0.060              | 0.070                             | 0.100          | 0.120                 | 0.150                 | 0.180          |
|                |                       |                       |                    |                                   |                |                       |                       |                |
|                |                       |                       |                    |                                   |                |                       |                       |                |
| 0.060          | 0.080                 | 0.100                 | 0.120              | 0.150                             | 0.180          | 0.200                 | 0.250                 | 0.300          |
| 0.040          | 0.060                 | 0.080                 | 0.120              | 0.160                             | 0.200          | 0.250                 | 0.300                 | 0.250          |
| 0.040          | 0.060                 | 0.080                 | 0.100              | 0.120                             | 0.150          | 0.200                 | 0.250                 | 0.300          |
| 0.025          | 0.045                 | 0.065                 | 0.085              | 0.110                             | 0.140          | 0.160                 | 0.180                 | 0.200          |
| 0.025          | 0.045                 | 0.065                 | 0.085              | 0.110                             | 0.140          | 0.160                 | 0.180                 | 0.200          |
| 0.030          | 0.050                 | 0.070                 | 0.090              | 0.120                             | 0.150          | 0.170                 | 0.220                 | 0.240          |
| 0.025          | 0.045                 | 0.065                 | 0.085              | 0.110                             | 0.140          | 0.160                 | 0.210                 | 0.230          |
|                |                       |                       |                    |                                   |                |                       |                       |                |
| 0.010          | 0.020                 | 0.030                 | 0.040              | 0.050                             | 0.065          | 0.080                 | 0.100                 | 0.120          |
| 0.010          | 0.020                 | 0.030                 | 0.040              | 0.050                             | 0.065          | 0.080                 | 0.100                 | 0.120          |
| 0.010          | 0.020                 | 0.030                 | 0.040              | 0.050                             | 0.065          | 0.080                 | 0.100                 | 0.120          |
| 0.020          | 0.040                 | 0.060                 | 0.080              | 0.100                             | 0.120          | 0.140                 | 0.160                 | 0.180          |
|                |                       |                       |                    |                                   |                |                       |                       |                |
|                |                       |                       |                    |                                   |                |                       |                       |                |



# CrazyDrill Cool XL 20 x d

### **BOHREN MIT INNENKÜHLUNG**



Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. So fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Durch seine speziell entwickelte Spannutengeometrie erzeugt der Bohrer kurze Späne, ein wichtige Voraussetzung für prozesssicheres tiefes Bohren. Die maximale Bohrtiefe von 20 x d wird in den meisten Materialien in einem Bohrstoss erreicht. Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot oder CrazyDrill Coolpilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Crosspilot und Bohrer CrazyDrill Cool XL wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

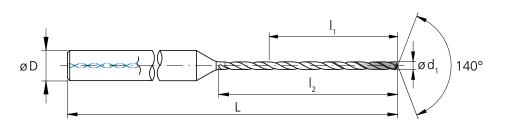
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool XL (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.45 mm.







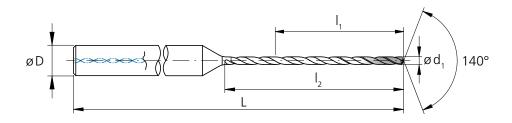

**Z**2







| ■ ab Lager ∆ auf Anfrage | Artikelnummer  | <b>d</b> <sub>1</sub> <b>k6</b> [mm] | <b>l</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|--------------------------|----------------|--------------------------------------|----------------------------|----------------------------|--------------------------|-----------|
|                          | 2.CD.200100.XL | 1.00                                 | 20.0                       | 23.0                       | 4                        | 63        |
| Δ                        | 2.CD.200105.XL | 1.05                                 | 21.0                       | 24.2                       | 4                        | 64        |
|                          | 2.CD.200110.XL | 1.10                                 | 22.0                       | 25.3                       | 4                        | 65        |
| Δ                        | 2.CD.200115.XL | 1.15                                 | 23.0                       | 26.5                       | 4                        | 66        |
| •                        | 2.CD.200120.XL | 1.20                                 | 24.0                       | 27.6                       | 4                        | 68        |
| Δ                        | 2.CD.200125.XL | 1.25                                 | 25.0                       | 28.8                       | 4                        | 69        |
| •                        | 2.CD.200130.XL | 1.30                                 | 26.0                       | 29.9                       | 4                        | 70        |
| Δ                        | 2.CD.200135.XL | 1.35                                 | 27.0                       | 31.1                       | 4                        | 71        |
| •                        | 2.CD.200140.XL | 1.40                                 | 28.0                       | 32.2                       | 4                        | 72        |
| Δ                        | 2.CD.200145.XL | 1.45                                 | 29.0                       | 33.4                       | 4                        | 73        |
| •                        | 2.CD.200150.XL | 1.50                                 | 30.0                       | 34.5                       | 4                        | 74        |
| Δ                        | 2.CD.200155.XL | 1.55                                 | 31.0                       | 35.7                       | 4                        | 75        |
| •                        | 2.CD.200160.XL | 1.60                                 | 32.0                       | 36.8                       | 4                        | 76        |
| Δ                        | 2.CD.200165.XL | 1.65                                 | 33.0                       | 38.0                       | 4                        | 78        |
| •                        | 2.CD.200170.XL | 1.70                                 | 34.0                       | 39.1                       | 4                        | 79        |
| Δ                        | 2.CD.200175.XL | 1.75                                 | 35.0                       | 40.3                       | 4                        | 80        |
| •                        | 2.CD.200180.XL | 1.80                                 | 36.0                       | 41.4                       | 4                        | 81        |
| Δ                        | 2.CD.200185.XL | 1.85                                 | 37.0                       | 42.6                       | 4                        | 82        |
| •                        | 2.CD.200190.XL | 1.90                                 | 38.0                       | 43.7                       | 4                        | 83        |
| Δ                        | 2.CD.200195.XL | 1.95                                 | 39.0                       | 44.9                       | 4                        | 84        |
|                          | 2.CD.200200.XL | 2.00                                 | 40.0                       | 46.0                       | 4                        | 85        |
| Δ                        | 2.CD.200205.XL | 2.05                                 | 41.0                       | 47.2                       | 4                        | 86        |
| -                        | 2.CD.200210.XL | 2.10                                 | 42.0                       | 48.3                       | 4                        | 88        |
| Δ                        | 2.CD.200215.XL | 2.15                                 | 43.0                       | 49.5                       | 4                        | 89        |
| •                        | 2.CD.200220.XL | 2.20                                 | 44.0                       | 50.6                       | 4                        | 90        |
| Δ                        | 2.CD.200225.XL | 2.25                                 | 45.0                       | 51.8                       | 4                        | 91        |
| -                        | 2.CD.200230.XL | 2.30                                 | 46.0                       | 52.9                       | 4                        | 92        |
| Δ                        | 2.CD.200235.XL | 2.35                                 | 47.0                       | 54.1                       | 4                        | 93        |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

| Ergänzende Produkte   |
|-----------------------|
| CrazyDrill Pilot      |
| CrazyDrill Coolpilot  |
| CrazyDrill Crosspilot |
|                       |



# CrazyDrill Cool XL 20 x d

# **BOHREN MIT INNENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|----------------|----------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
|                         | 2.CD.200240.XL | 2.40     | 48.0           | 55.2           | 4         | 94   |
| Δ                       | 2.CD.200245.XL | 2.45     | 49.0           | 56.4           | 4         | 95   |
|                         | 2.CD.200250.XL | 2.50     | 50.0           | 57.5           | 4         | 96   |
| Δ                       | 2.CD.200255.XL | 2.55     | 51.0           | 58.7           | 4         | 97   |
|                         | 2.CD.200260.XL | 2.60     | 52.0           | 59.8           | 4         | 99   |
| Δ                       | 2.CD.200265.XL | 2.65     | 53.0           | 61.0           | 4         | 100  |
|                         | 2.CD.200270.XL | 2.70     | 54.0           | 62.1           | 4         | 101  |
| Δ                       | 2.CD.200275.XL | 2.75     | 55.0           | 63.3           | 4         | 102  |
|                         | 2.CD.200280.XL | 2.80     | 56.0           | 64.4           | 4         | 103  |
| Δ                       | 2.CD.200285.XL | 2.85     | 57.0           | 65.6           | 4         | 104  |
|                         | 2.CD.200290.XL | 2.90     | 58.0           | 66.7           | 4         | 105  |
| Δ                       | 2.CD.200295.XL | 2.95     | 59.0           | 67.9           | 4         | 106  |
|                         | 2.CD.200300.XL | 3.00     | 60.0           | 69.0           | 4         | 107  |
| Δ                       | 2.CD.200305.XL | 3.05     | 61.0           | 70.2           | 6         | 114  |
|                         | 2.CD.200310.XL | 3.10     | 62.0           | 71.3           | 6         | 115  |
| Δ                       | 2.CD.200315.XL | 3.15     | 63.0           | 72.5           | 6         | 117  |
|                         | 2.CD.200320.XL | 3.20     | 64.0           | 73.6           | 6         | 118  |
| Δ                       | 2.CD.200325.XL | 3.25     | 65.0           | 74.8           | 6         | 119  |
|                         | 2.CD.200330.XL | 3.30     | 66.0           | 75.9           | 6         | 120  |
| Δ                       | 2.CD.200335.XL | 3.35     | 67.0           | 77.1           | 6         | 121  |
|                         | 2.CD.200340.XL | 3.40     | 68.0           | 78.2           | 6         | 122  |
| Δ                       | 2.CD.200345.XL | 3.45     | 69.0           | 79.4           | 6         | 123  |
|                         | 2.CD.200350.XL | 3.50     | 70.0           | 80.5           | 6         | 124  |
| Δ                       | 2.CD.200355.XL | 3.55     | 71.0           | 81.7           | 6         | 125  |
|                         | 2.CD.200360.XL | 3.60     | 72.0           | 82.8           | 6         | 126  |
| Δ                       | 2.CD.200365.XL | 3.65     | 73.0           | 84.0           | 6         | 128  |
|                         | 2.CD.200370.XL | 3.70     | 74.0           | 85.1           | 6         | 129  |
| Δ                       | 2.CD.200375.XL | 3.75     | 75.0           | 86.3           | 6         | 130  |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.







**Z**2





| ab Lager<br>auf Anfrage | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | I <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|----------------|----------|----------------|----------------|-----------|------|
| ■ ab l<br>∆ auf         |                | [mm]     | [mm]           | [mm]           | [mm]      | [mm] |
| •                       | 2.CD.200380.XL | 3.80     | 76.0           | 87.4           | 6         | 131  |
| Δ                       | 2.CD.200385.XL | 3.85     | 77.0           | 88.6           | 6         | 132  |
|                         | 2.CD.200390.XL | 3.90     | 78.0           | 89.7           | 6         | 133  |
| Δ                       | 2.CD.200395.XL | 3.95     | 79.0           | 90.9           | 6         | 134  |
| •                       | 2.CD.200400.XL | 4.00     | 80.0           | 92.0           | 6         | 135  |
| •                       | 2.CD.200410.XL | 4.10     | 82.0           | 94.3           | 6         | 138  |
| •                       | 2.CD.200420.XL | 4.20     | 84.0           | 96.6           | 6         | 140  |
|                         | 2.CD.200430.XL | 4.30     | 86.0           | 98.9           | 6         | 142  |
| •                       | 2.CD.200440.XL | 4.40     | 88.0           | 101.2          | 6         | 144  |
|                         | 2.CD.200450.XL | 4.50     | 90.0           | 103.5          | 6         | 146  |
| •                       | 2.CD.200460.XL | 4.60     | 92.0           | 105.8          | 6         | 149  |
| •                       | 2.CD.200470.XL | 4.70     | 94.0           | 108.1          | 6         | 151  |
| •                       | 2.CD.200480.XL | 4.80     | 96.0           | 110.4          | 6         | 153  |
| •                       | 2.CD.200490.XL | 4.90     | 98.0           | 112.7          | 6         | 155  |
| •                       | 2.CD.200500.XL | 5.00     | 100.0          | 115.0          | 6         | 158  |
| •                       | 2.CD.200510.XL | 5.10     | 102.0          | 117.3          | 6         | 160  |
| •                       | 2.CD.200520.XL | 5.20     | 104.0          | 119.6          | 6         | 162  |
| •                       | 2.CD.200530.XL | 5.30     | 106.0          | 121.9          | 6         | 164  |
| •                       | 2.CD.200540.XL | 5.40     | 108.0          | 124.2          | 6         | 166  |
|                         | 2.CD.200550.XL | 5.50     | 110.0          | 126.5          | 6         | 169  |
|                         | 2.CD.200560.XL | 5.60     | 112.0          | 128.8          | 6         | 171  |
|                         | 2.CD.200570.XL | 5.70     | 114.0          | 131.1          | 6         | 173  |
|                         | 2.CD.200580.XL | 5.80     | 116.0          | 133.4          | 6         | 175  |
|                         | 2.CD.200590.XL | 5.90     | 118.0          | 135.7          | 6         | 177  |
|                         | 2.CD.200600.XL | 6.00     | 120.0          | 138.0          | 6         | 180  |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

| Ergänzende Produkte   |
|-----------------------|
| CrazyDrill Pilot      |
| CrazyDrill Coolpilot  |
| CrazyDrill Crosspilot |
|                       |



# CrazyDrill Cool XL 20 x d

# BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werksto<br>gruppe                                                                                         | ff-<br>Werkstoff                        | Wr.Nr.           | DIN                   | AISI/ASTM/UNS                      | <b>V</b> <sub>c</sub><br>[m/min] | $Q_1$ | <b>Q</b> <sub>x</sub> |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|-----------------------|------------------------------------|----------------------------------|-------|-----------------------|
|                                                                                                           |                                         | 1.0301           | C10                   | AISI 1010                          |                                  |       |                       |
| D                                                                                                         |                                         | 1.0401           | C15                   | AISI 1015                          |                                  |       |                       |
| \ \ \ \ \ \ \ \   \   \   \ \                                                                             | Stähle unlegiert                        | 1.1191           | C45E/CK45             | AISI 1045                          | 50-100                           | 20xd1 | _                     |
| \0\/                                                                                                      | Rm < 800 N/mm <sup>2</sup>              | 1.0044           | S275JR                | AISI 1020                          |                                  |       |                       |
|                                                                                                           |                                         | 1.0715           | 11SMn30               | AISI 1215                          |                                  |       |                       |
| (2)                                                                                                       |                                         | 1.5752           | 15NiCr13              | ASTM 3415 / AISI 3310              |                                  |       |                       |
| 44                                                                                                        |                                         | 1.7131           | 16MnCr5               | AISI 5115                          |                                  |       |                       |
|                                                                                                           | Stähle niedriglegiert                   | 1.3505           | 100Cr6                | AISI 52100                         | 50-100                           | 20xd1 | _                     |
|                                                                                                           | Rm > 900 N/mm <sup>2</sup>              | 1.7225           | 42CrMo4               | AISI 4140                          |                                  |       |                       |
| d <sub>1</sub>                                                                                            |                                         | 1.2842           | 90MnCrV8              | AISI O2                            |                                  |       |                       |
|                                                                                                           |                                         | 1.2379           | X153CrMoV12           | AISI D2                            |                                  |       |                       |
| 0,                                                                                                        | Werkzeugstähle                          | 1.2436           | X210CrW12             | AISI D4/D6                         |                                  |       |                       |
|                                                                                                           | hochlegiert                             | 1.3343           | HS6-5-2C              | AISI M2 / UNS T11302               | 40-80                            | 20xd1 | -                     |
| Q <sub>x</sub>                                                                                            | Rm < 1200 N/mm <sup>2</sup>             | 1.3355           | HS18-0-1              | AISI T1 / UNS T12001               |                                  |       |                       |
| Qx                                                                                                        | Destinate Could                         |                  |                       |                                    |                                  |       |                       |
|                                                                                                           | Rostfreie Stähle-<br>ferritisch         | 1.4016<br>1.4105 | X6Cr17<br>X6CrMoS17   | AISI 430 / UNS S43000<br>AISI 430F | 30-60                            | 20xd1 | _                     |
| IVI                                                                                                       |                                         |                  |                       |                                    |                                  |       |                       |
|                                                                                                           | Rostfreie Stähle-<br>martensitisch      | 1.4034           | X46Cr13<br>X90CrMoV18 | AISI 420C<br>AISI 440B             | 40-80                            | 20xd1 | _                     |
|                                                                                                           |                                         | 1.4112           |                       |                                    |                                  |       |                       |
|                                                                                                           | Rostfreie Stähle-<br>martensitisch – PH | 1.4542           | X5CrNiCuNb 16-4       | AISI 630 / ASTM 17-4 PH            |                                  |       |                       |
|                                                                                                           | martensitisch – Fn                      | 1.4545           | X5CrNiCuNb 15-5       | ASTM 15-5 PH                       | 20. 60                           | - 14  | 2 14                  |
|                                                                                                           |                                         | 1.4301           | X5CrNi 18-10          | AISI 304                           | 30-60                            | 5xd1  | 2xd1                  |
|                                                                                                           | Rostfreie Stähle-                       | 1.4435           | X2CrNiMo 18-14-3      | AISI 316L                          |                                  |       |                       |
|                                                                                                           | austenitisch                            | 1.4441           | X2CrNiMo 18-15-3      | AISI 316LM                         |                                  |       |                       |
|                                                                                                           |                                         | 1.4539           | X1NiCrMoCu 25-20-5    | AISI 904L                          |                                  |       |                       |
|                                                                                                           |                                         | 0.6020           | GG20                  | ASTM 30                            |                                  |       |                       |
| K                                                                                                         | Gusseisen                               | 0.6030           | GG30                  | ASTM 40B                           | 100-200                          | 20xd1 | _                     |
|                                                                                                           | Gusselsell                              | 0.7040           | GGG40                 | ASTM 60-40-18                      | 100-200                          | 20/01 | _                     |
|                                                                                                           |                                         | 0.7060           | GGG60                 | ASTM 80-60-03                      |                                  |       |                       |
|                                                                                                           | Aluminium                               | 3.2315           | AlMgSi1               | ASTM 6351                          | 100-200                          |       |                       |
| NI.                                                                                                       | Knetlegierungen                         | 3.4365           | AlZnMgCu1.5           | ASTM 7075                          |                                  | 20xd1 | _                     |
| I N                                                                                                       | Aluminium                               | 3.2163           | GD-AlSi9Cu3           | ASTM A380                          | 00 150                           | 2011  |                       |
|                                                                                                           | Druckgusslegierungen                    | 3.2381           | GD-AlSi10Mg           | UNS A03590                         | 80-150                           | 20xd1 | _                     |
|                                                                                                           | IZ C                                    | 2.004            | Cu-OF / CW008A        | UNS C10100                         | 40.00                            | 2 14  | 2 14                  |
|                                                                                                           | Kupfer                                  | 2.0065           | Cu-ETP / CW004A       | UNS C11000                         | 40-80                            | 2xd1  | 2xd1                  |
|                                                                                                           | A 4 1 11 16 1                           | 2.0321           | CuZn37 CW508L         | UNS C27400                         | 40                               | 2     |                       |
|                                                                                                           | Messing bleifrei                        | 2.036            | CuZn40 CW509L         | UNS C28000                         | 40-80                            | 2xd1  | 2xd1                  |
| Werksto gruppe  P  K  N  K  N  S <sub>1</sub> S <sub>2</sub> S <sub>3</sub> H <sub>1</sub> H <sub>2</sub> | Messing, Bronze                         | 2.0401           | CuZn39Pb3 / CW614N    |                                    |                                  |       |                       |
|                                                                                                           | Rm < 400 N/mm <sup>2</sup>              | 2.102            | CuSn6                 | UNS C51900                         | 50-120                           | 20xd1 | _                     |
|                                                                                                           | Bronze                                  | 2.0966           | CuAl10Ni5Fe4          | UNS C63000                         |                                  |       |                       |
|                                                                                                           | Rm < 600 N/mm <sup>2</sup>              | 2.096            | CuAl9Mn2              | UNS C63200                         | 40-80                            | 20xd1 | _                     |
| $\mathbf{K}$ $\mathbf{K}$ $\mathbf{N}$ $\mathbf{S}_1$ $\mathbf{S}_2$ $\mathbf{S}_3$ $\mathbf{H}_1$        |                                         | 2.4856           |                       | Inconel 625                        |                                  |       |                       |
|                                                                                                           | 11341                                   | 2.4856           |                       | Inconel 718                        |                                  |       |                       |
| K N  S <sub>1</sub> S <sub>2</sub> S <sub>3</sub> H <sub>1</sub>                                          | Hitzebeständige<br>Stähle               | 2.4617           | NiMo28                | Hastelloy B-2                      |                                  |       |                       |
|                                                                                                           | Starile                                 | 2.4617           | NiCr22Fe18Mo          | Hastelloy X                        |                                  |       |                       |
|                                                                                                           |                                         |                  |                       |                                    |                                  |       |                       |
|                                                                                                           | Titan rein                              | 3.7035           | Gr.2                  | ASTM B348 / F67                    | 25-50                            | 3xd1  | 1xd1                  |
| 5,                                                                                                        |                                         | 3.7065           | Gr.4                  | ASTM B348 / F68                    |                                  |       |                       |
|                                                                                                           | Titan Legierungen                       | 3.7165           | TiAl6V4               | ASTM B348 / F136                   | 20-40                            | 5xd1  | 1xd1                  |
|                                                                                                           | -                                       | 9.9367           | TiAl6Nb7              | ASTM F1295                         |                                  |       |                       |
| 5-                                                                                                        | CrCo-Legierungen                        | 2.4964           | CoCr20W15Ni           | Haynes 25                          | 20-40                            | 5xd1  | 2xd1                  |
| 3                                                                                                         |                                         |                  | CrCoMo28              | ASTM F1537                         |                                  |       |                       |
| $H_1$                                                                                                     | Stähle gehärtet<br>< 55 HRC             | 1.2510           | 100MnCrMoW4           | AISI O1                            | 30-60                            | 5xd1  | 1xd1                  |
| lu.                                                                                                       | Stähle gehärtet<br>≥ 55 HRC             | 1.2379           | X153CrMoV12           | AISI D2                            |                                  |       |                       |



ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen



|                     |                     |                     |                     |                     |                     |                     |                     |                     | W |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---|
|                     |                     |                     |                     | <b>f</b> [mm/U]     |                     |                     |                     |                     |   |
| Ød1                 |   |
| 1.00 mm<br><b>f</b> | 1.25 mm<br><b>f</b> | 1.50 mm<br><b>f</b> | 2.00 mm<br><b>f</b> | 2.50 mm<br><b>f</b> | 3.00 mm<br><b>f</b> | 4.00 mm<br><b>f</b> | 5.00 mm<br><b>f</b> | 6.00 mm<br><b>f</b> |   |
| т                   | T                   | Т                   | т                   | r                   | Т                   | т                   | т                   | T                   | _ |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.060               | 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.180               | 0.220               | 0.250               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | + |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.060               | 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.150               | 0.180               | 0.200               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.040               | 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.180               | 0.200               | 0.220               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.020               | 0.040               | 0.060               | 0.080               | 0.100               | 0.130               | 0.150               | 0.200               | 0.220               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | - |
| 0.040               | 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.180               | 0.200               | 0.220               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.020               | 0.030               | 0.040               | 0.060               | 0.070               | 0.100               | 0.120               | 0.150               | 0.180               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | - |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.180               | 0.200               | 0.250               | 0.300               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
| 0.040               | 0.050               | 0.000               | 0.420               | 0.450               | 0.200               | 0.250               | 0.200               | 0.250               |   |
| 0.040               | 0.060               | 0.080               | 0.120               | 0.160               | 0.200               | 0.250               | 0.300               | 0.250               |   |
| 0.040               | 0.060               | 0.080               | 0.100               | 0.120               | 0.150               | 0.200               | 0.250               | 0.300               |   |
| 0.025               | 0.045               | 0.065               | 0.085               | 0.110               | 0.140               | 0.160               | 0.180               | 0.200               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | - |
| 0.025               | 0.045               | 0.065               | 0.085               | 0.110               | 0.140               | 0.160               | 0.180               | 0.200               |   |
| 0.030               | 0.050               | 0.070               | 0.090               | 0.120               | 0.150               | 0.170               | 0.220               | 0.240               |   |
| 0.025               | 0.045               | 0.065               | 0.085               | 0.110               | 0.140               | 0.160               | 0.210               | 0.230               |   |
| 0.023               | 0.043               | 0.063               | 0.065               | 0.110               | 0.140               | 0.160               | 0.210               | 0.230               | - |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | - |
| 0.010               | 0.020               | 0.030               | 0.040               | 0.050               | 0.065               | 0.080               | 0.100               | 0.120               |   |
| 0.010               | 0.020               | 0.030               | 0.040               | 0.050               | 0.065               | 0.080               | 0.100               | 0.120               |   |
|                     |                     |                     |                     |                     |                     |                     |                     |                     | + |
| 0.010               | 0.020               | 0.030               | 0.040               | 0.050               | 0.065               | 0.080               | 0.100               | 0.120               |   |
| 0.020               | 0.040               | 0.060               | 0.080               | 0.100               | 0.120               | 0.140               | 0.160               | 0.180               |   |
|                     |                     |                     | -:                  |                     |                     |                     |                     |                     | - |
|                     |                     |                     |                     |                     |                     |                     |                     |                     |   |
|                     | I.                  | 1                   | J.                  |                     | l.                  | I.                  | 1                   | 1                   |   |



# CrazyDrill Cool XL 30 x d

### **BOHREN MIT INNENKÜHLUNG**

Der VHM-Kleinbohrer CrazyDrill Cool XL 30 x d ist erhältlich ab Durchmesser 1 mm, alle Bohrer sind beschichtet und verfügen über eine doppelte Führungsfase.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. So fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Durch seine speziell entwickelte Spannutengeometrie erzeugt der Bohrer kurze Späne, ein wichtige Voraussetzung für prozesssicheres tiefes Bohren. Die maximale Bohrtiefe von 30 x d wird in den meisten Materialien in einem Bohrstoss erreicht. Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot oder CrazyDrill Coolpilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Crosspilot und Bohrer CrazyDrill Cool XL wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

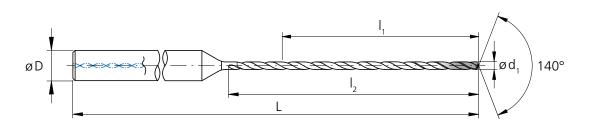
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool XL (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 1.45 mm.







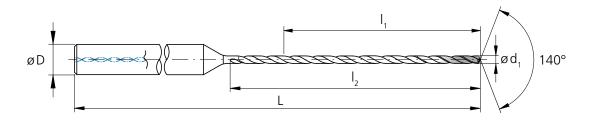

**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | l <sub>2</sub> | <b>D</b> (h6) | L    |
|-------------------------|----------------|----------|----------------|----------------|---------------|------|
| ■ ab<br>∆ auf           |                | [mm]     | [mm]           | [mm]           | [mm]          | [mm] |
|                         | 2.CD.300100.XL | 1.00     | 30.0           | 33.0           | 4             | 73   |
| Δ                       | 2.CD.300105.XL | 1.05     | 31.5           | 34.7           | 4             | 75   |
|                         | 2.CD.300110.XL | 1.10     | 33.0           | 36.3           | 4             | 76   |
| Δ                       | 2.CD.300115.XL | 1.15     | 34.5           | 38.0           | 4             | 78   |
|                         | 2.CD.300120.XL | 1.20     | 36.0           | 39.6           | 4             | 80   |
| Δ                       | 2.CD.300125.XL | 1.25     | 37.5           | 41.3           | 4             | 81   |
|                         | 2.CD.300130.XL | 1.30     | 39.0           | 42.9           | 4             | 83   |
| Δ                       | 2.CD.300135.XL | 1.35     | 40.5           | 44.6           | 4             | 84   |
|                         | 2.CD.300140.XL | 1.40     | 42.0           | 46.2           | 4             | 86   |
| Δ                       | 2.CD.300145.XL | 1.45     | 43.5           | 47.9           | 4             | 88   |
|                         | 2.CD.300150.XL | 1.50     | 45.0           | 49.5           | 4             | 89   |
| Δ                       | 2.CD.300155.XL | 1.55     | 46.5           | 51.2           | 4             | 91   |
|                         | 2.CD.300160.XL | 1.60     | 48.0           | 52.8           | 4             | 92   |
| Δ                       | 2.CD.300165.XL | 1.65     | 49.5           | 54.5           | 4             | 94   |
| •                       | 2.CD.300170.XL | 1.70     | 51.0           | 56.1           | 4             | 96   |
| Δ                       | 2.CD.300175.XL | 1.75     | 52.5           | 57.8           | 4             | 97   |
|                         | 2.CD.300180.XL | 1.80     | 54.0           | 59.4           | 4             | 99   |
| Δ                       | 2.CD.300185.XL | 1.85     | 55.5           | 61.1           | 4             | 100  |
|                         | 2.CD.300190.XL | 1.90     | 57.0           | 62.7           | 4             | 102  |
| Δ                       | 2.CD.300195.XL | 1.95     | 58.5           | 64.4           | 4             | 104  |
|                         | 2.CD.300200.XL | 2.00     | 60.0           | 66.0           | 4             | 105  |
| Δ                       | 2.CD.300205.XL | 2.05     | 61.5           | 67.7           | 4             | 107  |
| •                       | 2.CD.300210.XL | 2.10     | 63.0           | 69.3           | 4             | 109  |
| Δ                       | 2.CD.300215.XL | 2.15     | 64.5           | 71.0           | 4             | 110  |
| •                       | 2.CD.300220.XL | 2.20     | 66.0           | 72.6           | 4             | 112  |
| Δ                       | 2.CD.300225.XL | 2.25     | 67.5           | 74.3           | 4             | 113  |
|                         | 2.CD.300230.XL | 2.30     | 69.0           | 75.9           | 4             | 115  |
| Δ                       | 2.CD.300235.XL | 2.35     | 70.5           | 77.6           | 4             | 117  |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

| Ergänzende Produkte   |
|-----------------------|
| CrazyDrill Pilot      |
| CrazyDrill Coolpilot  |
| CrazyDrill Crosspilot |



# CrazyDrill Cool XL 30 x d

# **BOHREN MIT INNENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer  | d₁<br>k6 | I <sub>1</sub> | l <sub>2</sub> | <b>D</b><br>(h6) | L    |
|-------------------------|----------------|----------|----------------|----------------|------------------|------|
| ■ ab Lager ∆ auf Anfra  | , weinemen     | [mm]     | [mm]           | [mm]           | [mm]             | [mm] |
|                         | 2.CD.300240.XL | 2.40     | 72.0           | 79.2           | 4                | 118  |
| Δ                       | 2.CD.300245.XL | 2.45     | 73.5           | 80.9           | 4                | 120  |
|                         | 2.CD.300250.XL | 2.50     | 75.0           | 82.5           | 4                | 121  |
| Δ                       | 2.CD.300255.XL | 2.55     | 76.5           | 84.2           | 4                | 123  |
|                         | 2.CD.300260.XL | 2.60     | 78.0           | 85.8           | 4                | 125  |
| Δ                       | 2.CD.300265.XL | 2.65     | 79.5           | 87.5           | 4                | 126  |
|                         | 2.CD.300270.XL | 2.70     | 81.0           | 89.1           | 4                | 128  |
| Δ                       | 2.CD.300275.XL | 2.75     | 82.5           | 90.8           | 4                | 129  |
|                         | 2.CD.300280.XL | 2.80     | 84.0           | 92.4           | 4                | 131  |
| Δ                       | 2.CD.300285.XL | 2.85     | 85.5           | 94.1           | 4                | 133  |
|                         | 2.CD.300290.XL | 2.90     | 87.0           | 95.7           | 4                | 134  |
| Δ                       | 2.CD.300295.XL | 2.95     | 88.5           | 97.4           | 4                | 136  |
|                         | 2.CD.300300.XL | 3.00     | 90.0           | 99.0           | 4                | 137  |
| Δ                       | 2.CD.300305.XL | 3.05     | 91.5           | 100.7          | 6                | 145  |
|                         | 2.CD.300310.XL | 3.10     | 93.0           | 102.3          | 6                | 146  |
| Δ                       | 2.CD.300315.XL | 3.15     | 94.5           | 104.0          | 6                | 148  |
|                         | 2.CD.300320.XL | 3.20     | 96.0           | 105.6          | 6                | 150  |
| Δ                       | 2.CD.300325.XL | 3.25     | 97.5           | 107.3          | 6                | 151  |
|                         | 2.CD.300330.XL | 3.30     | 99.0           | 108.9          | 6                | 153  |
| Δ                       | 2.CD.300335.XL | 3.35     | 100.5          | 110.6          | 6                | 154  |
|                         | 2.CD.300340.XL | 3.40     | 102.0          | 112.2          | 6                | 156  |
| Δ                       | 2.CD.300345.XL | 3.45     | 103.5          | 113.9          | 6                | 158  |
|                         | 2.CD.300350.XL | 3.50     | 105.0          | 115.5          | 6                | 159  |
| Δ                       | 2.CD.300355.XL | 3.55     | 106.5          | 117.2          | 6                | 161  |
|                         | 2.CD.300360.XL | 3.60     | 108.0          | 118.8          | 6                | 162  |
| Δ                       | 2.CD.300365.XL | 3.65     | 109.5          | 120.5          | 6                | 164  |
|                         | 2.CD.300370.XL | 3.70     | 111.0          | 122.1          | 6                | 166  |
| Δ                       | 2.CD.300375.XL | 3.75     | 112.5          | 123.8          | 6                | 167  |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.







**Z**2





| ab Lager<br>auf Anfrage | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k6</b><br>[mm] | [mm]  | <b>l<sub>2</sub></b><br>[mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|-------------------------|----------------|--------------------------------------------|-------|------------------------------|--------------------|-----------|
|                         | 2.CD.300380.XL | 3.80                                       | 114.0 | 125.4                        | 6                  | 169       |
| Δ                       | 2.CD.300385.XL | 3.85                                       | 115.5 | 127.1                        | 6                  | 171       |
| •                       | 2.CD.300390.XL | 3.90                                       | 117.0 | 128.7                        | 6                  | 172       |
| Δ                       | 2.CD.300395.XL | 3.95                                       | 118.5 | 130.4                        | 6                  | 174       |
| •                       | 2.CD.300400.XL | 4.00                                       | 120.0 | 132.0                        | 6                  | 175       |
| •                       | 2.CD.300410.XL | 4.10                                       | 123.0 | 135.3                        | 6                  | 179       |
| •                       | 2.CD.300420.XL | 4.20                                       | 126.0 | 138.6                        | 6                  | 182       |
|                         | 2.CD.300430.XL | 4.30                                       | 129.0 | 141.9                        | 6                  | 185       |
| •                       | 2.CD.300440.XL | 4.40                                       | 132.0 | 145.2                        | 6                  | 188       |
| •                       | 2.CD.300450.XL | 4.50                                       | 135.0 | 148.5                        | 6                  | 191       |
| -                       | 2.CD.300460.XL | 4.60                                       | 138.0 | 151.8                        | 6                  | 195       |
| -                       | 2.CD.300470.XL | 4.70                                       | 141.0 | 155.1                        | 6                  | 198       |
| •                       | 2.CD.300480.XL | 4.80                                       | 144.0 | 158.4                        | 6                  | 201       |
| -                       | 2.CD.300490.XL | 4.90                                       | 147.0 | 161.7                        | 6                  | 204       |
| •                       | 2.CD.300500.XL | 5.00                                       | 150.0 | 165.0                        | 6                  | 208       |
| -                       | 2.CD.300510.XL | 5.10                                       | 153.0 | 168.3                        | 6                  | 211       |
| -                       | 2.CD.300520.XL | 5.20                                       | 156.0 | 171.6                        | 6                  | 214       |
| -                       | 2.CD.300530.XL | 5.30                                       | 159.0 | 174.9                        | 6                  | 217       |
| -                       | 2.CD.300540.XL | 5.40                                       | 162.0 | 178.2                        | 6                  | 220       |
| -                       | 2.CD.300550.XL | 5.50                                       | 165.0 | 181.5                        | 6                  | 224       |
| •                       | 2.CD.300560.XL | 5.60                                       | 168.0 | 184.8                        | 6                  | 227       |
| -                       | 2.CD.300570.XL | 5.70                                       | 171.0 | 188.1                        | 6                  | 230       |
| •                       | 2.CD.300580.XL | 5.80                                       | 174.0 | 191.4                        | 6                  | 233       |
| -                       | 2.CD.300590.XL | 5.90                                       | 177.0 | 194.7                        | 6                  | 236       |

180.0

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

■ 2.CD.300600.XL 6.00

| Ergänzende Produkte   |
|-----------------------|
| CrazyDrill Pilot      |
| CrazyDrill Coolpilot  |
| CrazyDrill Crosspilot |

198.0



# CrazyDrill Cool XL 30 x d

# BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                                     | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] | Q <sub>1</sub> | Q <sub>x</sub> |   |
|----------------------|-----------------------------------------------|--------|--------------------|-------------------------|----------------------------------|----------------|----------------|---|
|                      |                                               | 1.0301 | C10                | AISI 1010               |                                  |                |                |   |
| P                    |                                               | 1.0401 | C15                | AISI 1015               |                                  |                |                |   |
|                      | Stähle unlegiert                              | 1.1191 | C45E/CK45          | AISI 1045               | 50-100                           | 30xd1          | _              |   |
|                      | Rm < 800 N/mm <sup>2</sup>                    | 1.0044 | S275JR             | AISI 1020               |                                  |                |                |   |
| )21                  |                                               | 1.0715 | 11SMn30            | AISI 1215               |                                  |                |                |   |
|                      |                                               | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                |                |   |
|                      |                                               | 1.7131 | 16MnCr5            | AISI 5115               |                                  |                |                |   |
|                      | Stähle niedriglegiert<br>Rm > 900 N/mm²       | 1.3505 | 100Cr6             | AISI 52100              | 50-100                           | 30xd1          | -              |   |
|                      | KIII > 900 IV/IIIIII*                         | 1.7225 | 42CrMo4            | AISI 4140               |                                  |                |                |   |
| , d <sub>1</sub> ,   |                                               | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |                |                |   |
|                      |                                               | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                |                |   |
|                      | Werkzeugstähle                                | 1.2436 | X210CrW12          | AISI D4/D6              | 4000                             | 2011           |                |   |
|                      | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>    | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 40-80                            | 30xd1          | _              |   |
| Qx                   | 1111 < 1200 14/11111                          | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                |                |   |
| ĮQ <sub>x</sub>      | Rostfreie Stähle-                             | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |                |                |   |
|                      | ferritisch                                    | 1.4105 | X6CrMoS17          | AISI 430F               | 30-60                            | 30xd1          | -              |   |
| IVI                  | Rostfreie Stähle-                             | 1.4034 | X46Cr13            | AISI 420C               |                                  |                |                |   |
|                      | martensitisch                                 | 1.4112 | X90CrMoV18         | AISI 440B               | 40-80                            | 30xd1          | _              |   |
|                      | Rostfreie Stähle-                             | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                |                |   |
|                      | martensitisch – PH                            | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                |                |   |
|                      |                                               | 1.4301 | X5CrNi 18-10       | AISI 304                | 30-60                            | 5xd1           | 2xd1           |   |
|                      | Rostfreie Stähle-                             | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |                |                |   |
|                      | austenitisch                                  | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |                |                |   |
|                      |                                               | 1.4539 |                    | AISI 904L               |                                  |                |                |   |
|                      |                                               | 0.6020 | GG20               | ASTM 30                 |                                  |                |                |   |
| 1/                   |                                               | 0.6020 | GG30               | ASTM 40B                |                                  |                |                |   |
| K                    | Gusseisen                                     | 0.7040 | GGG40              | ASTM 60-40-18           | 100-200                          | 30xd1          | -              |   |
|                      |                                               | 0.7040 | GGG60              | ASTM 80-60-03           |                                  |                |                |   |
|                      |                                               |        |                    |                         |                                  |                |                | + |
|                      | Aluminium                                     | 3.2315 | AlMgSi1            | ASTM 6351               | 100-200                          | 30xd1          | -              |   |
|                      | Knetlegierungen                               | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |                |                |   |
|                      | Aluminium<br>Druckgusslegierungen             | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 80-150                           | 30xd1          | -              |   |
| _                    | Druckgussiegierungen                          |        | GD-AlSi10Mg        | UNS A03590              |                                  |                |                |   |
|                      | Kupfer                                        | 2.004  | Cu-OF / CW008A     | UNS C10100              | 40-80                            | 2xd1           | 2xd1           |   |
| _                    |                                               | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |                |                |   |
|                      | Messing bleifrei                              | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40-80                            | 2xd1           | 2xd1           |   |
|                      |                                               | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |                |                |   |
|                      | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401 | CuZn39Pb3 / CW614N |                         | 50-120                           | 30xd1          | -              |   |
|                      |                                               | 2.102  | CuSn6              | UNS C51900              |                                  |                |                |   |
|                      | Bronze<br>Rm < 600 N/mm <sup>2</sup>          | 2.0966 | CuAl0Ni5Fe4        | UNS C63000              | 40-80                            | 30xd1          | -              |   |
|                      | IVIII < OUU IV/IIIIII*                        | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |                |                | - |
|                      |                                               | 2.4856 |                    | Inconel 625             |                                  |                |                |   |
|                      | Hitzebeständige                               | 2.4668 |                    | Inconel 718             |                                  |                |                |   |
| 21                   | Stähle                                        | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |                |                |   |
| _                    |                                               | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |                |                |   |
|                      | Titan rein                                    | 3.7035 | Gr.2               | ASTM B348 / F67         | 25-50                            | 3xd1           | 1xd1           |   |
| $S_2$                |                                               | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |                |                |   |
| - Z                  | Titan Legierungen                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 20-40                            | 5xd1           | 1xd1           |   |
|                      | - 5 5                                         | 9.9367 | TiAl6Nb7           | ASTM F1295              | -                                |                |                | - |
| $ \mathbf{S}_3 $     | CrCo-Legierungen                              | 2.4964 | CoCr20W15Ni        | Haynes 25               | 20-40                            | 5xd1           | 2xd1           |   |
| 3                    |                                               |        | CrCoMo28           | ASTM F1537              |                                  |                |                | - |
|                      | Stähle gehärtet<br>< 55 HRC                   | 1.2510 | 100MnCrMoW4        | AISI O1                 | 30-60                            | 5xd1           | 1xd1           |   |
|                      | Stähle gehärtet                               |        |                    |                         |                                  |                |                |   |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |       |       |                 |       |        |        |       | W |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-----------------|-------|--------|--------|-------|---|
| 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       | <b>f</b> [mm/U] |       |        |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |       |       |                 |       |        |        |       |   |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.030 0.050 0.080 0.080 0.080 0.100 0.120 0.140 0.150 0.180  0.030 0.050 0.080 0.080 0.100 0.110 0.140 0.150 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.080 0.080 0.100 0.120 0.150 0.180  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.120 0.150 0.180  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.180  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190 | T     | Ť     | Ť     | T     | <b>T</b>        | T T   | Ť      | T      | Ť     | _ |
| 0.030 0.050 0.080 0.080 0.080 0.100 0.120 0.140 0.150 0.180  0.030 0.050 0.080 0.080 0.100 0.110 0.140 0.150 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.080 0.080 0.100 0.120 0.150 0.180  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.120 0.150 0.180  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.180  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190 |       |       |       |       |                 |       |        |        |       |   |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030 | 0.040 | 0.050 | 0.080 | 0.080           | 0.100 | 0.120  | 0.140  | 0.160 |   |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       | - |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                            | 0.030 | 0.050 | 0.060 | 0.080 | 0.100           | 0.120 | 0.140  | 0.160  | 0.180 |   |
| 0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                            |       |       |       |       |                 |       |        |        |       |   |
| 0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                            |       |       |       |       |                 |       |        |        |       |   |
| 0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.070 0.100 0.120 0.120 0.150 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                            | 0.030 | 0.050 | 0.060 | 0.080 | 0.100           | 0.110 | 0.140  | 0.160  | 0.170 |   |
| 0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.120 0.120 0.150 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.036 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |       |       |       |                 |       |        |        |       |   |
| 0.030 0.050 0.060 0.080 0.100 0.110 0.140 0.160 0.170  0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.120 0.120 0.150 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.036 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |       |       |       |                 |       |        |        |       | 1 |
| 0.020 0.030 0.040 0.060 0.070 0.100 0.120 0.150 0.180  0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.020 | 0.030 | 0.040 | 0.060 | 0.070           | 0.100 | 0.120  | 0.150  | 0.180 |   |
| 0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.030 | 0.050 | 0.060 | 0.080 | 0.100           | 0.110 | 0.140  | 0.160  | 0.170 |   |
| 0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |       |       |                 |       |        |        |       | 1 |
| 0.040 0.060 0.080 0.100 0.120 0.150 0.180 0.200 0.250  0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |       |       |                 |       |        |        |       |   |
| 0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.020 | 0.030 | 0.040 | 0.060 | 0.070           | 0.100 | 0.120  | 0.150  | 0.180 | - |
| 0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |                 |       |        |        |       | 1 |
| 0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |                 |       |        |        |       |   |
| 0.030 0.040 0.050 0.070 0.100 0.120 0.200 0.200 0.200  0.030 0.040 0.050 0.060 0.080 0.100 0.120 0.150 0.200  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.035 0.055 0.075 0.100 0.130 0.160 0.180 0.230 0.250  0.025 0.035 0.045 0.065 0.080 0.110 0.130 0.160 0.190  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100  0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |                 |       |        |        |       |   |
| 0.030         0.040         0.050         0.060         0.080         0.100         0.120         0.150         0.200           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                   | 0.040 | 0.060 | 0.080 | 0.100 | 0.120           | 0.150 | 0.180  | 0.200  | 0.250 |   |
| 0.030         0.040         0.050         0.060         0.080         0.100         0.120         0.150         0.200           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030 | 0.040 | 0.050 | 0.070 | 0.100           | 0.120 | 0.200  | 0.200  | 0.200 |   |
| 0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       | - |
| 0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030 | 0.040 | 0.050 | 0.060 | 0.080           | 0.100 | 0.120  | 0.150  | 0.200 |   |
| 0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025 | 0.035 | 0.045 | 0.065 | 0.080           | 0.110 | 0.130  | 0.160  | 0.190 |   |
| 0.035         0.055         0.075         0.100         0.130         0.160         0.180         0.230         0.250           0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.035 | 0.035 | 0.045 | 0.055 | 0.000           | 0.110 | 0.120  | 0.150  | 0.100 | 1 |
| 0.025         0.035         0.045         0.065         0.080         0.110         0.130         0.160         0.190           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025 | 0.035 | 0.045 | 0.065 | 0.080           | 0.110 | 0.130  | 0.160  | 0.190 |   |
| 0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100       0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100       0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.035 | 0.055 | 0.075 | 0.100 | 0.130           | 0.160 | 0.180  | 0.230  | 0.250 |   |
| 0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100       0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100       0.005     0.010     0.020     0.030     0.040     0.055     0.070     0.080     0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025 | 0.035 | 0.045 | 0.065 | 0.080           | 0.110 | 0.130  | 0.160  | 0.190 |   |
| 0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.023 | 0.033 | 0.043 | 0.003 | 0.000           | 0.110 | 0.130  | 0.100  | 0.150 | - |
| 0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       |   |
| 0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100           0.005         0.010         0.020         0.030         0.040         0.055         0.070         0.080         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |                 |       |        |        |       | - |
| 0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005 | 0.010 | 0.020 | 0.030 | 0.040           | 0.055 | 0.070  | 0.080  | 0.100 |   |
| 0.005 0.010 0.020 0.030 0.040 0.055 0.070 0.080 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005 | 0.010 | 0.020 | 0.030 | 0.040           | 0.055 | 0.070  | 0.080  | 0.100 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005 | 0.0.0 | 0.020 | 5.550 | 0.0.0           | 5.555 | 5.5, 5 | 0.000  | 355   | - |
| 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005 | 0.010 | 0.020 | 0.030 | 0.040           | 0.055 | 0.070  | 0.080  | 0.100 |   |
| 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030 | 0.040 | 0.050 | 0.000 | 0.100           | 0.430 | 0.440  | 0.160  | 0.100 | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020 | 0.040 | 0.060 | 0.080 | 0.100           | 0.120 | 0.140  | U. 16U | U.18U | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |       |       |                 |       |        |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |       |       |                 |       |        |        |       |   |



# CrazyDrill Cool XL 40 x d

### **BOHREN MIT INNENKÜHLUNG**

Der VHM-Kleinbohrer CrazyDrill Cool XL 40 x d ist erhältlich ab Durchmesser 2.0 mm, alle Bohrer sind beschichtet und verfügen über eine doppelte Führungsfase.

Zwei spiralisierte, bis an die Bohrerspitze geführte Kühlkanäle versorgen die Schneiden mit Kühlmittel. Bei kleinen Dimensionen sorgt eine zusätzliche Powerkammer im Schaft für einen guten Kühlmittelfluss. So fliesst eine bis zu dreimal grössere Ölmenge bei gleichem Druck durch das Werkzeug, ermöglicht hohe Bohrgeschwindigkeiten, garantiert bessere Standzeiten und einen effizienten Spänetransport.

Durch seine speziell entwickelte Spannutengeometrie erzeugt der Bohrer kurze Späne, ein wichtige Voraussetzung für prozesssicheres tiefes Bohren. Die maximale Bohrtiefe von 40 x d wird in den meisten Materialien in einem Bohrstoss erreicht. Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot oder CrazyDrill Coolpilot bzw. mit CrazyDrill Crosspilot auf Schrägen bis zu einem Neigungswinkel von 60°. Mittels eng abgestimmter Toleranzen zwischen Pilotbohrer CrazyDrill Pilot / Coolpilot / Crosspilot und Bohrer CrazyDrill Cool XL wird der lange Bohrer nicht nur zylindrisch sehr gut geführt, sondern erzielt eine Bohrung in bester Qualität. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

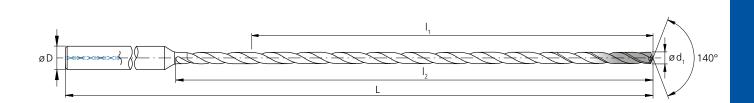
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Cool XL (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

**Nachschärfen:** Dieses Produkt eignet sich zum Nachschärfen ab Ø 2.0 mm.







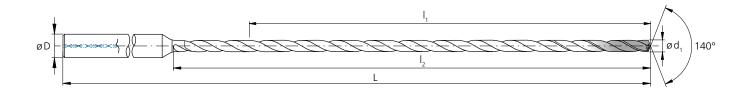

**Z**2







| ■ ab Lager<br>∆ auf Anfrage | Artikelnummer  | <b>d</b> <sub>1</sub><br><b>k6</b><br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b> [mm] | <b>D</b> (h6) [mm] | L<br>[mm] |
|-----------------------------|----------------|--------------------------------------------|----------------------------|---------------------------|--------------------|-----------|
| •                           | 2.CD.400200.XL | 2.00                                       | 80.0                       | 86.0                      | 4                  | 125       |
| Δ                           | 2.CD.400205.XL | 2.05                                       | 82.0                       | 88.2                      | 4                  | 127       |
| •                           | 2.CD.400210.XL | 2.10                                       | 84.0                       | 90.3                      | 4                  | 130       |
| Δ                           | 2.CD.400215.XL | 2.15                                       | 86.0                       | 92.5                      | 4                  | 132       |
| •                           | 2.CD.400220.XL | 2.20                                       | 88.0                       | 94.6                      | 4                  | 134       |
| Δ                           | 2.CD.400225.XL | 2.25                                       | 90.0                       | 96.8                      | 4                  | 136       |
| •                           | 2.CD.400230.XL | 2.30                                       | 92.0                       | 98.9                      | 4                  | 138       |
| Δ                           | 2.CD.400235.XL | 2.35                                       | 94.0                       | 101.1                     | 4                  | 140       |
| •                           | 2.CD.400240.XL | 2.40                                       | 96.0                       | 103.2                     | 4                  | 142       |
| Δ                           | 2.CD.400245.XL | 2.45                                       | 98.0                       | 105.4                     | 4                  | 144       |
| •                           | 2.CD.400250.XL | 2.50                                       | 100.0                      | 107.5                     | 4                  | 146       |
| Δ                           | 2.CD.400255.XL | 2.55                                       | 102.0                      | 109.7                     | 4                  | 148       |
| •                           | 2.CD.400260.XL | 2.60                                       | 104.0                      | 111.8                     | 4                  | 151       |
| Δ                           | 2.CD.400265.XL | 2.65                                       | 106.0                      | 114.0                     | 4                  | 153       |
| •                           | 2.CD.400270.XL | 2.70                                       | 108.0                      | 116.1                     | 4                  | 155       |
| Δ                           | 2.CD.400275.XL | 2.75                                       | 110.0                      | 118.3                     | 4                  | 157       |
| •                           | 2.CD.400280.XL | 2.80                                       | 112.0                      | 120.4                     | 4                  | 159       |
| Δ                           | 2.CD.400285.XL | 2.85                                       | 114.0                      | 122.6                     | 4                  | 161       |
| •                           | 2.CD.400290.XL | 2.90                                       | 116.0                      | 124.7                     | 4                  | 163       |
| Δ                           | 2.CD.400295.XL | 2.95                                       | 118.0                      | 126.9                     | 4                  | 165       |
| •                           | 2.CD.400300.XL | 3.00                                       | 120.0                      | 129.0                     | 4                  | 167       |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

| Ergänzende Produkte   |  |  |  |  |  |  |
|-----------------------|--|--|--|--|--|--|
| CrazyDrill Pilot      |  |  |  |  |  |  |
| CrazyDrill Coolpilot  |  |  |  |  |  |  |
| CrazyDrill Crosspilot |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |



# CrazyDrill Cool XL 40 x d

# **BOHREN MIT INNENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer  | <b>d</b> ₁ k6 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    |
|-------------------------|----------------|---------------|----------------|----------------|-----------|------|
| ■ ab L<br>∆ auf ,       |                | [mm]          | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CD.400305.XL | 3.05          | 122.0          | 131.2          | 6         | 175  |
|                         | 2.CD.400310.XL | 3.10          | 124.0          | 133.3          | 6         | 177  |
| Δ                       | 2.CD.400315.XL | 3.15          | 126.0          | 135.5          | 6         | 180  |
| •                       | 2.CD.400320.XL | 3.20          | 128.0          | 137.6          | 6         | 182  |
| Δ                       | 2.CD.400325.XL | 3.25          | 130.0          | 139.8          | 6         | 184  |
| •                       | 2.CD.400330.XL | 3.30          | 132.0          | 141.9          | 6         | 186  |
| Δ                       | 2.CD.400335.XL | 3.35          | 134.0          | 144.1          | 6         | 188  |
| •                       | 2.CD.400340.XL | 3.40          | 136.0          | 146.2          | 6         | 190  |
| Δ                       | 2.CD.400345.XL | 3.45          | 138.0          | 148.4          | 6         | 192  |
| •                       | 2.CD.400350.XL | 3.50          | 140.0          | 150.5          | 6         | 194  |
| Δ                       | 2.CD.400355.XL | 3.55          | 142.0          | 152.7          | 6         | 196  |
| •                       | 2.CD.400360.XL | 3.60          | 144.0          | 154.8          | 6         | 198  |
| Δ                       | 2.CD.400365.XL | 3.65          | 146.0          | 157.0          | 6         | 201  |
| •                       | 2.CD.400370.XL | 3.70          | 148.0          | 159.1          | 6         | 203  |
| Δ                       | 2.CD.400375.XL | 3.75          | 150.0          | 161.3          | 6         | 205  |
| •                       | 2.CD.400380.XL | 3.80          | 152.0          | 163.4          | 6         | 207  |
| Δ                       | 2.CD.400385.XL | 3.85          | 154.0          | 165.6          | 6         | 209  |
| •                       | 2.CD.400390.XL | 3.90          | 156.0          | 167.7          | 6         | 211  |
| Δ                       | 2.CD.400395.XL | 3.95          | 158.0          | 169.9          | 6         | 213  |
| •                       | 2.CD.400400.XL | 4.00          | 160.0          | 172.0          | 6         | 215  |

■ Ab Lager verfügbar.

 $\Delta$  Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.







**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer  | <b>d₁</b><br><b>k6</b><br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b> [mm] | D<br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|-------------------------|----------------|--------------------------------|----------------------------|---------------------------|-------------------|------------------|
|                         | 2.CD.400410.XL | 4.10                           | 164.0                      | 176.3                     | 6                 | 220              |
|                         | 2.CD.400410.XL | 4.10                           | 168.0                      | 180.6                     | 6                 | 224              |
|                         | 2.CD.400430.XL | 4.30                           | 172.0                      | 184.9                     | 6                 | 228              |
|                         | 2.CD.400440.XL | 4.40                           | 176.0                      | 189.2                     | 6                 | 232              |
|                         | 2.CD.400450.XL | 4.50                           | 180.0                      | 193.5                     | 6                 | 236              |
|                         | 2.CD.400460.XL | 4.60                           | 184.0                      | 197.8                     | 6                 | 241              |
|                         | 2.CD.400470.XL | 4.70                           | 188.0                      | 202.1                     | 6                 | 245              |
| •                       | 2.CD.400480.XL | 4.80                           | 192.0                      | 206.4                     | 6                 | 249              |
| •                       | 2.CD.400490.XL | 4.90                           | 196.0                      | 210.7                     | 6                 | 253              |
| •                       | 2.CD.400500.XL | 5.00                           | 200.0                      | 215.0                     | 6                 | 258              |
| •                       | 2.CD.400510.XL | 5.10                           | 204.0                      | 219.3                     | 6                 | 262              |
| -                       | 2.CD.400520.XL | 5.20                           | 208.0                      | 223.6                     | 6                 | 266              |
| •                       | 2.CD.400530.XL | 5.30                           | 212.0                      | 227.9                     | 6                 | 270              |
| •                       | 2.CD.400540.XL | 5.40                           | 216.0                      | 232.2                     | 6                 | 274              |
| -                       | 2.CD.400550.XL | 5.50                           | 220.0                      | 236.5                     | 6                 | 279              |
| -                       | 2.CD.400560.XL | 5.60                           | 224.0                      | 240.8                     | 6                 | 283              |
| -                       | 2.CD.400570.XL | 5.70                           | 228.0                      | 245.1                     | 6                 | 287              |
| -                       | 2.CD.400580.XL | 5.80                           | 232.0                      | 249.4                     | 6                 | 291              |
| •                       | 2.CD.400590.XL | 5.90                           | 236.0                      | 253.7                     | 6                 | 295              |
|                         | 2.CD.400600.XL | 6.00                           | 240.0                      | 258.0                     | 6                 | 300              |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 3 Stk.

| Ergänzende Produkte   |  |  |  |  |  |  |
|-----------------------|--|--|--|--|--|--|
| CrazyDrill Pilot      |  |  |  |  |  |  |
| CrazyDrill Coolpilot  |  |  |  |  |  |  |
| CrazyDrill Crosspilot |  |  |  |  |  |  |



# CrazyDrill Cool XL 40 x d

# BOHREN MIT INNENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                       | Werkstoff-<br>gruppe  | Werkstoff                                 | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min]  | $\mathbf{Q}_1$ | Q <sub>x</sub> |  |
|---------------------------------------|-----------------------|-------------------------------------------|--------|--------------------|-------------------------|-----------------------------------|----------------|----------------|--|
|                                       |                       |                                           | 1.0301 | C10                | AISI 1010               |                                   |                |                |  |
|                                       | D                     |                                           | 1.0401 | C15                | AISI 1015               | 50-100                            |                |                |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | P                     | Stähle unlegiert<br>Rm < 800 N/mm²        | 1.1191 | C45E/CK45          | AISI 1015               |                                   | 40xd1          |                |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                       |                                           |        | S275JR             |                         |                                   |                | _              |  |
| \ž{                                   |                       |                                           | 1.0044 |                    | AISI 1020               |                                   |                |                |  |
| K3                                    |                       |                                           | 1.0715 | 11SMn30            | AISI 1215               |                                   |                |                |  |
|                                       |                       |                                           | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                   | 40xd1          | -              |  |
|                                       |                       | Stähle niedriglegiert<br>Rm > 900 N/mm²   | 1.7131 | 16MnCr5            | AISI 5115               |                                   |                |                |  |
|                                       |                       |                                           | 1.3505 | 100Cr6             | AISI 52100              | 50-100                            |                |                |  |
|                                       |                       |                                           | 1.7225 | 42CrMo4            | AISI 4140               |                                   |                |                |  |
| <del>d1</del><br>  <del>+  </del>     |                       |                                           | 1.2842 | 90MnCrV8           | AISI O2                 |                                   |                |                |  |
|                                       |                       | Werkzeugstähle                            | 1.2379 | X153CrMoV12        | AISI D2                 | 40-80                             | 40xd1          |                |  |
| Q <sub>1</sub>                        |                       | hochlegiert                               | 1.2436 | X210CrW12          | AISI D4/D6              |                                   |                | _              |  |
| 0.                                    |                       | Rm < 1200 N/mm <sup>2</sup>               | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                   |                |                |  |
| Q <sub>x</sub>                        |                       |                                           | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                   |                |                |  |
| ĮQ <sub>x</sub>                       |                       | Rostfreie Stähle-                         | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   | 30-60<br>40-80                    | 40d1           |                |  |
|                                       | M                     | ferritisch                                | 1.4105 | X6CrMoS17          | AISI 430F               |                                   | 40xd1          | _              |  |
|                                       | IVI                   | Rostfreie Stähle-                         | 1.4034 | X46Cr13            | AISI 420C               |                                   | 40xd1          | _              |  |
|                                       |                       | martensitisch                             | 1.4112 | X90CrMoV18         | AISI 440B               |                                   | 40x01          | -              |  |
|                                       |                       | Rostfreie Stähle-                         | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                   |                |                |  |
|                                       |                       | martensitisch – PH                        | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                   |                |                |  |
|                                       |                       | Rostfreie Stähle-<br>austenitisch         | 1.4301 | X5CrNi 18-10       | AISI 304                | 30-60                             | 5xd1           | 2xd1           |  |
|                                       |                       |                                           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                   |                |                |  |
|                                       |                       |                                           | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                   |                |                |  |
|                                       |                       |                                           | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                   |                |                |  |
|                                       |                       | •                                         | 0.6020 | GG20               | ASTM 30                 |                                   |                |                |  |
|                                       | K                     | Gusseisen                                 | 0.6030 | GG30               | ASTM 40B                | 100-200                           | 40xd1          | -              |  |
|                                       |                       |                                           | 0.7040 | GGG40              | ASTM 60-40-18           |                                   |                |                |  |
|                                       |                       |                                           | 0.7040 | GGG60              | ASTM 80-60-03           |                                   |                |                |  |
|                                       |                       |                                           |        |                    |                         |                                   |                |                |  |
|                                       | N                     | Aluminium<br>Knetlegierungen<br>Aluminium | 3.2315 | AlMgSi1            | ASTM 6351               | 100-200<br>80-150                 | 40xd1          | -              |  |
|                                       |                       |                                           | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                   |                |                |  |
|                                       |                       |                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                   |                |                |  |
|                                       |                       | Druckgusslegierungen                      |        | GD-AlSi10Mg        | UNS A03590              | 40-80<br>40-80<br>50-120<br>40-80 | 2xd1           | 2xd1 2xd1 -    |  |
|                                       |                       | Kupfer                                    | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                   |                |                |  |
|                                       |                       | Тартег                                    | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                   |                |                |  |
|                                       |                       | Messing bleifrei                          | 2.0321 | CuZn37 CW508L      | UNS C27400              |                                   | 2xd1           |                |  |
|                                       |                       |                                           | 2.036  | CuZn40 CW509L      | UNS C28000              |                                   |                |                |  |
|                                       |                       | Messing, Bronze                           | 2.0401 | CuZn39Pb3 / CW614N |                         |                                   | 40xd1          |                |  |
|                                       |                       | Rm < 400 N/mm <sup>2</sup>                | 2.102  | CuSn6              | UNS C51900              |                                   |                |                |  |
|                                       |                       | Bronze                                    | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                                   | 40xd1          |                |  |
|                                       |                       | Rm < 600 N/mm <sup>2</sup>                | 2.096  | CuAl9Mn2           | UNS C63200              |                                   |                |                |  |
|                                       |                       |                                           | 2.4856 |                    | Inconel 625             |                                   |                |                |  |
|                                       | S <sub>1</sub>        | Hitzebeständige                           | 2.4668 |                    | Inconel 718             |                                   |                |                |  |
|                                       | <b>3</b> <sub>1</sub> | Stähle                                    | 2.4617 | NiMo28             | Hastelloy B-2           |                                   |                |                |  |
|                                       |                       |                                           | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                   |                |                |  |
|                                       | S <sub>2</sub>        | Titan Legierungen                         | 3.7035 | Gr.2               | ASTM B348 / F67         | 25 50                             | 2vd1           | 1 v d 1        |  |
|                                       |                       |                                           | 3.7065 | Gr.4               | ASTM B348 / F68         | 25–50 33                          | 3xd1           | 1xd1           |  |
|                                       |                       |                                           | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 20 40                             | Ev.41          | 1041           |  |
|                                       |                       |                                           | 9.9367 | TiAl6Nb7           | ASTM F1295              | 20-40                             | 5xd1           | 1xd1           |  |
|                                       |                       |                                           | 2.4964 | CoCr20W15Ni        | Haynes 25               | 20. 40                            | E,l 1          | 2241           |  |
|                                       |                       |                                           |        | CrCoMo28           | ASTM F1537              | 20-40                             | 5xd1           | 2xd1           |  |
|                                       | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC               | 1.2510 | 100MnCrMoW4        | AISI O1                 | 30-60                             | 5xd1           | 1xd1           |  |
|                                       | $H_2$                 | Stähle gehärtet<br>≥ 55 HRC               | 1.2379 | X153CrMoV12        | AISI D2                 |                                   |                |                |  |
|                                       |                       |                                           |        |                    |                         |                                   |                |                |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> [mm/U]       |                       |                       |                       |                       |                       |  |  |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|
| <b>Ød1</b><br>2.00 mm | <b>Ød1</b><br>2.50 mm | <b>Ød1</b><br>3.00 mm | <b>Ød1</b><br>4.00 mm | <b>Ød1</b><br>5.00 mm | <b>Ød1</b><br>6.00 mm |  |  |
| f                     | <b>f</b>              | <b>f</b>              | 4.00 mm               | 5.00 mm               | 6.00 mm               |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.080                 | 0.080                 | 0.100                 | 0.120                 | 0.140                 | 0.160                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.080                 | 0.100                 | 0.120                 | 0.140                 | 0.160                 | 0.180                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.080                 | 0.100                 | 0.110                 | 0.140                 | 0.160                 | 0.170                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.060                 | 0.070                 | 0.100                 | 0.120                 | 0.150                 | 0.180                 |  |  |
| 0.100                 | 0.120                 | 0.150                 | 0.180                 | 0.200                 | 0.220                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.060                 | 0.070                 | 0.100                 | 0.120                 | 0.150                 | 0.180                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.100                 | 0.120                 | 0.150                 | 0.180                 | 0.200                 | 0.250                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.070                 | 0.100                 | 0.120                 | 0.200                 | 0.200                 | 0.200                 |  |  |
| 0.060                 | 0.080                 | 0.100                 | 0.120                 | 0.150                 | 0.200                 |  |  |
| 0.065                 | 0.080                 | 0.110                 | 0.130                 | 0.160                 | 0.190                 |  |  |
| 0.065                 | 0.080                 | 0.110                 | 0.130                 | 0.160                 | 0.190                 |  |  |
| 0.100                 | 0.130                 | 0.160                 | 0.180                 | 0.230                 | 0.250                 |  |  |
| 0.065                 | 0.080                 | 0.110                 | 0.130                 | 0.160                 | 0.190                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.030                 | 0.040                 | 0.055                 | 0.070                 | 0.080                 | 0.100                 |  |  |
| 0.030                 | 0.040                 | 0.055                 | 0.070                 | 0.080                 | 0.100                 |  |  |
| 0.030                 | 0.040                 | 0.055                 | 0.070                 | 0.080                 | 0.100                 |  |  |
|                       |                       |                       |                       |                       |                       |  |  |
| 0.080                 | 0.100                 | 0.120                 | 0.140                 | 0.160                 | 0.180                 |  |  |



#### PRÄZISES UND SCHNELLES BOHREN BIS 40 X D

#### Kühlschmierstoff, Filter und Druck

**Kühlschmierung:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen. Speziell bei kleinen Durchmessern müssen folgende Filterqualitäten eingehalten werden:

- Bohrer mit  $\emptyset$  < 2 mm Filterqualität  $\le$  0.010 mm.
- Bohrer mit  $\emptyset$  < 3 mm Filterqualität  $\le$  0.020 mm.
- Bohrer mit  $\emptyset$  < 6 mm Filterqualität  $\le$  0.050 mm.

**Kühlmitteldruck:** Um prozesssicher zu bohren, werden Mindestdrücke (siehe Tabelle) benötigt. Bei kleineren Bohrerdurchmessern werden generell höhere Drücke benötigt. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.

| Ø d₁ Werkzeug | Minimaler Kü             | hlmitteldruck |  |
|---------------|--------------------------|---------------|--|
|               | 15 / 20 x d <sub>1</sub> | 30 / 40 x d₁  |  |
| [mm]          | [bar]                    | [bar]         |  |
| 1.0           | 70                       | 80            |  |
| 2.0           | 50                       | 70            |  |
| 4.0           | 40                       | 60            |  |
| 6.0           | 30                       | 50            |  |

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".



#### CrazyDrill Cool 15 x d, 20 x d, 30 x d, 40 x d

Mikron Tool empfiehlt für alle Typen CrazyDrill Cool XL eine Pilotbohrung:

- CrazyDrill Pilot als Pilotbohrer
- CrazyDrill Coolpilot als Pilotbohrer für schwer zerspanbare Materialien
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

#### **Pilotbohren und Bohren**

Die Pilotbohrung mit CrazyDrill Pilot oder CrazyDrill Coolpilot ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.

06

Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.

#### Hinweis:

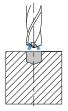
Bei der Bohrtiefe 40 x d kann es von Vorteil sein, nach der Pilotbohrung einen 15 x d oder 20 x d CrazyDrill Cool XL Bohrer einzusetzen. Dadurch wird der folgende 40 x d Bohrer noch besser geführt und vor Durchbiegung geschützt. Ergebnis: eine verbesserte Standzeit.

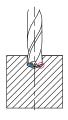


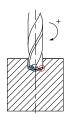
#### BOHRUNG IN EINEM BOHRSTOSS (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)

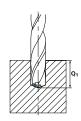
#### 1 | PILOTBOHRUNG

Mit CrazyDrill Pilot oder Coolpilot (gerade und unregelmässige Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).



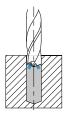



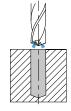


#### 2 | BOHRUNG

- Interne Kühlung einschalten, mit max. Drehzahl n = 500 U/min und  $v_f = 1'000$  mm/min, bis Bohrtiefe 1.8 x d (Sicherheitsabstand zum Bohrungsgrund der Pilotbohrung).
- Drehzahl erhöhen gemäss Schnittdatentabelle und warten bis die gewünschte Bohrungsdrehzahl erreicht ist. Bei langsamer Spindelbeschleunigungsrate Verweilzeit programmieren.
- Bohren in einem Bohrstoss mit empfohlener Schnitt- und Vorschubgeschwindigkeit.








#### 3 | RÜCKZUG AUS DER BOHRUNG

- Nach dem Erreichen der gewünschten Bohrtiefe mit dem Bohrer auf Bohrtiefe 2 x d mit Bohrungsvorschub oder reduziertem Eilgang zurückfahren.
- Drehzahl auf n = 500 U/min reduzieren.
- Mit Drehzahl n = 500 U/min und  $v_f$  = 1'000 mm/min aus der Bohrung fahren.





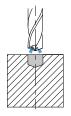


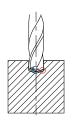
06

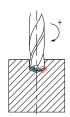
#### BOHRUNG GEMÄSS DIN 66025 / PAL (MATERIALABHÄNGIG SIEHE SCHNITTDATENTABELLE)

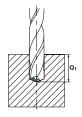
#### 1 | PILOTBOHRUNG

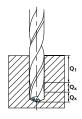
Mit CrazyDrill Pilot oder Coolpilot (gerade und unregelmässige Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen).



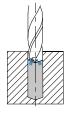



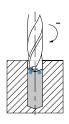


#### 2 | BOHRUNG

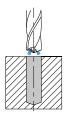

- Interne Kühlung einschalten, mit max. Drehzahl n = 500 U/min und  $\text{v}_f = 1'000 \text{ mm/min}$ , bis Bohrtiefe 1.8 x d (Sicherheitsabstand zum Bohrungsgrund der Pilotbohrung).
- Drehzahl erhöhen gemäss Schnittdatentabelle und warten bis die gewünschte Bohrungsdrehzahl erreicht ist. Bei langsamer Spindelbeschleunigungsrate Verweilzeit programmieren.
- Bohren mit CrazyDrill Cool XL bis maximale Bohrtiefe Q<sub>1</sub> in einem Bohrstoss, anschliessend entspänen.
- Weitere einzelne Bohrstösse mit Q<sub>x</sub> gemäss Schnittdatentabelle, anschliessend entspänen ohne komplett aus der Bohrung zu fahren.







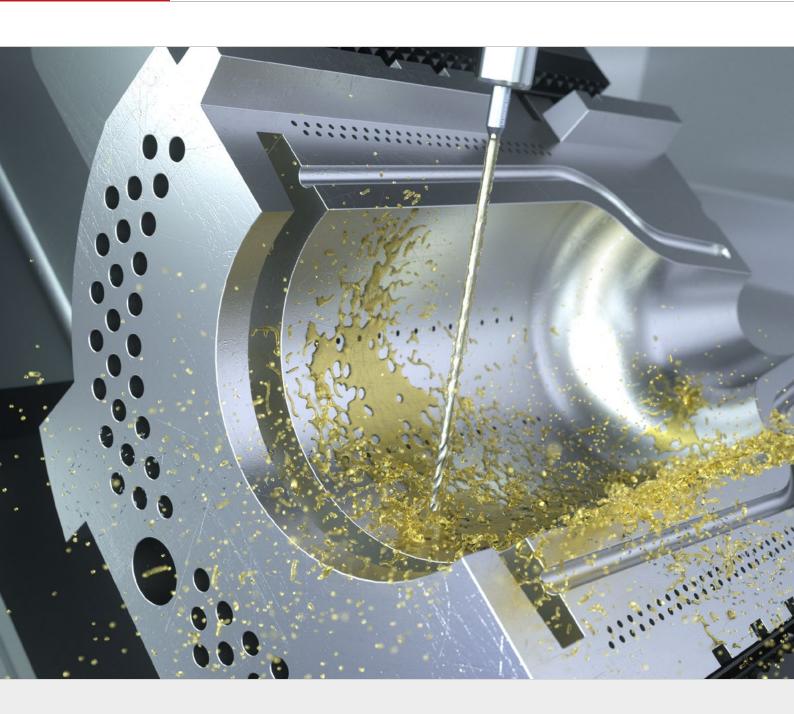




#### 3 | RÜCKZUG AUS DER BOHRUNG

- Nach dem Erreichen der gewünschten Bohrtiefe mit dem Bohrer auf Bohrtiefe 2 x d mit Bohrungsvorschub oder reduziertem Eilgang zurückfahren.
- Drehzahl auf n = 500 U/min reduzieren.
- Mit Drehzahl n = 500 U/min und  $v_f$  = 1'000 mm/min aus der Bohrung fahren.








Bemerkung: Zwischen den Bohrstössen nicht komplett aus der Bohrung fahren (Gefahr durch Aufschwingen). Mit CrazyDrill Cool XL 15 x d kann sofort mit der in der Tabelle empfohlenen Schnitt- und Vorschubgeschwindigkeit eingefahren und gebohrt werden.



### **PATENTED**

# CrazyDrill Flex







Mit CrazyDrill Flex bietet Mikron Tool einen VHM-Mikrobohrer für tiefe Bohrungen bis 50 x d an. Durchmesserbereich von 0.1 bis 1.2 mm mit Varianten für Stahl, Titan und rostfreie Materialien. Bei den Versionen 20 und 30 x d (für Stahl und Titan) werden die Bohrer von aussen gekühlt. Die Variante 50 x d hingegen verfügt über im Schaft integrierte Kühlkanäle genauso wie die Variante 30 x d für rostfreie Stähle (CrazyDrill Flex SST-Inox).

Durch das gerade Verbindungselement (Hals) zwischen dem Schneidkörper und dem Schaft erhält der Hartmetallbohrer CrazyDrill Flex die notwendige Länge und Robustheit für Tieflochbohrungen bis zu einer Bohrtiefe von 50 x d. Er ermöglicht gegenüber der Bearbeitung mit Einlippenbohrern, Mikroerosion oder Laserverfahren eine wesentlich kürzere Bohrzeit.

Je nach dem zu bearbeitenden Material eignet sich eine der drei Varianten, deren Geometrie den spezifischen Materialien angepasst ist:

- Der verlängerte Hals sorgt für die notwendige Flexibilität, um auch unter schwierigen Verhältnissen prozesssicher bohren zu können. Der Bohrer kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Dies wurde bisher nur mit HSS-Bohrern erreicht. Dank speziellem Spitzenanschliff wird eine Reduktion der Vorschubkraft von 50 % erreicht. Eine wichtige Voraussetzung, um tiefe und gerade Bohrungen zu erzeugen.
- Bei der Variante für rostfreie Materialien sorgt die degressive Spiralnute zudem für guten Spanbruch und Spänetransport. Die Scnneidengeometrie ist speziell für CrNi-Legierungen ausgelegt. Dank speziellem Spitzenanschliff wird eine Reduktion der Vorschubkraft von bis zu 50 % erreicht.



### Flexibel in die Tiefe

#### MIKRO-TIEFLOCHBOHREN BIS 50 X D

Mit CrazyDrill Flex bietet Mikron Tool einen VHM-Mikrobohrer für tiefe Bohrungen bis 50 x d an. Durchmesserbereich von 0.1 bis 1.2 mm mit Varianten für Stahl, Titan und rostfreie Materialien. Bei den Versionen 20 und 30 x d (für Stahl und Titan) werden die Bohrer von aussen gekühlt. Die Variante 50 x d hingegen verfügt über im Schaft integrierte Kühlkanäle genauso wie die Variante 30 x d für rostfreie Stähle (CrazyDrill Flex SST-Inox).

- CrazyDrill Flex Steel, Bohrtiefen 20 x d, 30 x d, 50 x d, Aussenkühlung bis 30 x d / integrierte Kühlung im Schaft für 50 x d, beschichtet und unbeschichtet
- CrazyDrill Flex Titanium, Bohrtiefen 30 x d, 50 x d, Aussenkühlung für 30 x d / integrierte Kühlung im Schaft für 50 x d
- CrazyDrill Flex SST-Inox, Bohrtiefen 30 x d, 50 x d, integrierte Kühlung im Schaft





#### Flexibilität

Ein flexibles Mittelstück sorgt für Elastizität. Der Bohrer kann so einen Mittenversatz kompensieren, ohne zu brechen.



#### Bohrtiefe bis 50 x d

Das spezielle Design des Bohrers (Schneidgeometrie für minimale Eindringkraft, Hals ohne durchgehende Spirale für maximale Stabilität) erlaubt das Tieflochbohren bis 50 x d.





| 20 / 30 / 50 x d    Integ. / Aussenkühlung   Beschichter / Unbeschichter   00.2 - 1.2 mm ohne Beschichtung   00.1 - 1.2 mm ohne Beschichtung   00.3 - 1.2 mm   00.3 - 1. | PATENT | ED | Steel                                      |                              | Titanium                 | SST-Inox                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------------------------------------------|------------------------------|--------------------------|--------------------------|--|
| Beschichtet / Unbeschichtung  00.1 - 1.2 mm mit Beschichtung  00.1 - 1.2 mm ohne Beschichtung  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | 20/30/5                                    | 50 x d                       | 30 / 50 x d              | 30 / 50 x d              |  |
| 1 1 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    | ■ Beschichtet / Unbe<br>■ Ø0.2 - 1.2 mm mi | eschichtet<br>t Beschichtung | Unbeschichtet            | ■ Beschichtet            |  |
| 3 3 3 3 5 6B 6A 5 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |                                            | 2                            | 2                        |                          |  |
| CrazyDrill Flex Steel CrazyDrill Flex Titanium CrazyDrill Flex SST-Inox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |                                            | 3<br>4<br>5                  | 3                        | 3                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    | CrazyDrill Flex St                         | reel                         | CrazyDrill Flex Titanium | CrazyDrill Flex SST-Inox |  |





#### 1 | SCHAFT

Der robuste Hartmetallschaft garantiert hohe Rundlaufgenauigkeit und damit höchste Bohrpräzision.

#### 2 | KÜHLUNG

Alle Versionen 50 x d sowie alle Flex SST-Inox Versionen verfügen über integrierte Kühlkanäle im Schaft. Diese garantieren eine konstante, gezielte Kühlung der Schneiden schon ab 15 bar. Die spezielle Anordnung und Form erzeugt auch bei hohen Drehzahlen einen konzentrierten Strahl, der eine regelmässige, massive Kühlung der Bohrspitze garantiert und die Späne aus der Spannute spült.

#### 3 | MITTELSTÜCK: FLEXIBILITÄT UND STABILITÄT - PATENTIERT

Ein flexibles Mittelstück mit reduziertem Querschnitt sorgt für Elastizität (Flexibilität) und gleichzeitig für höhere Steifigkeit (Torsion/ Druck) als bei Bohrern mit durchgehender Spirale. Der Mikrotieflochbohrer kann so einen Mittenversatz von bis zu 40% seines Durchmessers mühelos kompensieren ohne abzubrechen. Dies wurde bisher nur mit HSS erreicht.

#### 4 | HARTMETAL

Das für CrazyDrill Flex entwickelte Feinst-Korn-Hartmetall verfügt über eine hohe Zähigkeit und Wärmeschockresistenz und erfüllt damit hervorragend die Anforderungen für die Zerspanung von Stählen, Titan sowie rostfreien- und hitzebeständigen Legierungen.

#### 5 | BESCHICHTUNG

Die Hochleistungs-Beschichtung eXedur RIP ist verschleiss- und hitzeresistent. Sie verhindert ein Verkleben der Schneiden und unterstützt den Spänetransport. Das Resultat ist eine hohe Standzeit des Werkzeuges.

#### **6A | DEGRESSIVE SPIRALNUT - PATENTIERT**

Die degressive Spiralnut des CrazyDrill Flex SST-Inox mit neuartiger und patentierter Geometrie garantiert eine hohe Werkzeugstabilität. Sie sorgt im vorderen Teil für guten Spanbruch, im hinteren für eine schnelle Späneausfuhr.

#### **6B | SPIRALNUTEN**

Für die Varianten Steel und Titanium ist die Geometrie der Spiralnuten an die zu bearbeitenden Materialien angepasst. Ein guter Spanbruch und eine rasche Späneausfuhr sind garantiert.

#### 7 | GEOMETRIE

Die Spitzengeometrie ist speziell entwickelt, um hohe Schneideckenstabilität, Selbstzentrierung und kurze Späne zu garantieren. Dank einem raffinierten Spitzenanschliff ist eine geringere Eindringkraft beim Bohren notwendig.

**Bohrerspitze** 



CrazyDrill Flex Steel

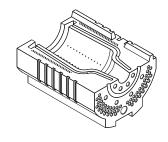


CrazyDrill Flex Titanium



CrazyDrill Flex SST-Inox




# Vorteile und Anwendungen

#### MIKRO-TIEFLOCHBOHRER FÜR HÖCHSTE LEISTUNG

KÜRZERE BEARBEITUNGSZEIT | Bis zu 10 Mal schneller als Erosion

HOHE PROZESSSICHERHEIT | Dank flexiblem Mittelstück

HOHE PRÄZISION | Dank reduzierter Eindringkraft



#### TEIL

Entlüftungsbohrung für Glasformenbau

#### WERKSTOFF

CuAl11Fe4Ni4 / 2.0975 / UNS C95800

#### **BEARBEITUNG**

- 100 Entlüftungsbohrungen
- d = 0.5 mm
- Bohrtiefe 15 mm auf BAZ

#### WERKZEUG

Mikron Tool - CrazyDrill Flex Steel -  $30 \times d$ 

| DATEN            | MIKRON TOOL                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------|
| Werkzeugtyp      | CrazyDrill Flex Steel - Hartmetall - Beschichtet - Aussenkühlung                                  |
| Artikelnummer    | 2.CFS.30050.1                                                                                     |
| Schnittdaten     | $v_c = 40 \text{ m/min}$<br>f = 0.012  mm/U<br>$Q_1 = 1.25 \text{ mm}$<br>$Q_x = 0.25 \text{ mm}$ |
| Bearbeitungszeit | 30 min                                                                                            |



















| ANWENDUNGSBEREICHE    | KOMPONENTEN<br>BEISPIELE                |
|-----------------------|-----------------------------------------|
| Dentaltechnik         | Zahnimplantate                          |
| Raum- und Luftfahrt   | Einspritzdüse                           |
| Medizintechnik        | Chirurgisches Instrument                |
| Formenbau             | Entlüftungsbohrung für<br>Glasformenbau |
| Automobilbau          | Drehteil                                |
| Maschinenbau          | Komponenten für<br>Kunststoffindustrie  |
| Uhrenindustrie        | Glieder für Uhrenband                   |
| Elektronik / Elektrik | Elektromagnetisches Relais              |

| MATERIALGRUPPE                              |         | BEISPIELE       |                   |
|---------------------------------------------|---------|-----------------|-------------------|
|                                             | Wr. Nr. | DIN             | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.                   | 1.0401  | C15             | 1015              |
| legierte Stähle                             | 1.3505  | 100Cr6          | 52100             |
|                                             | 1.2436  | X210CrW12       | D4 / D6           |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105  | X6CrMoS17       | 430F              |
|                                             | 1.4112  | X46Cr13         | 420C              |
|                                             | 1.4542  | X5CrNiCuNb 16-4 | 630               |
|                                             | 1.4301  | X5CrNi 18-10    | 304               |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040  | GGG40           | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315  | AlMgSi1         | 6351              |
|                                             | 3.2163  | GD-AlSi9Cu3     | A380              |
|                                             | 2.004   | Cu-OF / CW008A  | C10100            |
|                                             | 2.102   | CuSn6           | C51900            |
|                                             | 2.096   | CuAl9Mn2        | C63200            |
| <b>Gruppe S1</b><br>Hitzebeständige Stähle  | 2.4856  |                 | INCONEL 625       |
|                                             | 2.4665  | NiCr22Fe18Mo    | HASTELLOY X       |
| <b>Gruppe S2</b><br>Titan rein u.           | 3.7035  | Gr.2            | B348 / F67        |
| Titan Legierungen                           | 3.7165  | TiAl6V4         | B348 / F136       |
| <b>Gruppe S3</b><br>CrCo Legierungen        | 2.4964  | CoCr20W15Ni     | HAYNES 25         |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4     | 01                |



## CrazyDrill Flex Steel 20 x d - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.2 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 20 x d wird mit einer äusseren Kühlmittelzufuhr verwendet. Die beschichtete Variante eignet sich im Vgl. zur unbeschichteten Variante zum Bohren von grösseren Serien. Auch die Oberflächenqualität profitiert von der Hochleistungsbeschichtung.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

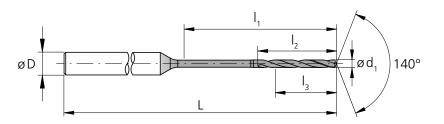
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.





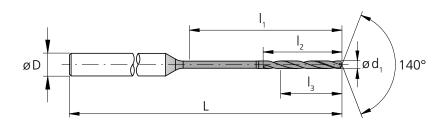



**Z**2








| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I,   | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|------|----------------|----------------|-----------|------|
| ■ ab l<br>∆ auf         |               | [mm]                                      | [mm] | [mm]           | [mm]           | [mm]      | [mm] |
| •                       | 2.CFS.20020.1 | 0.20                                      | 4.0  | 2.1            | 1.6            | 3         | 45   |
| Δ                       | 2.CFS.20021.1 | 0.21                                      | 4.2  | 2.2            | 1.7            | 3         | 45   |
| Δ                       | 2.CFS.20022.1 | 0.22                                      | 4.4  | 2.3            | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.20023.1 | 0.23                                      | 4.6  | 2.4            | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.20024.1 | 0.24                                      | 4.8  | 2.5            | 1.9            | 3         | 45   |
|                         | 2.CFS.20025.1 | 0.25                                      | 5.0  | 2.6            | 2.0            | 3         | 45   |
| Δ                       | 2.CFS.20026.1 | 0.26                                      | 5.2  | 2.7            | 2.1            | 3         | 45   |
| Δ                       | 2.CFS.20027.1 | 0.27                                      | 5.4  | 2.8            | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.20028.1 | 0.28                                      | 5.6  | 2.9            | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.20029.1 | 0.29                                      | 5.8  | 3.0            | 2.3            | 3         | 45   |
| •                       | 2.CFS.20030.1 | 0.30                                      | 6.0  | 3.1            | 2.4            | 3         | 45   |
| Δ                       | 2.CFS.20031.1 | 0.31                                      | 6.2  | 3.2            | 2.5            | 3         | 45   |
| Δ                       | 2.CFS.20032.1 | 0.32                                      | 6.4  | 3.3            | 2.6            | 3         | 45   |
| Δ                       | 2.CFS.20033.1 | 0.33                                      | 6.6  | 3.4            | 2.6            | 3         | 45   |
| Δ                       | 2.CFS.20034.1 | 0.34                                      | 6.8  | 3.5            | 2.7            | 3         | 45   |
|                         | 2.CFS.20035.1 | 0.35                                      | 7.0  | 3.7            | 2.8            | 3         | 45   |
| Δ                       | 2.CFS.20036.1 | 0.36                                      | 7.2  | 3.8            | 2.9            | 3         | 45   |
| Δ                       | 2.CFS.20037.1 | 0.37                                      | 7.4  | 3.9            | 3.0            | 3         | 45   |
| Δ                       | 2.CFS.20038.1 | 0.38                                      | 7.6  | 4.0            | 3.0            | 3         | 45   |
| Δ                       | 2.CFS.20039.1 | 0.39                                      | 7.8  | 4.1            | 3.1            | 3         | 45   |
|                         | 2.CFS.20040.1 | 0.40                                      | 8.0  | 4.2            | 3.2            | 3         | 45   |
| Δ                       | 2.CFS.20041.1 | 0.41                                      | 8.2  | 4.3            | 3.3            | 3         | 45   |
| Δ                       | 2.CFS.20042.1 | 0.42                                      | 8.4  | 4.4            | 3.4            | 3         | 45   |
| Δ                       | 2.CFS.20043.1 | 0.43                                      | 8.6  | 4.5            | 3.4            | 3         | 45   |
| Δ                       | 2.CFS.20044.1 | 0.44                                      | 8.8  | 4.6            | 3.5            | 3         | 45   |
|                         | 2.CFS.20045.1 | 0.45                                      | 9.0  | 4.7            | 3.6            | 3         | 45   |
| Δ                       | 2.CFS.20046.1 | 0.46                                      | 9.2  | 4.8            | 3.7            | 3         | 45   |
| Δ                       | 2.CFS.20047.1 | 0.47                                      | 9.4  | 4.9            | 3.8            | 3         | 45   |
| Δ                       | 2.CFS.20048.1 | 0.48                                      | 9.6  | 5.0            | 3.8            | 3         | 45   |
| Δ                       | 2.CFS.20049.1 | 0.49                                      | 9.8  | 5.1            | 3.9            | 3         | 45   |
| •                       | 2.CFS.20050.1 | 0.50                                      | 10.0 | 5.2            | 4.0            | 3         | 50   |
| Δ                       | 2.CFS.20051.1 | 0.51                                      | 10.2 | 5.3            | 4.1            | 3         | 50   |
| Δ                       | 2.CFS.20052.1 | 0.52                                      | 10.4 | 5.4            | 4.2            | 3         | 50   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 20 x d - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |               | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFS.20053.1 | 0.53                                      | 10.6           | 5.5            | 4.2            | 3         | 50   |
| Δ                       | 2.CFS.20054.1 | 0.54                                      | 10.8           | 5.6            | 4.3            | 3         | 50   |
| •                       | 2.CFS.20055.1 | 0.55                                      | 11.0           | 5.8            | 4.4            | 3         | 50   |
| Δ                       | 2.CFS.20056.1 | 0.56                                      | 11.2           | 5.9            | 4.5            | 3         | 50   |
| Δ                       | 2.CFS.20057.1 | 0.57                                      | 11.4           | 6.0            | 4.6            | 3         | 50   |
| Δ                       | 2.CFS.20058.1 | 0.58                                      | 11.6           | 6.1            | 4.6            | 3         | 50   |
| Δ                       | 2.CFS.20059.1 | 0.59                                      | 11.8           | 6.2            | 4.7            | 3         | 50   |
| •                       | 2.CFS.20060.1 | 0.60                                      | 12.0           | 6.3            | 4.8            | 3         | 50   |
| Δ                       | 2.CFS.20061.1 | 0.61                                      | 12.2           | 6.4            | 4.9            | 3         | 50   |
| Δ                       | 2.CFS.20062.1 | 0.62                                      | 12.4           | 6.5            | 5.0            | 3         | 50   |
| Δ                       | 2.CFS.20063.1 | 0.63                                      | 12.6           | 6.6            | 5.0            | 3         | 50   |
| Δ                       | 2.CFS.20064.1 | 0.64                                      | 12.8           | 6.7            | 5.1            | 3         | 50   |
|                         | 2.CFS.20065.1 | 0.65                                      | 13.0           | 6.8            | 5.2            | 3         | 50   |
| Δ                       | 2.CFS.20066.1 | 0.66                                      | 13.2           | 6.9            | 5.3            | 3         | 50   |
| Δ                       | 2.CFS.20067.1 | 0.67                                      | 13.4           | 7.0            | 5.4            | 3         | 50   |
| Δ                       | 2.CFS.20068.1 | 0.68                                      | 13.6           | 7.1            | 5.4            | 3         | 50   |
| Δ                       | 2.CFS.20069.1 | 0.69                                      | 13.8           | 7.2            | 5.5            | 3         | 50   |
| •                       | 2.CFS.20070.1 | 0.70                                      | 14.0           | 7.3            | 5.6            | 3         | 53   |
| Δ                       | 2.CFS.20071.1 | 0.71                                      | 14.2           | 7.4            | 5.7            | 3         | 53   |
| Δ                       | 2.CFS.20072.1 | 0.72                                      | 14.4           | 7.5            | 5.8            | 3         | 53   |
| Δ                       | 2.CFS.20073.1 | 0.73                                      | 14.6           | 7.6            | 5.8            | 3         | 53   |
| Δ                       | 2.CFS.20074.1 | 0.74                                      | 14.8           | 7.7            | 5.9            | 3         | 53   |
| •                       | 2.CFS.20075.1 | 0.75                                      | 15.0           | 7.9            | 6.0            | 3         | 53   |
| Δ                       | 2.CFS.20076.1 | 0.76                                      | 15.2           | 8.0            | 6.1            | 3         | 53   |
| Δ                       | 2.CFS.20077.1 | 0.77                                      | 15.4           | 8.1            | 6.2            | 3         | 53   |
| Δ                       | 2.CFS.20078.1 | 0.78                                      | 15.6           | 8.2            | 6.2            | 3         | 53   |
| Δ                       | 2.CFS.20079.1 | 0.79                                      | 15.8           | 8.3            | 6.3            | 3         | 53   |
|                         | 2.CFS.20080.1 | 0.80                                      | 16.0           | 8.4            | 6.4            | 3         | 53   |
| Δ                       | 2.CFS.20081.1 | 0.81                                      | 16.2           | 8.5            | 6.5            | 3         | 53   |
| Δ                       | 2.CFS.20082.1 | 0.82                                      | 16.4           | 8.6            | 6.6            | 3         | 53   |
| Δ                       | 2.CFS.20083.1 | 0.83                                      | 16.6           | 8.7            | 6.6            | 3         | 53   |
| Δ                       | 2.CFS.20084.1 | 0.84                                      | 16.8           | 8.8            | 6.7            | 3         | 53   |
| •                       | 2.CFS.20085.1 | 0.85                                      | 17.0           | 8.9            | 6.8            | 3         | 54   |
| Δ                       | 2.CFS.20086.1 | 0.86                                      | 17.2           | 9.0            | 6.9            | 3         | 54   |

<sup>■</sup> Ab Lager verfügbar.

<sup>△</sup> Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2





| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>l</b> <sub>3</sub> | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] |
|-------------------------|---------------|---------------------------------------------------|----------------------------|------------------------------|-----------------------|--------------------------|------------------|
| Δ                       | 2.CFS.20087.1 | 0.87                                              | 17.4                       | 9.1                          | 7.0                   | 3                        | 53               |
| Δ                       | 2.CFS.20088.1 | 0.88                                              | 17.6                       | 9.2                          | 7.0                   | 3                        | 53               |
| Δ                       | 2.CFS.20089.1 | 0.89                                              | 17.8                       | 9.3                          | 7.1                   | 3                        | 53               |
|                         | 2.CFS.20090.1 | 0.90                                              | 18.0                       | 9.4                          | 7.2                   | 3                        | 53               |
| Δ                       | 2.CFS.20091.1 | 0.91                                              | 18.2                       | 9.5                          | 7.3                   | 3                        | 53               |
| Δ                       | 2.CFS.20092.1 | 0.92                                              | 18.4                       | 9.6                          | 7.4                   | 3                        | 53               |
| Δ                       | 2.CFS.20093.1 | 0.93                                              | 18.6                       | 9.7                          | 7.4                   | 3                        | 53               |
| Δ                       | 2.CFS.20094.1 | 0.94                                              | 18.8                       | 9.8                          | 7.5                   | 3                        | 53               |
| •                       | 2.CFS.20095.1 | 0.95                                              | 19.0                       | 10.0                         | 7.6                   | 3                        | 53               |
| Δ                       | 2.CFS.20096.1 | 0.96                                              | 19.2                       | 10.1                         | 7.7                   | 3                        | 53               |
| Δ                       | 2.CFS.20097.1 | 0.97                                              | 19.4                       | 10.2                         | 7.8                   | 3                        | 53               |
| Δ                       | 2.CFS.20098.1 | 0.98                                              | 19.6                       | 10.3                         | 7.8                   | 3                        | 53               |
| Δ                       | 2.CFS.20099.1 | 0.99                                              | 19.8                       | 10.4                         | 7.9                   | 3                        | 53               |
| •                       | 2.CFS.20100.1 | 1.00                                              | 20.0                       | 10.5                         | 8.0                   | 3                        | 60               |
| Δ                       | 2.CFS.20101.1 | 1.01                                              | 20.2                       | 10.6                         | 8.1                   | 3                        | 60               |
| Δ                       | 2.CFS.20102.1 | 1.02                                              | 20.4                       | 10.7                         | 8.2                   | 3                        | 60               |
| Δ                       | 2.CFS.20103.1 | 1.03                                              | 20.6                       | 10.8                         | 8.2                   | 3                        | 60               |
| Δ                       | 2.CFS.20104.1 | 1.04                                              | 20.8                       | 10.9                         | 8.3                   | 3                        | 60               |
| •                       | 2.CFS.20105.1 | 1.05                                              | 21.0                       | 11.0                         | 8.4                   | 3                        | 60               |
| Δ                       | 2.CFS.20106.1 | 1.06                                              | 21.2                       | 11.1                         | 8.5                   | 3                        | 60               |
| Δ                       | 2.CFS.20107.1 | 1.07                                              | 21.4                       | 11.2                         | 8.6                   | 3                        | 60               |
| Δ                       | 2.CFS.20108.1 | 1.08                                              | 21.6                       | 11.3                         | 8.6                   | 3                        | 60               |
| Δ                       | 2.CFS.20109.1 | 1.09                                              | 21.8                       | 11.4                         | 8.7                   | 3                        | 60               |
| •                       | 2.CFS.20110.1 | 1.10                                              | 22.0                       | 11.5                         | 8.8                   | 3                        | 60               |
| Δ                       | 2.CFS.20111.1 | 1.11                                              | 22.2                       | 11.6                         | 8.9                   | 3                        | 60               |
| Δ                       | 2.CFS.20112.1 | 1.12                                              | 22.4                       | 11.7                         | 9.0                   | 3                        | 60               |
| Δ                       | 2.CFS.20113.1 | 1.13                                              | 22.6                       | 11.8                         | 9.0                   | 3                        | 60               |
| Δ                       | 2.CFS.20114.1 | 1.14                                              | 22.8                       | 11.9                         | 9.1                   | 3                        | 60               |
| •                       | 2.CFS.20115.1 | 1.15                                              | 23.0                       | 12.1                         | 9.2                   | 3                        | 60               |
| Δ                       | 2.CFS.20116.1 | 1.16                                              | 23.2                       | 12.2                         | 9.3                   | 3                        | 60               |
| Δ                       | 2.CFS.20117.1 | 1.17                                              | 23.4                       | 12.3                         | 9.4                   | 3                        | 60               |
| Δ                       | 2.CFS.20118.1 | 1.18                                              | 23.6                       | 12.4                         | 9.4                   | 3                        | 60               |
| Δ                       | 2.CFS.20119.1 | 1.19                                              | 23.8                       | 12.5                         | 9.5                   | 3                        | 60               |
| •                       | 2.CFS.20120.1 | 1.20                                              | 24.0                       | 12.6                         | 9.6                   | 3                        | 60               |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 20 x d - beschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                      | V8/I+                 |                                         |        |                    |                         | ,       | ν <sub>c</sub>      |  |  |
|----------------------|-----------------------|-----------------------------------------|--------|--------------------|-------------------------|---------|---------------------|--|--|
|                      | Werkstoff-<br>gruppe  | Werkstoff                               | Wr.Nr. | DIN                | N AISI/ASTM/UNS         |         | [m/min]             |  |  |
|                      | 3. 4664               |                                         |        |                    |                         | Ød1≤0.4 | Ød1>0.4             |  |  |
|                      |                       |                                         | 1.0301 | C10                | AISI 1010               |         |                     |  |  |
|                      | P                     |                                         | 1.0401 | C15                | AISI 1015               |         | 40 – 60             |  |  |
|                      |                       | Stähle unlegiert                        | 1.1191 | C45E/CK45          | AISI 1045               | 5 – 40  |                     |  |  |
|                      |                       | Rm < 800 N/mm <sup>2</sup>              | 1.0044 | S275JR             | AISI 1020               | 5 .0    |                     |  |  |
| \ \ <u>\</u> \(\\\\\ |                       |                                         | 1.0715 | 11SMn30            | AISI 1215               |         |                     |  |  |
|                      |                       |                                         | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |         |                     |  |  |
|                      |                       |                                         | 1.7131 | 16MnCr5            | AISI 5115               |         | 25 – 50             |  |  |
|                      |                       | Stähle niedriglegiert                   | 1.3505 | 100Cr6             | AISI 52100              | 5 – 25  |                     |  |  |
|                      |                       | Rm > 900 N/mm <sup>2</sup>              | 1.7225 | 42CrMo4            | AISI 4140               |         |                     |  |  |
| . d <sub>1</sub> .   |                       |                                         | 1.2842 | 90MnCrV8           | AISI O2                 |         |                     |  |  |
|                      |                       |                                         | 1.2379 | X153CrMoV12        | AISI D2                 |         |                     |  |  |
| 01                   |                       | Werkzeugstähle                          | 1.2436 | X210CrW12          | AISI D4/D6              |         |                     |  |  |
|                      |                       | hochlegiert<br>Rm < 1200 N/mm²          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 5 – 20  | 20 – 35             |  |  |
| Qx                   |                       | KIII < 1200 N/IIIII12                   | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |         |                     |  |  |
| Qx                   |                       | Rostfreie Stähle-                       | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |         |                     |  |  |
|                      | B. //                 | ferritisch                              | 1.4105 | X6CrMoS17          | AISI 430F               |         |                     |  |  |
|                      | M                     | Rostfreie Stähle-                       | 1.4034 | X46Cr13            | AISI 420C               |         |                     |  |  |
|                      |                       | martensitisch                           | 1.4112 | X90CrMoV18         | AISI 440B               |         |                     |  |  |
|                      |                       |                                         | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |         |                     |  |  |
|                      |                       | Rostfreie Stähle-<br>martensitisch – PH | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |         |                     |  |  |
|                      |                       |                                         | 1.4301 | X5CrNi 18-10       | AISI 304                |         |                     |  |  |
|                      |                       | Rostfreie Stähle-<br>austenitisch       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |         |                     |  |  |
|                      |                       |                                         | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |         |                     |  |  |
|                      |                       | dasteriniseri                           | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |         |                     |  |  |
|                      | K                     |                                         |        |                    |                         |         |                     |  |  |
|                      |                       |                                         | 0.6020 | GG20               | ASTM 400                |         | 50 – 100            |  |  |
|                      |                       | Gusseisen                               | 0.6030 | GG30               | ASTM 40B                | 5 – 40  |                     |  |  |
|                      |                       |                                         | 0.7040 | GGG40              | ASTM 60-40-18           |         | 40 – 80             |  |  |
|                      |                       |                                         | 0.7060 | GGG60              | ASTM 80-60-03           |         |                     |  |  |
|                      |                       | Aluminium                               | 3.2315 | AlMgSi1            | ASTM 6351               | 5 – 40  | 60 – 120<br>50 – 80 |  |  |
|                      | N                     | Knetlegierungen                         | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |         |                     |  |  |
|                      |                       | Aluminium                               | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 5 – 40  |                     |  |  |
|                      |                       | Druckgusslegierungen                    | 3.2381 | GD-AlSi10Mg        | UNS A03590              |         |                     |  |  |
|                      |                       | Kupfer                                  | 2.004  | Cu-OF / CW008A     | UNS C10100              |         |                     |  |  |
|                      |                       | - Tapici                                | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |         |                     |  |  |
|                      |                       | Messing bleifrei                        | 2.0321 | CuZn37 CW508L      | UNS C27400              |         |                     |  |  |
|                      |                       |                                         | 2.036  | CuZn40 CW509L      | UNS C28000              |         |                     |  |  |
|                      |                       | Messing, Bronze                         | 2.0401 | CuZn39Pb3 / CW614N |                         | 5 – 40  | 60 – 100            |  |  |
|                      |                       | Rm < 400 N/mm <sup>2</sup>              | 2.102  | CuSn6              | UNS C51900              |         | 40 – 60             |  |  |
|                      |                       | Bronze                                  | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20  | 20 – 40             |  |  |
|                      |                       | Rm < 600 N/mm <sup>2</sup>              | 2.096  | CuAl9Mn2           | UNS C63200              |         |                     |  |  |
|                      |                       |                                         | 2.4856 |                    | Inconel 625             |         |                     |  |  |
|                      | $S_1$                 | Hitzebeständige                         | 2.4668 |                    | Inconel 718             |         |                     |  |  |
|                      | <b>9</b> 1            | Stähle                                  | 2.4617 | NiMo28             | Hastelloy B-2           |         |                     |  |  |
|                      |                       |                                         | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |         |                     |  |  |
|                      |                       | Titan rein                              | 3.7035 | Gr.2               | ASTM B348 / F67         |         |                     |  |  |
|                      | S <sub>2</sub>        | TRAITICIII                              | 3.7065 | Gr.4               | ASTM B348 / F68         |         |                     |  |  |
|                      | 2                     | Titan Legierungen                       | 3.7165 | TiAl6V4            | ASTM B348 / F136        |         |                     |  |  |
|                      |                       | man Legierungen                         | 9.9367 | TiAl6Nb7           | ASTM F1295              |         |                     |  |  |
|                      | <b>S</b> <sub>3</sub> | CrCo-Legierungen                        | 2.4964 | CoCr20W15Ni        | Haynes 25               |         |                     |  |  |
|                      | 3                     | Cr Co-Legierurigeri                     |        | CrCoMo28           | ASTM F1537              |         |                     |  |  |
|                      | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC             | 1.2510 | 100MnCrMoW4        | AISI O1                 |         |                     |  |  |
|                      | $H_2$                 | Stähle gehärtet<br>≥ 55 HRC             | 1.2379 | X153CrMoV12        | AISI D2                 |         |                     |  |  |



ANWENDUNGSEMPFEHLUNG





|                |                |               |                  | <b>f</b> [m      | m/U]               |         |               |
|----------------|----------------|---------------|------------------|------------------|--------------------|---------|---------------|
| Q <sub>1</sub> | Q <sub>x</sub> | Ød1           | Ød1              | Ød1              | Ød1                | Ød1     | Ød1           |
|                |                | 0.2 mm        | 0.3 mm           | 0.4 mm           | 0.6 mm             | 0.8 mm  | 1.0 mm-1.2 mm |
|                |                | f             | f                | f                | f                  | f       | f             |
| 7.14           | 0.5.14         | 0.005         | 0.040            | 0.045            | 0.000              | 0.040   | 0.050         |
| 7xd1           | 0.5xd1         | 0.005         | 0.010            | 0.015            | 0.030              | 0.040   | 0.060         |
|                |                |               |                  |                  |                    |         |               |
| 7xd1           | 0.5xd1         | 0.003 - 0.005 | 0.008 - 0.010    | 0.012 – 0.015    | 0.020 - 0.025      | 0.035   | 0.050         |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
| 7xd1           | 1xd1           | 0.004         | 0.008            | 0.010            | 0.015              | 0.025   | 0.040         |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               | Emp              | fohlen: CrazyDri | l Flex SST-Inox 30 | 0 x d1  |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
| 7xd1           | 1xd1           | 0.005         | 0.010            | 0.015            | 0.020              | 0.035   | 0.050         |
| 7.14           |                | 0.045         | 0.040            | 0.050            | 0.000              | 0.400   | 0.420         |
| 7xd1           | 1xd1           | 0.015         | 0.040            | 0.050            | 0.080              | 0.100   | 0.120         |
| 7xd1           | 1xd1           | 0.015         | 0.040            | 0.050            | 0.080              | 0.100   | 0.120         |
|                |                |               | Empf             | ohlen: CrazyDril | l Flex Titanium 3  | 0 x d1  |               |
|                |                |               | Emp              | fohlen: CrazyDri | l Flex SST-Inox 30 | 0 x d1  |               |
| 7xd1           | 1xd1           | 0.010         | 0.030            | 0.040            | 0.060              | 0.080   | 0.100         |
| 2.5xd1         | 0.5xd1         | 0.004         | 0.006            | 0.010            | 0.015              | 0.025   | 0.040         |
|                |                |               | I                | ı                |                    |         | 1             |
|                |                |               | Emp              | fohlen: CrazyDri | l Flex SST-Inox 30 | 0 x d1  |               |
|                |                |               | Empf             | ohlen: CrazvDril | l Flex Titanium 3  | 0 x d1  |               |
|                |                |               |                  |                  | l Flex Titanium 3  |         |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               | Emp <sup>-</sup> | ronien: CrazyDri | l Flex SST-Inox 30 | ) x a I |               |
|                |                |               |                  |                  |                    |         |               |
|                |                |               |                  |                  |                    |         |               |
|                |                | <u>I</u>      | 1                | I                |                    |         |               |



## CrazyDrill Flex Steel 20 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.1 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 20 x d wird mit einer äusseren Kühlmittelzufuhr verwendet. Die unbeschichtete Variante eignet sich überall, wo kleine Serien gefertigt werden.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

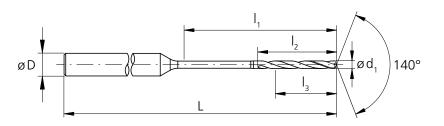
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.





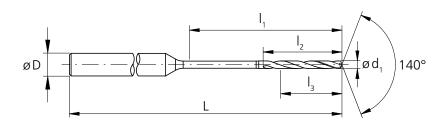



**Z**2



Nicht beschichtet




| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I,   | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |               | [mm]                                      | [mm] | [mm]           | [mm]           | [mm]      | [mm] |
| •                       | 2.CFS.20010.0 | 0.10                                      | 2.0  | 1.1            | 0.8            | 3         | 40   |
| Δ                       | 2.CFS.20011.0 | 0.11                                      | 2.2  | 1.2            | 0.9            | 3         | 40   |
| Δ                       | 2.CFS.20012.0 | 0.12                                      | 2.4  | 1.3            | 1.0            | 3         | 40   |
| Δ                       | 2.CFS.20013.0 | 0.13                                      | 2.6  | 1.4            | 1.0            | 3         | 40   |
| Δ                       | 2.CFS.20014.0 | 0.14                                      | 2.8  | 1.5            | 1.1            | 3         | 40   |
| •                       | 2.CFS.20015.0 | 0.15                                      | 3.0  | 1.6            | 1.2            | 3         | 40   |
| Δ                       | 2.CFS.20016.0 | 0.16                                      | 3.2  | 1.7            | 1.3            | 3         | 40   |
| Δ                       | 2.CFS.20017.0 | 0.17                                      | 3.4  | 1.8            | 1.4            | 3         | 40   |
| Δ                       | 2.CFS.20018.0 | 0.18                                      | 3.6  | 1.9            | 1.4            | 3         | 40   |
| Δ                       | 2.CFS.20019.0 | 0.19                                      | 3.8  | 2.0            | 1.5            | 3         | 40   |
| •                       | 2.CFS.20020.0 | 0.20                                      | 4.0  | 2.1            | 1.6            | 3         | 45   |
| Δ                       | 2.CFS.20021.0 | 0.21                                      | 4.2  | 2.2            | 1.7            | 3         | 45   |
| Δ                       | 2.CFS.20022.0 | 0.22                                      | 4.4  | 2.3            | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.20023.0 | 0.23                                      | 4.6  | 2.4            | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.20024.0 | 0.24                                      | 4.8  | 2.5            | 1.9            | 3         | 45   |
| •                       | 2.CFS.20025.0 | 0.25                                      | 5.0  | 2.6            | 2.0            | 3         | 45   |
| Δ                       | 2.CFS.20026.0 | 0.26                                      | 5.2  | 2.7            | 2.1            | 3         | 45   |
| Δ                       | 2.CFS.20027.0 | 0.27                                      | 5.4  | 2.8            | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.20028.0 | 0.28                                      | 5.6  | 2.9            | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.20029.0 | 0.29                                      | 5.8  | 3.0            | 2.3            | 3         | 45   |
|                         | 2.CFS.20030.0 | 0.30                                      | 6.0  | 3.2            | 2.4            | 3         | 45   |
| Δ                       | 2.CFS.20031.0 | 0.31                                      | 6.2  | 3.3            | 2.5            | 3         | 45   |
| Δ                       | 2.CFS.20032.0 | 0.32                                      | 6.4  | 3.4            | 2.6            | 3         | 45   |
| Δ                       | 2.CFS.20033.0 | 0.33                                      | 6.6  | 3.5            | 2.6            | 3         | 45   |
| Δ                       | 2.CFS.20034.0 | 0.34                                      | 6.8  | 3.6            | 2.7            | 3         | 45   |
|                         | 2.CFS.20035.0 | 0.35                                      | 7.0  | 3.7            | 2.8            | 3         | 45   |
| Δ                       | 2.CFS.20036.0 | 0.36                                      | 7.2  | 3.8            | 2.9            | 3         | 45   |
| Δ                       | 2.CFS.20037.0 | 0.37                                      | 7.4  | 3.9            | 3.0            | 3         | 45   |
| Δ                       | 2.CFS.20038.0 | 0.38                                      | 7.6  | 4.0            | 3.0            | 3         | 45   |
| Δ                       | 2.CFS.20039.0 | 0.39                                      | 7.8  | 4.1            | 3.1            | 3         | 45   |
| •                       | 2.CFS.20040.0 | 0.40                                      | 8.0  | 4.2            | 3.2            | 3         | 45   |
| Δ                       | 2.CFS.20041.0 | 0.41                                      | 8.2  | 4.3            | 3.3            | 3         | 45   |
| Δ                       | 2.CFS.20042.0 | 0.42                                      | 8.4  | 4.4            | 3.4            | 3         | 45   |
| Δ                       | 2.CFS.20043.0 | 0.43                                      | 8.6  | 4.5            | 3.4            | 3         | 45   |
| Δ                       | 2.CFS.20044.0 | 0.44                                      | 8.8  | 4.6            | 3.5            | 3         | 45   |
| •                       | 2.CFS.20045.0 | 0.45                                      | 9.0  | 4.7            | 3.6            | 3         | 45   |
| Δ                       | 2.CFS.20046.0 | 0.46                                      | 9.2  | 4.8            | 3.7            | 3         | 45   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 20 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | <b>l</b> <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|-----------------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |               | [mm]                                      | [mm]           | [mm]                  | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFS.20047.0 | 0.47                                      | 9.4            | 4.9                   | 3.8            | 3         | 45   |
| Δ                       | 2.CFS.20048.0 | 0.48                                      | 9.6            | 5.0                   | 3.8            | 3         | 45   |
| Δ                       | 2.CFS.20049.0 | 0.49                                      | 9.8            | 5.1                   | 3.9            | 3         | 45   |
|                         | 2.CFS.20050.0 | 0.50                                      | 10.0           | 5.3                   | 4.0            | 3         | 50   |
| Δ                       | 2.CFS.20051.0 | 0.51                                      | 10.2           | 5.4                   | 4.1            | 3         | 50   |
| Δ                       | 2.CFS.20052.0 | 0.52                                      | 10.4           | 5.5                   | 4.2            | 3         | 50   |
| Δ                       | 2.CFS.20053.0 | 0.53                                      | 10.6           | 5.6                   | 4.2            | 3         | 50   |
| Δ                       | 2.CFS.20054.0 | 0.54                                      | 10.8           | 5.7                   | 4.3            | 3         | 50   |
| •                       | 2.CFS.20055.0 | 0.55                                      | 11.0           | 5.8                   | 4.4            | 3         | 50   |
| Δ                       | 2.CFS.20056.0 | 0.56                                      | 11.2           | 5.9                   | 4.5            | 3         | 50   |
| Δ                       | 2.CFS.20057.0 | 0.57                                      | 11.4           | 6.0                   | 4.6            | 3         | 50   |
| Δ                       | 2.CFS.20058.0 | 0.58                                      | 11.6           | 6.1                   | 4.6            | 3         | 50   |
| Δ                       | 2.CFS.20059.0 | 0.59                                      | 11.8           | 6.2                   | 4.7            | 3         | 50   |
| •                       | 2.CFS.20060.0 | 0.60                                      | 12.0           | 6.3                   | 4.8            | 3         | 50   |
| Δ                       | 2.CFS.20061.0 | 0.61                                      | 12.2           | 6.4                   | 4.9            | 3         | 50   |
| Δ                       | 2.CFS.20062.0 | 0.62                                      | 12.4           | 6.5                   | 5.0            | 3         | 50   |
| Δ                       | 2.CFS.20063.0 | 0.63                                      | 12.6           | 6.6                   | 5.0            | 3         | 50   |
| Δ                       | 2.CFS.20064.0 | 0.64                                      | 12.8           | 6.7                   | 5.1            | 3         | 50   |
| •                       | 2.CFS.20065.0 | 0.65                                      | 13.0           | 6.8                   | 5.2            | 3         | 50   |
| Δ                       | 2.CFS.20066.0 | 0.66                                      | 13.2           | 6.9                   | 5.3            | 3         | 50   |
| Δ                       | 2.CFS.20067.0 | 0.67                                      | 13.4           | 7.0                   | 5.4            | 3         | 50   |
| Δ                       | 2.CFS.20068.0 | 0.68                                      | 13.6           | 7.1                   | 5.4            | 3         | 50   |
| Δ                       | 2.CFS.20069.0 | 0.69                                      | 13.8           | 7.2                   | 5.5            | 3         | 50   |
| •                       | 2.CFS.20070.0 | 0.70                                      | 14.0           | 7.4                   | 5.6            | 3         | 53   |
| Δ                       | 2.CFS.20071.0 | 0.71                                      | 14.2           | 7.5                   | 5.7            | 3         | 53   |
| Δ                       | 2.CFS.20072.0 | 0.72                                      | 14.4           | 7.6                   | 5.8            | 3         | 53   |
| Δ                       | 2.CFS.20073.0 | 0.73                                      | 14.6           | 7.7                   | 5.8            | 3         | 53   |
| Δ                       | 2.CFS.20074.0 | 0.74                                      | 14.8           | 7.8                   | 5.9            | 3         | 53   |
| •                       | 2.CFS.20075.0 | 0.75                                      | 15.0           | 7.9                   | 6.0            | 3         | 53   |
| Δ                       | 2.CFS.20076.0 | 0.76                                      | 15.2           | 8.0                   | 6.1            | 3         | 53   |
| Δ                       | 2.CFS.20077.0 | 0.77                                      | 15.4           | 8.1                   | 6.2            | 3         | 53   |
| Δ                       | 2.CFS.20078.0 | 0.78                                      | 15.6           | 8.2                   | 6.2            | 3         | 53   |
| Δ                       | 2.CFS.20079.0 | 0.79                                      | 15.8           | 8.3                   | 6.3            | 3         | 53   |
| •                       | 2.CFS.20080.0 | 0.80                                      | 16.0           | 8.4                   | 6.4            | 3         | 53   |
| Δ                       | 2.CFS.20081.0 | 0.81                                      | 16.2           | 8.5                   | 6.5            | 3         | 53   |
| Δ                       | 2.CFS.20082.0 | 0.82                                      | 16.4           | 8.6                   | 6.6            | 3         | 53   |
| Δ                       | 2.CFS.20083.0 | 0.83                                      | 16.6           | 8.7                   | 6.6            | 3         | 53   |

<sup>■</sup> Ab Lager verfügbar.

<sup>△</sup> Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2

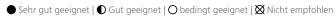


Nicht beschichtet

| Artikelnummer         d₁ (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |               |                  |      |      |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|------------------|------|------|------|------|------|
| Δ         ∆         ∠         ∠         CFS.20084.0         0.84         16.8         8.8         6.7         3         53           ■         2         ∠         CFS.20085.0         0.85         17.0         8.9         6.8         3         54           Δ         2         ∠         CFS.20087.0         0.87         17.4         9.1         7.0         3         53           Δ         2         ∠         CFS.20088.0         0.88         17.6         9.2         7.0         3         53           Δ         2         CFS.20099.0         0.89         17.8         9.3         7.1         3         53           Δ         2         CFS.20091.0         0.91         18.2         9.6         7.3         3         53           Δ         2         CFS.20092.0         0.92         18.4         9.7         7.4         3         53           Δ         2         CFS.20093.0         0.93         18.6         9.8         7.4         3         53           Δ         2         CFS.20096.0         0.95         19.0         10.0         7.6         3         53           Δ         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lager<br>f Anfrage | Artikelnummer | -0.003<br>-0.006 | ·    | -    | ,    | (h6) | L    |
| ■ 2.CFS.20085.0 0.85 17.0 8.9 6.8 3 54  Δ 2.CFS.20086.0 0.86 17.2 9.0 6.9 3 54  Δ 2.CFS.20087.0 0.87 17.4 9.1 7.0 3 53  Δ 2.CFS.20088.0 0.88 17.6 9.2 7.0 3 53  Δ 2.CFS.20089.0 0.89 17.8 9.3 7.1 3 53  Δ 2.CFS.20090.0 0.90 18.0 9.5 7.2 3 53  Δ 2.CFS.20091.0 0.91 18.2 9.6 7.3 3 53  Δ 2.CFS.20092.0 0.92 18.4 9.7 7.4 3 53  Δ 2.CFS.20093.0 0.93 18.6 9.8 7.4 3 53  Δ 2.CFS.20094.0 0.94 18.8 9.9 7.5 3 53  Δ 2.CFS.20096.0 0.95 19.0 10.0 7.6 3 53  Δ 2.CFS.20096.0 0.96 19.2 10.1 7.7 3 53  Δ 2.CFS.20097.0 0.97 19.4 10.2 7.8 3 53  Δ 2.CFS.20099.0 0.99 19.8 10.4 7.9 3 53  Δ 2.CFS.20099.0 0.99 19.8 10.4 7.9 3 53  Δ 2.CFS.20101.0 1.00 20.0 10.5 8.0 3 60  Δ 2.CFS.20102.0 1.02 20.4 10.7 8.2 3 60  Δ 2.CFS.20103.0 1.03 20.6 10.8 8.2 3 60  Δ 2.CFS.20106.0 1.04 20.8 10.9 8.3 3 60  Δ 2.CFS.20106.0 1.05 21.0 11.0 8.4 3 60  Δ 2.CFS.20109.0 1.07 21.4 11.2 8.6 3 60  Δ 2.CFS.20109.0 1.09 21.8 11.4 8.7 3 60  Δ 2.CFS.20109.0 1.09 21.8 11.4 8.7 3 60  Δ 2.CFS.20109.0 1.09 21.8 11.4 8.7 3 60  Δ 2.CFS.20110.0 1.01 22.0 11.6 8.8 3 60  Δ 2.CFS.20110.0 1.02 20.4 11.9 8.3 3 60  Δ 2.CFS.20110.0 1.05 21.0 11.0 8.4 3 60  Δ 2.CFS.20110.0 1.07 21.4 11.2 8.6 3 60  Δ 2.CFS.20110.0 1.09 21.8 11.4 8.7 3 60  Δ 2.CFS.20110.0 1.10 22.0 11.6 8.8 3 60  Δ 2.CFS.20111.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20111.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20111.0 1.11 22.4 11.8 9.0 3 60  Δ 2.CFS.20111.0 1.11 22.9 11.9 9.0 3 60  Δ 2.CFS.20111.0 1.11 23.9 12.9 9.3 3 60 | ■ ab<br>∆ auf      |               | [mm]             | [mm] | [mm] | [mm] | [mm] | [mm] |
| Δ       2.CFS.20086.0       0.86       17.2       9.0       6.9       3       54         Δ       2.CFS.20087.0       0.87       17.4       9.1       7.0       3       53         Δ       2.CFS.20089.0       0.88       17.6       9.2       7.0       3       53         Δ       2.CFS.20099.0       0.99       18.0       9.5       7.2       3       53         Δ       2.CFS.20091.0       0.91       18.2       9.6       7.3       3       53         Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20096.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20098.0       0.98 </td <td>Δ</td> <td>2.CFS.20084.0</td> <td>0.84</td> <td>16.8</td> <td>8.8</td> <td>6.7</td> <td>3</td> <td>53</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δ                  | 2.CFS.20084.0 | 0.84             | 16.8 | 8.8  | 6.7  | 3    | 53   |
| Δ       2.CFS.20087.0       0.87       17.4       9.1       7.0       3       53         Δ       2.CFS.20088.0       0.88       17.6       9.2       7.0       3       53         Δ       2.CFS.20089.0       0.89       17.8       9.3       7.1       3       53         Δ       2.CFS.20091.0       0.90       18.0       9.5       7.2       3       53         Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20096.0       0.99       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                  | 2.CFS.20085.0 | 0.85             | 17.0 | 8.9  | 6.8  | 3    | 54   |
| Δ       2.CFS.20088.0       0.88       17.6       9.2       7.0       3       53         Δ       2.CFS.20089.0       0.89       17.8       9.3       7.1       3       53         Δ       2.CFS.20091.0       0.90       18.0       9.5       7.2       3       53         Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20100.0       1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ                  | 2.CFS.20086.0 | 0.86             | 17.2 | 9.0  | 6.9  | 3    | 54   |
| Δ       2.CFS.20089.0       0.89       17.8       9.3       7.1       3       53         Δ       2.CFS.20090.0       0.90       18.0       9.5       7.2       3       53         Δ       2.CFS.20091.0       0.91       18.2       9.6       7.3       3       53         Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20099.0       0.99       19.4       10.2       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20100.0       1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ                  | 2.CFS.20087.0 | 0.87             | 17.4 | 9.1  | 7.0  | 3    | 53   |
| ■ 2.CFS.20090.0 0.90 18.0 9.5 7.2 3 53  Δ 2.CFS.20091.0 0.91 18.2 9.6 7.3 3 53  Δ 2.CFS.20092.0 0.92 18.4 9.7 7.4 3 53  Δ 2.CFS.20093.0 0.93 18.6 9.8 7.4 3 53  Δ 2.CFS.20094.0 0.94 18.8 9.9 7.5 3 53  Δ 2.CFS.20095.0 0.95 19.0 10.0 7.6 3 53  Δ 2.CFS.20096.0 0.96 19.2 10.1 7.7 3 53  Δ 2.CFS.20097.0 0.97 19.4 10.2 7.8 3 53  Δ 2.CFS.20098.0 0.98 19.6 10.3 7.8 3 53  Δ 2.CFS.20099.0 0.99 19.8 10.4 7.9 3 53  Δ 2.CFS.20100.0 1.00 20.0 10.5 8.0 3 60  Δ 2.CFS.20101.0 1.01 20.2 10.6 8.1 3 60  Δ 2.CFS.20102.0 1.02 20.4 10.7 8.2 3 60  Δ 2.CFS.20103.0 1.03 20.6 10.8 8.2 3 60  Δ 2.CFS.20104.0 1.04 20.8 10.9 8.3 3 60  Δ 2.CFS.20105.0 1.05 21.0 11.0 8.4 3 60  Δ 2.CFS.20106.0 1.06 21.2 11.1 8.5 3 60  Δ 2.CFS.20108.0 1.08 21.6 11.3 8.6 3 60  Δ 2.CFS.20109.0 1.09 21.8 11.4 8.7 3 60  Δ 2.CFS.20110.0 1.10 22.0 11.6 8.8 3 60  Δ 2.CFS.20110.0 1.01 22.2 11.6 8.8 3 60  Δ 2.CFS.20108.0 1.08 21.6 11.3 8.6 3 60  Δ 2.CFS.20108.0 1.08 21.6 11.3 8.6 3 60  Δ 2.CFS.20110.0 1.10 22.0 11.6 8.8 3 60  Δ 2.CFS.20110.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20110.0 1.12 22.4 11.8 9.0 3 60  Δ 2.CFS.20111.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20111.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20111.0 1.12 22.4 11.8 9.0 3 60  Δ 2.CFS.20111.0 1.13 22.6 11.9 9.0 3 60  Δ 2.CFS.20111.0 1.14 22.8 12.0 9.1 3 60  Δ 2.CFS.20111.0 1.15 23.0 12.1 9.2 3 60  Δ 2.CFS.20111.0 1.17 23.4 12.3 9.4 3 60  Δ 2.CFS.20111.0 1.17 23.4 12.3 9.4 3 60  Δ 2.CFS.20111.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Δ                  | 2.CFS.20088.0 | 0.88             | 17.6 | 9.2  | 7.0  | 3    | 53   |
| Δ       2.CFS.20091.0       0.91       18.2       9.6       7.3       3       53         Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20110.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ                  | 2.CFS.20089.0 | 0.89             | 17.8 | 9.3  | 7.1  | 3    | 53   |
| Δ       2.CFS.20092.0       0.92       18.4       9.7       7.4       3       53         Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20100.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 2.CFS.20090.0 | 0.90             | 18.0 | 9.5  | 7.2  | 3    | 53   |
| Δ       2.CFS.20093.0       0.93       18.6       9.8       7.4       3       53         Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         Δ       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20109.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Δ                  | 2.CFS.20091.0 | 0.91             | 18.2 | 9.6  | 7.3  | 3    | 53   |
| Δ       2.CFS.20094.0       0.94       18.8       9.9       7.5       3       53         ■       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0 <td< td=""><td>Δ</td><td>2.CFS.20092.0</td><td>0.92</td><td>18.4</td><td>9.7</td><td>7.4</td><td>3</td><td>53</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20092.0 | 0.92             | 18.4 | 9.7  | 7.4  | 3    | 53   |
| ■       2.CFS.20095.0       0.95       19.0       10.0       7.6       3       53         Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20100.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0 <t< td=""><td>Δ</td><td>2.CFS.20093.0</td><td>0.93</td><td>18.6</td><td>9.8</td><td>7.4</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δ                  | 2.CFS.20093.0 | 0.93             | 18.6 | 9.8  | 7.4  | 3    | 53   |
| Δ       2.CFS.20096.0       0.96       19.2       10.1       7.7       3       53         Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20109.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20108.0 <t< td=""><td>Δ</td><td>2.CFS.20094.0</td><td>0.94</td><td>18.8</td><td>9.9</td><td>7.5</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δ                  | 2.CFS.20094.0 | 0.94             | 18.8 | 9.9  | 7.5  | 3    | 53   |
| Δ       2.CFS.20097.0       0.97       19.4       10.2       7.8       3       53         Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20190.0       0.99       19.8       10.4       7.9       3       53         Δ       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20108.0 <t< td=""><td></td><td>2.CFS.20095.0</td><td>0.95</td><td>19.0</td><td>10.0</td><td>7.6</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 2.CFS.20095.0 | 0.95             | 19.0 | 10.0 | 7.6  | 3    | 53   |
| Δ       2.CFS.20098.0       0.98       19.6       10.3       7.8       3       53         Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         ■       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0 <t< td=""><td>Δ</td><td>2.CFS.20096.0</td><td>0.96</td><td>19.2</td><td>10.1</td><td>7.7</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20096.0 | 0.96             | 19.2 | 10.1 | 7.7  | 3    | 53   |
| Δ       2.CFS.20099.0       0.99       19.8       10.4       7.9       3       53         ■       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0 <t< td=""><td>Δ</td><td>2.CFS.20097.0</td><td>0.97</td><td>19.4</td><td>10.2</td><td>7.8</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20097.0 | 0.97             | 19.4 | 10.2 | 7.8  | 3    | 53   |
| ■       2.CFS.20100.0       1.00       20.0       10.5       8.0       3       60         Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20108.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0 <t< td=""><td>Δ</td><td>2.CFS.20098.0</td><td>0.98</td><td>19.6</td><td>10.3</td><td>7.8</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20098.0 | 0.98             | 19.6 | 10.3 | 7.8  | 3    | 53   |
| Δ       2.CFS.20101.0       1.01       20.2       10.6       8.1       3       60         Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20108.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0 <t< td=""><td>Δ</td><td>2.CFS.20099.0</td><td>0.99</td><td>19.8</td><td>10.4</td><td>7.9</td><td>3</td><td>53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20099.0 | 0.99             | 19.8 | 10.4 | 7.9  | 3    | 53   |
| Δ       2.CFS.20102.0       1.02       20.4       10.7       8.2       3       60         Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         Δ       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20108.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20113.0 <t< td=""><td>•</td><td>2.CFS.20100.0</td><td>1.00</td><td>20.0</td><td>10.5</td><td>8.0</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  | 2.CFS.20100.0 | 1.00             | 20.0 | 10.5 | 8.0  | 3    | 60   |
| Δ       2.CFS.20103.0       1.03       20.6       10.8       8.2       3       60         Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         ■       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0 <t< td=""><td>Δ</td><td>2.CFS.20101.0</td><td>1.01</td><td>20.2</td><td>10.6</td><td>8.1</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20101.0 | 1.01             | 20.2 | 10.6 | 8.1  | 3    | 60   |
| Δ       2.CFS.20104.0       1.04       20.8       10.9       8.3       3       60         ■       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0 <t< td=""><td>Δ</td><td>2.CFS.20102.0</td><td>1.02</td><td>20.4</td><td>10.7</td><td>8.2</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20102.0 | 1.02             | 20.4 | 10.7 | 8.2  | 3    | 60   |
| ■       2.CFS.20105.0       1.05       21.0       11.0       8.4       3       60         Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0 <t< td=""><td>Δ</td><td>2.CFS.20103.0</td><td>1.03</td><td>20.6</td><td>10.8</td><td>8.2</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20103.0 | 1.03             | 20.6 | 10.8 | 8.2  | 3    | 60   |
| Δ       2.CFS.20106.0       1.06       21.2       11.1       8.5       3       60         Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0 <t< td=""><td>Δ</td><td>2.CFS.20104.0</td><td>1.04</td><td>20.8</td><td>10.9</td><td>8.3</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20104.0 | 1.04             | 20.8 | 10.9 | 8.3  | 3    | 60   |
| Δ       2.CFS.20107.0       1.07       21.4       11.2       8.6       3       60         Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         Δ       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0 <t< td=""><td>•</td><td>2.CFS.20105.0</td><td>1.05</td><td>21.0</td><td>11.0</td><td>8.4</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  | 2.CFS.20105.0 | 1.05             | 21.0 | 11.0 | 8.4  | 3    | 60   |
| Δ       2.CFS.20108.0       1.08       21.6       11.3       8.6       3       60         Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         ■       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0 <t< td=""><td>Δ</td><td>2.CFS.20106.0</td><td>1.06</td><td>21.2</td><td>11.1</td><td>8.5</td><td>3</td><td>60</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  | 2.CFS.20106.0 | 1.06             | 21.2 | 11.1 | 8.5  | 3    | 60   |
| Δ       2.CFS.20109.0       1.09       21.8       11.4       8.7       3       60         ■       2.CFS.20110.0       1.10       22.0       11.6       8.8       3       60         Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Φ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0       1.19       23.8       12.5       9.5       3       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δ                  | 2.CFS.20107.0 | 1.07             | 21.4 | 11.2 | 8.6  | 3    | 60   |
| ■ 2.CFS.20110.0 1.10 22.0 11.6 8.8 3 60  Δ 2.CFS.20111.0 1.11 22.2 11.7 8.9 3 60  Δ 2.CFS.20112.0 1.12 22.4 11.8 9.0 3 60  Δ 2.CFS.20113.0 1.13 22.6 11.9 9.0 3 60  Δ 2.CFS.20114.0 1.14 22.8 12.0 9.1 3 60  ■ 2.CFS.20115.0 1.15 23.0 12.1 9.2 3 60  Δ 2.CFS.20116.0 1.16 23.2 12.2 9.3 3 60  Δ 2.CFS.20117.0 1.17 23.4 12.3 9.4 3 60  Δ 2.CFS.20118.0 1.18 23.6 12.4 9.4 3 60  Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ                  | 2.CFS.20108.0 | 1.08             | 21.6 | 11.3 | 8.6  | 3    | 60   |
| Δ       2.CFS.20111.0       1.11       22.2       11.7       8.9       3       60         Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         Δ       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0       1.19       23.8       12.5       9.5       3       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Δ                  | 2.CFS.20109.0 | 1.09             | 21.8 | 11.4 | 8.7  | 3    | 60   |
| Δ       2.CFS.20112.0       1.12       22.4       11.8       9.0       3       60         Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         ■       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0       1.19       23.8       12.5       9.5       3       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                  | 2.CFS.20110.0 | 1.10             | 22.0 | 11.6 | 8.8  | 3    | 60   |
| Δ       2.CFS.20113.0       1.13       22.6       11.9       9.0       3       60         Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         ■       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0       1.19       23.8       12.5       9.5       3       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Δ                  |               | 1.11             | 22.2 | 11.7 | 8.9  | 3    | 60   |
| Δ       2.CFS.20114.0       1.14       22.8       12.0       9.1       3       60         ■       2.CFS.20115.0       1.15       23.0       12.1       9.2       3       60         Δ       2.CFS.20116.0       1.16       23.2       12.2       9.3       3       60         Δ       2.CFS.20117.0       1.17       23.4       12.3       9.4       3       60         Δ       2.CFS.20118.0       1.18       23.6       12.4       9.4       3       60         Δ       2.CFS.20119.0       1.19       23.8       12.5       9.5       3       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Δ                  | 2.CFS.20112.0 | 1.12             | 22.4 | 11.8 | 9.0  | 3    | 60   |
| ■ 2.CFS.20115.0 1.15 23.0 12.1 9.2 3 60  Δ 2.CFS.20116.0 1.16 23.2 12.2 9.3 3 60  Δ 2.CFS.20117.0 1.17 23.4 12.3 9.4 3 60  Δ 2.CFS.20118.0 1.18 23.6 12.4 9.4 3 60  Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ                  |               | 1.13             | 22.6 | 11.9 | 9.0  |      |      |
| Δ 2.CFS.20116.0 1.16 23.2 12.2 9.3 3 60 Δ 2.CFS.20117.0 1.17 23.4 12.3 9.4 3 60 Δ 2.CFS.20118.0 1.18 23.6 12.4 9.4 3 60 Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ                  | 2.CFS.20114.0 | 1.14             | 22.8 | 12.0 | 9.1  |      | 60   |
| Δ 2.CFS.20117.0 1.17 23.4 12.3 9.4 3 60<br>Δ 2.CFS.20118.0 1.18 23.6 12.4 9.4 3 60<br>Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |               |                  |      |      |      |      |      |
| Δ 2.CFS.20118.0 1.18 23.6 12.4 9.4 3 60<br>Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |               |                  |      |      |      |      |      |
| Δ 2.CFS.20119.0 1.19 23.8 12.5 9.5 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |               | 1.17             |      |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ                  |               | 1.18             | 23.6 | 12.4 | 9.4  |      | 60   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ                  | 2.CFS.20119.0 | 1.19             | 23.8 | 12.5 | 9.5  | 3    | 60   |
| ■ 2.CFS.20120.0 1.20 24.0 12.6 9.6 3 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 2.CFS.20120.0 | 1.20             | 24.0 | 12.6 | 9.6  | 3    | 60   |

■ Ab Lager verfügbar. Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.




# CrazyDrill Flex Steel 20 x d - unbeschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-            | Werkstoff                   | Wr.Nr.  | DIN                | AISI/ASTM/UNS           |                | <b>/</b> ့<br>min] |
|-----------------------|-----------------------------|---------|--------------------|-------------------------|----------------|--------------------|
| gruppe                | vverkstori                  | Wr.INT. | DIN                | AISI/ASTIVI/UNS         | (πν<br>Ød1≤0.4 | Ød1>0.4            |
|                       |                             | 1.0201  | C10                | AIGI 1010               | Ø0130.4        | 20170.4            |
| _ B                   |                             | 1.0301  | C10<br>C15         | AISI 1010               |                |                    |
| $\mathbf{P}$          | Stähle unlegiert            | 1.0401  | C45E/CK45          | AISI 1015<br>AISI 1045  | F 40           | 4060               |
|                       | Rm < 800 N/mm <sup>2</sup>  | 1.0044  | S275JR             |                         | 5 – 40         | 40 – 60            |
|                       |                             | 1.0044  | 11SMn30            | AISI 1020<br>AISI 1215  |                |                    |
|                       |                             | 1.5752  | 15NiCr13           | ASTM 3415 / AISI 3310   |                |                    |
|                       |                             | 1.7131  | 16MnCr5            | AISI 5115               |                |                    |
| _                     | Stähle niedriglegiert       | 1.7131  | 100Cr6             | AISI 52100              | 5 – 25         | 25 – 50            |
|                       | Rm > 900 N/mm <sup>2</sup>  | 1.7225  | 42CrMo4            | AISI 4140               | 3-23           | 23 – 30            |
|                       |                             | 1.7223  | 90MnCrV8           | AISI O2                 |                |                    |
|                       |                             | 1.2379  | X153CrMoV12        | AISI D2                 |                |                    |
|                       | Werkzeugstähle              | 1.2379  | X210CrW12          | AISI D4/D6              |                |                    |
|                       | hochlegiert                 | 1.3343  | HS6-5-2C           | AISI M2 / UNS T11302    | 5 – 20         | 20 – 35            |
| n.                    | Rm < 1200 N/mm <sup>2</sup> | 1.3345  | HS18-0-1           | AISI T1 / UNS T12001    |                |                    |
| O <sub>v</sub>        |                             |         |                    |                         |                |                    |
|                       | Rostfreie Stähle-           | 1.4016  | X6Cr17             | AISI 430 / UNS S43000   |                |                    |
| M                     | ferritisch                  | 1.4105  | X6CrMoS17          | AISI 430F               |                |                    |
|                       | Rostfreie Stähle-           | 1.4034  | X46Cr13            | AISI 420C               |                |                    |
|                       | martensitisch               | 1.4112  | X90CrMoV18         | AISI 440B               |                |                    |
|                       | Rostfreie Stähle-           | 1.4542  | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                |                    |
|                       | martensitisch – PH          | 1.4545  | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                |                    |
|                       |                             | 1.4301  | X5CrNi 18-10       | AISI 304                |                |                    |
|                       | Rostfreie Stähle-           | 1.4435  | X2CrNiMo 18-14-3   | AISI 316L               |                |                    |
|                       | austenitisch                | 1.4441  | X2CrNiMo 18-15-3   | AISI 316LM              |                |                    |
|                       |                             | 1.4539  | X1NiCrMoCu 25-20-5 | AISI 904L               |                |                    |
|                       |                             | 0.6020  | GG20               | ASTM 30                 |                | 50 – 100           |
| K                     | Gusseisen                   | 0.6030  | GG30               | ASTM 40B                | 5 – 40         | 30 - 100           |
|                       | Gusselsell                  | 0.7040  | GGG40              | ASTM 60-40-18           | 3 – 40         | 40 – 80            |
|                       |                             | 0.7060  | GGG60              | ASTM 80-60-03           |                | 40 00              |
|                       | Aluminium                   | 3.2315  | AlMgSi1            | ASTM 6351               | F 40           | 60 130             |
| N                     | Knetlegierungen             | 3.4365  | AlZnMgCu1.5        | ASTM 7075               | 5 – 40         | 60 – 120           |
| 14                    | Aluminium                   | 3.2163  | GD-AlSi9Cu3        | ASTM A380               | 5 – 40         | 50 – 80            |
|                       | Druckgusslegierungen        | 3.2381  | GD-AlSi10Mg        | UNS A03590              | 5 – 40         | 50 – 80            |
|                       | Kupfer                      | 2.004   | Cu-OF / CW008A     | UNS C10100              |                |                    |
|                       | Kupiei                      | 2.0065  | Cu-ETP / CW004A    | UNS C11000              |                |                    |
|                       | Messing bleifrei            | 2.0321  | CuZn37 CW508L      | UNS C27400              |                |                    |
|                       | iviessing bienrei           | 2.036   | CuZn40 CW509L      | UNS C28000              |                |                    |
|                       | Messing, Bronze             | 2.0401  | CuZn39Pb3 / CW614N | UNS C38500              | 5 – 40         | 60 – 100           |
|                       | Rm < 400 N/mm <sup>2</sup>  | 2.102   | CuSn6              | UNS C51900              | 5 – 40         | 40 - 60            |
|                       | Bronze                      | 2.0966  | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20         | 20 – 40            |
|                       | Rm < 600 N/mm <sup>2</sup>  | 2.096   | CuAl9Mn2           | UNS C63200              | 5 – 20         | 20 – 40            |
|                       |                             | 2.4856  |                    | Inconel 625             |                |                    |
| C                     | Hitzebeständige             | 2.4668  |                    | Inconel 718             |                |                    |
| $S_1$                 | Stähle                      | 2.4617  | NiMo28             | Hastelloy B-2           |                |                    |
|                       |                             | 2.4665  | NiCr22Fe18Mo       | Hastelloy X             |                |                    |
|                       |                             | 3.7035  | Gr.2               | ASTM B348 / F67         |                |                    |
| C                     | Titan rein                  | 3.7065  | Gr.4               | ASTM B348 / F68         |                |                    |
| S <sub>2</sub>        |                             | 3.7165  | TiAl6V4            | ASTM B348 / F136        |                |                    |
|                       | Titan Legierungen           | 9.9367  | TiAl6Nb7           | ASTM F1295              |                |                    |
| C                     |                             | 2.4964  | CoCr20W15Ni        | Haynes 25               |                |                    |
| <b>S</b> <sub>3</sub> | CrCo-Legierungen            |         | CrCoMo28           | ASTM F1537              |                |                    |
| H₁                    | Stähle gehärtet<br>< 55 HRC | 1.2510  | 100MnCrMoW4        | AISI O1                 |                |                    |
| H <sub>2</sub>        | Stähle gehärtet             |         |                    |                         |                |                    |



ANWENDUNGSEMPFEHLUNG





|                |                           |                      |                      |                      | <b>f</b> [mm/U]      |                      |                      |                             |
|----------------|---------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------|
| $\mathbf{Q}_1$ | $\mathbf{Q}_{\mathrm{x}}$ | <b>Ød1</b><br>0.1 mm | <b>Ød1</b><br>0.2 mm | <b>Ød1</b><br>0.3 mm | <b>Ød1</b><br>0.4 mm | <b>Ød1</b><br>0.6 mm | <b>Ød1</b><br>0.8 mm | <b>Ød1</b><br>1.0 mm-1.2 mm |
|                |                           | f                    | f                    | f                    | f                    | f                    | f                    | f                           |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| 7xd1           | 0.5xd1                    | 0.002                | 0.005                | 0.010                | 0.015                | 0.030                | 0.040                | 0.060                       |
| 7,7,01         | 0.5xd1                    | 0.002                | 0.003                | 0.010                | 0.013                | 0.030                | 0.040                | 0.000                       |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| 7xd1           | 0.5xd1                    | 0.002                | 0.003 - 0.005        | 0.008 - 0.010        | 0.012 – 0.015        | 0.020 - 0.025        | 0.035                | 0.050                       |
| 7,01           | 0.5x41                    | 0.002                | 0.003 - 0.003        | 0.000 - 0.010        | 0.012 - 0.013        | 0.020 - 0.023        | 0.033                | 0.030                       |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| 7xd1           | 1xd1                      | 0.0005               | 0.004                | 0.008                | 0.010                | 0.015                | 0.025                | 0.040                       |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      | Empfohlon: (         | CrazyDrill Flex SS   | T Inov 20 v d1       |                      |                             |
|                |                           |                      |                      | Litipionien.         | LTazyDTIII TTEX 33   | 11-1110X 30 X G 1    |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| 7xd1           | 1xd1                      | 0.002                | 0.005                | 0.010                | 0.015                | 0.020                | 0.035                | 0.050                       |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| 7xd1           | 1xd1                      | 0.003                | 0.015                | 0.040                | 0.050                | 0.080                | 0.100                | 0.120                       |
| 7xd1           | 1xd1                      | 0.003                | 0.015                | 0.040                | 0.050                | 0.080                | 0.100                | 0.120                       |
|                |                           |                      |                      | Empfohlen: 0         | CrazyDrill Flex Tit  | anium 30 x d1        |                      |                             |
|                |                           |                      |                      | Empfohlen: (         | CrazyDrill Flex SS   | T-lnox 30 x d1       |                      |                             |
| 7xd1           | 1xd1                      | 0.004                | 0.010                | 0.030                | 0.040                | 0.060                | 0.080                | 0.100                       |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
| <br>2.5xd1     | 0.5xd1                    | 0.002                | 0.004                | 0.006                | 0.010                | 0.015                | 0.025                | 0.040                       |
|                |                           |                      |                      | Frantables (         | CromaDrill Flow CC   | T In a.v. 20 .v. d1  |                      |                             |
|                |                           |                      |                      | Empronien. (         | CrazyDrill Flex SS   | 1-1110X 30 X U I     |                      |                             |
|                |                           |                      |                      | Empfohlen: (         | TrazyDrill Flex Tit  | anium 30 x d1        |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      | TrazyDrill Flex Tit  |                      |                      |                             |
|                |                           |                      |                      | Empfohlen: (         | CrazyDrill Flex SS   | T-Inox 30 x d1       |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |
|                |                           |                      |                      |                      |                      |                      |                      |                             |



## CrazyDrill Flex Steel 30 x d - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.2 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 30 x d wird mit einer äusseren Kühlmittelzufuhr verwendet. Die beschichtete Variante garantiert eine höhere Standzeit und eignet sich damit im Vgl. zur unbeschichteten Variante zum Bohren von grösseren Serien. Auch die Oberflächenqualität profitiert von der Hochleistungsbeschichtung.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

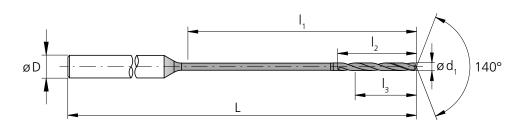
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.





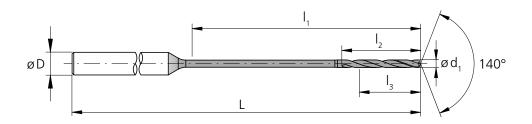



**Z**2








| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>D</b> (h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|----------------|----------------|---------------|------|
| ■ ab L<br>∆ auf ,       |               | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]          | [mm] |
| •                       | 2.CFS.30020.1 | 0.20                                      | 6.0            | 2.1            | 1.6            | 3             | 45   |
| Δ                       | 2.CFS.30021.1 | 0.21                                      | 6.3            | 2.2            | 1.7            | 3             | 45   |
| Δ                       | 2.CFS.30022.1 | 0.22                                      | 6.6            | 2.3            | 1.8            | 3             | 45   |
| Δ                       | 2.CFS.30023.1 | 0.23                                      | 6.9            | 2.4            | 1.8            | 3             | 45   |
| Δ                       | 2.CFS.30024.1 | 0.24                                      | 7.2            | 2.5            | 1.9            | 3             | 45   |
|                         | 2.CFS.30025.1 | 0.25                                      | 7.5            | 2.6            | 2.0            | 3             | 45   |
| Δ                       | 2.CFS.30026.1 | 0.26                                      | 7.8            | 2.7            | 2.1            | 3             | 45   |
| Δ                       | 2.CFS.30027.1 | 0.27                                      | 8.1            | 2.8            | 2.2            | 3             | 45   |
| Δ                       | 2.CFS.30028.1 | 0.28                                      | 8.4            | 2.9            | 2.2            | 3             | 45   |
| Δ                       | 2.CFS.30029.1 | 0.29                                      | 8.7            | 3.0            | 2.3            | 3             | 45   |
|                         | 2.CFS.30030.1 | 0.30                                      | 9.0            | 3.1            | 2.4            | 3             | 50   |
| Δ                       | 2.CFS.30031.1 | 0.31                                      | 9.3            | 3.2            | 2.5            | 3             | 50   |
| Δ                       | 2.CFS.30032.1 | 0.32                                      | 9.6            | 3.3            | 2.6            | 3             | 50   |
| Δ                       | 2.CFS.30033.1 | 0.33                                      | 9.9            | 3.4            | 2.6            | 3             | 50   |
| Δ                       | 2.CFS.30034.1 | 0.34                                      | 10.2           | 3.5            | 2.7            | 3             | 50   |
|                         | 2.CFS.30035.1 | 0.35                                      | 10.5           | 3.7            | 2.8            | 3             | 50   |
| Δ                       | 2.CFS.30036.1 | 0.36                                      | 10.8           | 3.8            | 2.9            | 3             | 50   |
| Δ                       | 2.CFS.30037.1 | 0.37                                      | 11.1           | 3.9            | 3.0            | 3             | 50   |
| Δ                       | 2.CFS.30038.1 | 0.38                                      | 11.4           | 4.0            | 3.0            | 3             | 50   |
| Δ                       | 2.CFS.30039.1 | 0.39                                      | 11.7           | 4.1            | 3.1            | 3             | 50   |
|                         | 2.CFS.30040.1 | 0.40                                      | 12.0           | 4.2            | 3.2            | 3             | 50   |
| Δ                       | 2.CFS.30041.1 | 0.41                                      | 12.3           | 4.3            | 3.3            | 3             | 50   |
| Δ                       | 2.CFS.30042.1 | 0.42                                      | 12.6           | 4.4            | 3.4            | 3             | 50   |
| Δ                       | 2.CFS.30043.1 | 0.43                                      | 12.9           | 4.5            | 3.4            | 3             | 50   |
| Δ                       | 2.CFS.30044.1 | 0.44                                      | 13.2           | 4.6            | 3.5            | 3             | 50   |
| •                       | 2.CFS.30045.1 | 0.45                                      | 13.5           | 4.7            | 3.6            | 3             | 50   |
| Δ                       | 2.CFS.30046.1 | 0.46                                      | 13.8           | 4.8            | 3.7            | 3             | 50   |
| Δ                       | 2.CFS.30047.1 | 0.47                                      | 14.1           | 4.9            | 3.8            | 3             | 50   |
| Δ                       | 2.CFS.30048.1 | 0.48                                      | 14.4           | 5.0            | 3.8            | 3             | 50   |
| Δ                       | 2.CFS.30049.1 | 0.49                                      | 14.7           | 5.1            | 3.9            | 3             | 50   |
| •                       | 2.CFS.30050.1 | 0.50                                      | 15.0           | 5.2            | 4.0            | 3             | 53   |
| Δ                       | 2.CFS.30051.1 | 0.51                                      | 15.3           | 5.3            | 4.1            | 3             | 53   |
| Δ                       | 2.CFS.30052.1 | 0.52                                      | 15.6           | 5.4            | 4.2            | 3             | 53   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 30 x d - beschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |               | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFS.30053.1 | 0.53                                      | 15.9           | 5.5            | 4.2            | 3         | 53   |
| Δ                       | 2.CFS.30054.1 | 0.54                                      | 16.2           | 5.6            | 4.3            | 3         | 53   |
| •                       | 2.CFS.30055.1 | 0.55                                      | 16.5           | 5.8            | 4.4            | 3         | 53   |
| Δ                       | 2.CFS.30056.1 | 0.56                                      | 16.8           | 5.9            | 4.5            | 3         | 53   |
| Δ                       | 2.CFS.30057.1 | 0.57                                      | 17.1           | 6.0            | 4.6            | 3         | 53   |
| Δ                       | 2.CFS.30058.1 | 0.58                                      | 17.4           | 6.1            | 4.6            | 3         | 53   |
| Δ                       | 2.CFS.30059.1 | 0.59                                      | 17.7           | 6.2            | 4.7            | 3         | 53   |
| •                       | 2.CFS.30060.1 | 0.60                                      | 18.0           | 6.3            | 4.8            | 3         | 53   |
| Δ                       | 2.CFS.30061.1 | 0.61                                      | 18.3           | 6.4            | 4.9            | 3         | 53   |
| Δ                       | 2.CFS.30062.1 | 0.62                                      | 18.6           | 6.5            | 5.0            | 3         | 53   |
| Δ                       | 2.CFS.30063.1 | 0.63                                      | 18.9           | 6.6            | 5.0            | 3         | 53   |
| Δ                       | 2.CFS.30064.1 | 0.64                                      | 19.2           | 6.7            | 5.1            | 3         | 53   |
| •                       | 2.CFS.30065.1 | 0.65                                      | 19.5           | 6.8            | 5.2            | 3         | 53   |
| Δ                       | 2.CFS.30066.1 | 0.66                                      | 19.8           | 6.9            | 5.3            | 3         | 53   |
| Δ                       | 2.CFS.30067.1 | 0.67                                      | 20.1           | 7.0            | 5.4            | 3         | 53   |
| Δ                       | 2.CFS.30068.1 | 0.68                                      | 20.4           | 7.1            | 5.4            | 3         | 53   |
| Δ                       | 2.CFS.30069.1 | 0.69                                      | 20.7           | 7.2            | 5.5            | 3         | 53   |
| •                       | 2.CFS.30070.1 | 0.70                                      | 21.0           | 7.3            | 5.6            | 3         | 60   |
| Δ                       | 2.CFS.30071.1 | 0.71                                      | 21.3           | 7.4            | 5.7            | 3         | 60   |
| Δ                       | 2.CFS.30072.1 | 0.72                                      | 21.6           | 7.5            | 5.8            | 3         | 60   |
| Δ                       | 2.CFS.30073.1 | 0.73                                      | 21.9           | 7.6            | 5.8            | 3         | 60   |
| Δ                       | 2.CFS.30074.1 | 0.74                                      | 22.2           | 7.7            | 5.9            | 3         | 60   |
| •                       | 2.CFS.30075.1 | 0.75                                      | 22.5           | 7.9            | 6.0            | 3         | 60   |
| Δ                       | 2.CFS.30076.1 | 0.76                                      | 22.8           | 8.0            | 6.1            | 3         | 60   |
| Δ                       | 2.CFS.30077.1 | 0.77                                      | 23.1           | 8.1            | 6.2            | 3         | 60   |
| Δ                       | 2.CFS.30078.1 | 0.78                                      | 23.4           | 8.2            | 6.2            | 3         | 60   |
| Δ                       | 2.CFS.30079.1 | 0.79                                      | 23.7           | 8.3            | 6.3            | 3         | 60   |
| •                       | 2.CFS.30080.1 | 0.80                                      | 24.0           | 8.4            | 6.4            | 3         | 60   |
| Δ                       | 2.CFS.30081.1 | 0.81                                      | 24.3           | 8.5            | 6.5            | 3         | 60   |
| Δ                       | 2.CFS.30082.1 | 0.82                                      | 24.6           | 8.6            | 6.6            | 3         | 60   |
| Δ                       | 2.CFS.30083.1 | 0.83                                      | 24.9           | 8.7            | 6.6            | 3         | 60   |
| Δ                       | 2.CFS.30084.1 | 0.84                                      | 25.2           | 8.8            | 6.7            | 3         | 60   |
| •                       | 2.CFS.30085.1 | 0.85                                      | 25.5           | 8.9            | 6.8            | 3         | 64   |
| Δ                       | 2.CFS.30086.1 | 0.86                                      | 25.8           | 9.0            | 6.9            | 3         | 64   |

<sup>■</sup> Ab Lager verfügbar.

<sup>△</sup> Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2





| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub> -0.003 -0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>D</b> (h6) | L    |
|-------------------------|---------------|-------------------------------------|----------------|----------------|----------------|---------------|------|
| ■ ab l<br>∆ auf         |               | [mm]                                | [mm]           | [mm]           | [mm]           | [mm]          | [mm] |
| Δ                       | 2.CFS.30087.1 | 0.87                                | 26.1           | 9.1            | 7.0            | 3             | 64   |
| Δ                       | 2.CFS.30088.1 | 0.88                                | 26.4           | 9.2            | 7.0            | 3             | 64   |
| Δ                       | 2.CFS.30089.1 | 0.89                                | 26.7           | 9.3            | 7.1            | 3             | 64   |
|                         | 2.CFS.30090.1 | 0.90                                | 27.0           | 9.4            | 7.2            | 3             | 64   |
| Δ                       | 2.CFS.30091.1 | 0.91                                | 27.3           | 9.5            | 7.3            | 3             | 64   |
| Δ                       | 2.CFS.30092.1 | 0.92                                | 27.6           | 9.6            | 7.4            | 3             | 64   |
| Δ                       | 2.CFS.30093.1 | 0.93                                | 27.9           | 9.7            | 7.4            | 3             | 64   |
| Δ                       | 2.CFS.30094.1 | 0.94                                | 28.2           | 9.8            | 7.5            | 3             | 64   |
| -                       | 2.CFS.30095.1 | 0.95                                | 28.5           | 10.0           | 7.6            | 3             | 64   |
| Δ                       | 2.CFS.30096.1 | 0.96                                | 28.8           | 10.1           | 7.7            | 3             | 64   |
| Δ                       | 2.CFS.30097.1 | 0.97                                | 29.1           | 10.2           | 7.8            | 3             | 64   |
| Δ                       | 2.CFS.30098.1 | 0.98                                | 29.4           | 10.3           | 7.8            | 3             | 64   |
| Δ                       | 2.CFS.30099.1 | 0.99                                | 29.7           | 10.4           | 7.9            | 3             | 64   |
|                         | 2.CFS.30100.1 | 1.00                                | 30.0           | 10.5           | 8.0            | 3             | 70   |
| Δ                       | 2.CFS.30101.1 | 1.01                                | 30.3           | 10.6           | 8.1            | 3             | 70   |
| Δ                       | 2.CFS.30102.1 | 1.02                                | 30.6           | 10.7           | 8.2            | 3             | 70   |
| Δ                       | 2.CFS.30103.1 | 1.03                                | 30.9           | 10.8           | 8.2            | 3             | 70   |
| Δ                       | 2.CFS.30104.1 | 1.04                                | 31.2           | 10.9           | 8.3            | 3             | 70   |
|                         | 2.CFS.30105.1 | 1.05                                | 31.5           | 11.0           | 8.4            | 3             | 70   |
| Δ                       | 2.CFS.30106.1 | 1.06                                | 31.8           | 11.1           | 8.5            | 3             | 70   |
| Δ                       | 2.CFS.30107.1 | 1.07                                | 32.1           | 11.2           | 8.6            | 3             | 70   |
| Δ                       | 2.CFS.30108.1 | 1.08                                | 32.4           | 11.3           | 8.6            | 3             | 70   |
| Δ                       | 2.CFS.30109.1 | 1.09                                | 32.7           | 11.4           | 8.7            | 3             | 70   |
|                         | 2.CFS.30110.1 | 1.10                                | 33.0           | 11.5           | 8.8            | 3             | 70   |
| Δ                       | 2.CFS.30111.1 | 1.11                                | 33.3           | 11.6           | 8.9            | 3             | 70   |
| Δ                       | 2.CFS.30112.1 | 1.12                                | 33.6           | 11.7           | 9.0            | 3             | 70   |
| Δ                       | 2.CFS.30113.1 | 1.13                                | 33.9           | 11.8           | 9.0            | 3             | 70   |
| Δ                       | 2.CFS.30114.1 | 1.14                                | 34.2           | 11.9           | 9.1            | 3             | 70   |
|                         | 2.CFS.30115.1 | 1.15                                | 34.5           | 12.1           | 9.2            | 3             | 70   |
| Δ                       | 2.CFS.30116.1 | 1.16                                | 34.8           | 12.2           | 9.3            | 3             | 70   |
| Δ                       | 2.CFS.30117.1 | 1.17                                | 35.1           | 12.3           | 9.4            | 3             | 70   |
| Δ                       | 2.CFS.30118.1 | 1.18                                | 35.4           | 12.4           | 9.4            | 3             | 70   |
| Δ                       | 2.CFS.30119.1 | 1.19                                | 35.7           | 12.5           | 9.5            | 3             | 70   |
|                         | 2.CFS.30120.1 | 1.20                                | 36.0           | 12.6           | 9.6            | 3             | 70   |
|                         |               |                                     |                |                |                |               |      |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 30 x d - beschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

|                                         | Werkstoff-     |                                                     |        |                    |                         |                         | <b>V</b> <sub>c</sub> |  |
|-----------------------------------------|----------------|-----------------------------------------------------|--------|--------------------|-------------------------|-------------------------|-----------------------|--|
|                                         | gruppe         | Werkstoff                                           | Wr.Nr. | DIN                | AISI/ASTM/UNS           | I                       | [m/min]               |  |
|                                         |                |                                                     |        |                    |                         | $\emptyset d1 \leq 0.4$ | Ød1>0.4               |  |
|                                         |                |                                                     | 1.0301 | C10                | AISI 1010               |                         |                       |  |
|                                         | P              |                                                     | 1.0401 | C15                | AISI 1015               |                         |                       |  |
|                                         |                | Stähle unlegiert                                    | 1.1191 | C45E/CK45          | AISI 1045               | 5 – 40                  | 40 – 60               |  |
|                                         |                | Rm < 800 N/mm <sup>2</sup>                          | 1.0044 | S275JR             | AISI 1020               |                         |                       |  |
| VI//                                    |                |                                                     | 1.0715 | 11SMn30            | AISI 1215               |                         |                       |  |
| \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ |                |                                                     | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                         |                       |  |
| Φ*                                      |                | Could be less to the                                | 1.7131 | 16MnCr5            | AISI 5115               |                         |                       |  |
|                                         |                | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6             | AISI 52100              | 5 – 25                  | 25 – 50               |  |
|                                         |                | 1011 > 300 10/111111                                | 1.7225 | 42CrMo4            | AISI 4140               |                         |                       |  |
| d1                                      |                |                                                     | 1.2842 | 90MnCrV8           | AISI O2                 |                         |                       |  |
|                                         |                | NA 1                                                | 1.2379 | X153CrMoV12        | AISI D2                 |                         |                       |  |
| Q <sub>1</sub>                          |                | Werkzeugstähle<br>hochlegiert                       | 1.2436 | X210CrW12          | AISI D4/D6              | 5 – 20                  | 20 – 35               |  |
|                                         |                | Rm < 1200 N/mm <sup>2</sup>                         | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 3 – 20                  | 20-33                 |  |
| 1Q <sub>x</sub>                         |                |                                                     | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                         |                       |  |
| IQ <sub>x</sub>                         |                | Rostfreie Stähle-                                   | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                         |                       |  |
|                                         | M              | ferritisch                                          | 1.4105 | X6CrMoS17          | AISI 430F               |                         |                       |  |
|                                         | IVI            | Rostfreie Stähle-                                   | 1.4034 | X46Cr13            | AISI 420C               |                         |                       |  |
|                                         |                | martensitisch                                       | 1.4112 | X90CrMoV18         | AISI 440B               |                         |                       |  |
|                                         |                | Rostfreie Stähle-                                   | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                         |                       |  |
|                                         |                | martensitisch – PH                                  | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                         |                       |  |
|                                         |                |                                                     | 1.4301 | X5CrNi 18-10       | AISI 304                |                         |                       |  |
|                                         |                | Rostfreie Stähle-                                   | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                         |                       |  |
|                                         |                | austenitisch                                        | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                         |                       |  |
|                                         |                |                                                     | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                         |                       |  |
|                                         |                |                                                     | 0.6020 | GG20               | ASTM 30                 |                         | FO. 100               |  |
|                                         | K              | Cussian                                             | 0.6030 | GG30               | ASTM 40B                | 5 – 40                  | 50 – 100              |  |
|                                         |                | Gusseisen                                           | 0.7040 | GGG40              | ASTM 60-40-18           | 5 – 40                  | 40 – 80               |  |
|                                         |                |                                                     | 0.7060 | GGG60              | ASTM 80-60-03           |                         | 40 - 80               |  |
|                                         |                | Aluminium                                           | 3.2315 | AlMgSi1            | ASTM 6351               |                         |                       |  |
|                                         | N              | Knetlegierungen                                     | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 5 – 40                  | 60 – 120              |  |
|                                         | 1 4            | Aluminium                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 5 – 40                  | 50 – 80               |  |
|                                         |                | Druckgusslegierungen                                | 3.2381 | GD-AlSi10Mg        | UNS A03590              | 5 – 40                  | 30 - 60               |  |
|                                         |                | Kupfer                                              | 2.004  | Cu-OF / CW008A     | UNS C10100              |                         |                       |  |
|                                         |                | Kupiei                                              | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                         |                       |  |
|                                         |                | Messing bleifrei                                    | 2.0321 | CuZn37 CW508L      | UNS C27400              |                         |                       |  |
|                                         |                | iviessing bienter                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                         |                       |  |
|                                         |                | Messing, Bronze                                     | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 5 – 40                  | 60 – 100              |  |
|                                         |                | Rm < 400 N/mm <sup>2</sup>                          | 2.102  | CuSn6              | UNS C51900              | 3 40                    | 40 – 60               |  |
|                                         |                | Bronze                                              | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20                  | 20 – 40               |  |
|                                         |                | Rm < 600 N/mm <sup>2</sup>                          | 2.096  | CuAl9Mn2           | UNS C63200              |                         | 20 10                 |  |
|                                         |                |                                                     | 2.4856 |                    | Inconel 625             |                         |                       |  |
|                                         | $S_1$          | Hitzebeständige                                     | 2.4668 |                    | Inconel 718             |                         |                       |  |
|                                         | <b>9</b> 1     | Stähle                                              | 2.4617 | NiMo28             | Hastelloy B-2           |                         |                       |  |
|                                         |                |                                                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                         |                       |  |
|                                         |                | Titan rein                                          | 3.7035 | Gr.2               | ASTM B348 / F67         |                         |                       |  |
|                                         | $S_2$          |                                                     | 3.7065 | Gr.4               | ASTM B348 / F68         |                         |                       |  |
|                                         |                | Titan Legierungen                                   | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                         |                       |  |
|                                         |                |                                                     | 9.9367 | TiAl6Nb7           | ASTM F1295              |                         |                       |  |
|                                         | $S_3$          | CrCo-Legierungen                                    | 2.4964 | CoCr20W15Ni        | Haynes 25               |                         |                       |  |
|                                         | - 5            | <u> </u>                                            |        | CrCoMo28           | ASTM F1537              |                         |                       |  |
|                                         | H <sub>1</sub> | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4        | AISI O1                 |                         |                       |  |
|                                         | $H_2$          | Stähle gehärtet<br>≥ 55 HRC                         | 1.2379 | X153CrMoV12        | AISI D2                 |                         |                       |  |



ANWENDUNGSEMPFEHLUNG





|                |                |               |                  | <b>f</b> [m       | m/U]               |        |                 |
|----------------|----------------|---------------|------------------|-------------------|--------------------|--------|-----------------|
| Q <sub>1</sub> | Q <sub>x</sub> | Ød1           | Ød1              | Ød1               | Ød1                | Ød1    | Ød1             |
|                |                | 0.2 mm        | 0.3 mm           | 0.4 mm            | 0.6 mm             | 0.8 mm | 1.0 mm – 1.2 mm |
|                |                | f             | f                | f                 | f                  | f      | f               |
| 7xd1           | 0.5xd1         | 0.005         | 0.010            | 0.015             | 0.030              | 0.040  | 0.060           |
| 7x01           | U.SXUT         | 0.005         | 0.010            | 0.015             | 0.030              | 0.040  | 0.060           |
|                |                |               |                  |                   |                    |        |                 |
| 7xd1           | 0.5xd1         | 0.003 – 0.005 | 0.008 - 0.010    | 0.012 – 0.015     | 0.020 – 0.025      | 0.035  | 0.050           |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
| 7xd1           | 1xd1           | 0.004         | 0.008            | 0.010             | 0.015              | 0.025  | 0.040           |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               | Emp              | fohlen: CrazyDril | l Flex SST-Inox 30 | 0 x d1 |                 |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
| 7xd1           | 1xd1           | 0.005         | 0.010            | 0.015             | 0.020              | 0.035  | 0.050           |
| 7xd1           | 1xd1           | 0.015         | 0.040            | 0.050             | 0.080              | 0.100  | 0.120           |
| 7xd1           | 1xd1           | 0.015         | 0.040            | 0.050             | 0.080              | 0.100  | 0.120           |
| 7,01           | TXUT           | 0.015         |                  |                   |                    |        | 0.120           |
|                |                |               |                  |                   | l Flex Titanium 3  |        |                 |
|                |                |               | Emp              | fohlen: CrazyDri  | l Flex SST-Inox 30 | 0 x d1 |                 |
| 7xd1           | 1xd1           | 0.010         | 0.030            | 0.040             | 0.060              | 0.080  | 0.100           |
| 2.5xd1         | 0.5xd1         | 0.004         | 0.006            | 0.010             | 0.015              | 0.025  | 0.040           |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               | Emp <sup>,</sup> | fohlen: CrazyDril | l Flex SST-Inox 30 | 0 x d1 |                 |
|                |                |               | Empf             | fohlen: CrazyDril | I Flex Titanium 3  | 0 x d1 |                 |
|                |                |               |                  |                   | I Flex Titanium 3  |        |                 |
|                |                |               |                  |                   | l Flex SST-Inox 30 |        |                 |
|                |                |               | 2.119            | 2.32,311          |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
|                |                |               |                  |                   |                    |        |                 |
| <br>           |                |               |                  |                   |                    |        |                 |



## CrazyDrill Flex Steel 30 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.1 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 30 x d wird mit einer äusseren Kühlmittelzufuhr verwendet. Die unbeschichtete Variante eignet sich überall, wo kleine Serien gefertigt werden.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

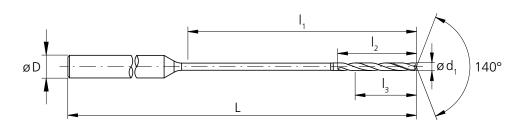
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.





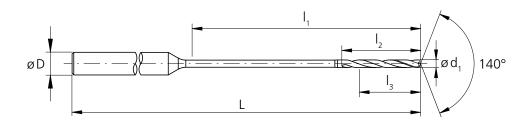



**Z**2



Nicht beschichtet




| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I,   |      | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|------|------|----------------|-----------|------|
| ■ ab l<br>∆ auf         |               | [mm]                                      | [mm] | [mm] | [mm]           | [mm]      | [mm] |
|                         | 2.CFS.30010.0 | 0.10                                      | 3.0  | 1.1  | 0.8            | 3         | 45   |
| Δ                       | 2.CFS.30011.0 | 0.11                                      | 3.3  | 1.2  | 0.9            | 3         | 45   |
| Δ                       | 2.CFS.30012.0 | 0.12                                      | 3.6  | 1.3  | 1.0            | 3         | 45   |
| Δ                       | 2.CFS.30013.0 | 0.13                                      | 3.9  | 1.4  | 1.0            | 3         | 45   |
| Δ                       | 2.CFS.30014.0 | 0.14                                      | 4.2  | 1.5  | 1.1            | 3         | 45   |
|                         | 2.CFS.30015.0 | 0.15                                      | 4.5  | 1.6  | 1.2            | 3         | 45   |
| Δ                       | 2.CFS.30016.0 | 0.16                                      | 4.8  | 1.7  | 1.3            | 3         | 45   |
| Δ                       | 2.CFS.30017.0 | 0.17                                      | 5.1  | 1.8  | 1.4            | 3         | 45   |
| Δ                       | 2.CFS.30018.0 | 0.18                                      | 5.4  | 1.9  | 1.4            | 3         | 45   |
| Δ                       | 2.CFS.30019.0 | 0.19                                      | 5.7  | 2.0  | 1.5            | 3         | 45   |
|                         | 2.CFS.30020.0 | 0.20                                      | 6.0  | 2.1  | 1.6            | 3         | 45   |
| Δ                       | 2.CFS.30021.0 | 0.21                                      | 6.3  | 2.2  | 1.7            | 3         | 45   |
| Δ                       | 2.CFS.30022.0 | 0.22                                      | 6.6  | 2.3  | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.30023.0 | 0.23                                      | 6.9  | 2.4  | 1.8            | 3         | 45   |
| Δ                       | 2.CFS.30024.0 | 0.24                                      | 7.2  | 2.5  | 1.9            | 3         | 45   |
|                         | 2.CFS.30025.0 | 0.25                                      | 7.5  | 2.6  | 2.0            | 3         | 45   |
| Δ                       | 2.CFS.30026.0 | 0.26                                      | 7.8  | 2.7  | 2.1            | 3         | 45   |
| Δ                       | 2.CFS.30027.0 | 0.27                                      | 8.1  | 2.8  | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.30028.0 | 0.28                                      | 8.4  | 2.9  | 2.2            | 3         | 45   |
| Δ                       | 2.CFS.30029.0 | 0.29                                      | 8.7  | 3.0  | 2.3            | 3         | 45   |
| •                       | 2.CFS.30030.0 | 0.30                                      | 9.0  | 3.2  | 2.4            | 3         | 50   |
| Δ                       | 2.CFS.30031.0 | 0.31                                      | 9.3  | 3.3  | 2.5            | 3         | 50   |
| Δ                       | 2.CFS.30032.0 | 0.32                                      | 9.6  | 3.4  | 2.6            | 3         | 50   |
| Δ                       | 2.CFS.30033.0 | 0.33                                      | 9.9  | 3.5  | 2.6            | 3         | 50   |
| Δ                       | 2.CFS.30034.0 | 0.34                                      | 10.2 | 3.6  | 2.7            | 3         | 50   |
|                         | 2.CFS.30035.0 | 0.35                                      | 10.5 | 3.7  | 2.8            | 3         | 50   |
| Δ                       | 2.CFS.30036.0 | 0.36                                      | 10.8 | 3.8  | 2.9            | 3         | 50   |
| Δ                       | 2.CFS.30037.0 | 0.37                                      | 11.1 | 3.9  | 3.0            | 3         | 50   |
| Δ                       | 2.CFS.30038.0 | 0.38                                      | 11.4 | 4.0  | 3.0            | 3         | 50   |
| Δ                       | 2.CFS.30039.0 | 0.39                                      | 11.7 | 4.1  | 3.1            | 3         | 50   |
| •                       | 2.CFS.30040.0 | 0.40                                      | 12.0 | 4.2  | 3.2            | 3         | 50   |
| Δ                       | 2.CFS.30041.0 | 0.41                                      | 12.3 | 4.3  | 3.3            | 3         | 50   |
| Δ                       | 2.CFS.30042.0 | 0.42                                      | 12.6 | 4.4  | 3.4            | 3         | 50   |
| Δ                       | 2.CFS.30043.0 | 0.43                                      | 12.9 | 4.5  | 3.4            | 3         | 50   |
| Δ                       | 2.CFS.30044.0 | 0.44                                      | 13.2 | 4.6  | 3.5            | 3         | 50   |
|                         | 2.CFS.30045.0 | 0.45                                      | 13.5 | 4.7  | 3.6            | 3         | 50   |
| Δ                       | 2.CFS.30046.0 | 0.46                                      | 13.8 | 4.8  | 3.7            | 3         | 50   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.



# CrazyDrill Flex Steel 30 x d - unbeschichtet

#### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab L<br>∆ auf         |               | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFS.30047.0 | 0.47                                      | 14.1           | 4.9            | 3.8            | 3         | 50   |
| Δ                       | 2.CFS.30048.0 | 0.48                                      | 14.4           | 5.0            | 3.8            | 3         | 50   |
| Δ                       | 2.CFS.30049.0 | 0.49                                      | 14.7           | 5.1            | 3.9            | 3         | 50   |
|                         | 2.CFS.30050.0 | 0.50                                      | 15.0           | 5.3            | 4.0            | 3         | 53   |
| Δ                       | 2.CFS.30051.0 | 0.51                                      | 15.3           | 5.4            | 4.1            | 3         | 53   |
| Δ                       | 2.CFS.30052.0 | 0.52                                      | 15.6           | 5.5            | 4.2            | 3         | 53   |
| Δ                       | 2.CFS.30053.0 | 0.53                                      | 15.9           | 5.6            | 4.2            | 3         | 53   |
| Δ                       | 2.CFS.30054.0 | 0.54                                      | 16.2           | 5.7            | 4.3            | 3         | 53   |
|                         | 2.CFS.30055.0 | 0.55                                      | 16.5           | 5.8            | 4.4            | 3         | 53   |
| Δ                       | 2.CFS.30056.0 | 0.56                                      | 16.8           | 5.9            | 4.5            | 3         | 53   |
| Δ                       | 2.CFS.30057.0 | 0.57                                      | 17.1           | 6.0            | 4.6            | 3         | 53   |
| Δ                       | 2.CFS.30058.0 | 0.58                                      | 17.4           | 6.1            | 4.6            | 3         | 53   |
| Δ                       | 2.CFS.30059.0 | 0.59                                      | 17.7           | 6.2            | 4.7            | 3         | 53   |
|                         | 2.CFS.30060.0 | 0.60                                      | 18.0           | 6.3            | 4.8            | 3         | 53   |
| Δ                       | 2.CFS.30061.0 | 0.61                                      | 18.3           | 6.4            | 4.9            | 3         | 53   |
| Δ                       | 2.CFS.30062.0 | 0.62                                      | 18.6           | 6.5            | 5.0            | 3         | 53   |
| Δ                       | 2.CFS.30063.0 | 0.63                                      | 18.9           | 6.6            | 5.0            | 3         | 53   |
| Δ                       | 2.CFS.30064.0 | 0.64                                      | 19.2           | 6.7            | 5.1            | 3         | 53   |
|                         | 2.CFS.30065.0 | 0.65                                      | 19.5           | 6.8            | 5.2            | 3         | 53   |
| Δ                       | 2.CFS.30066.0 | 0.66                                      | 19.8           | 6.9            | 5.3            | 3         | 53   |
| Δ                       | 2.CFS.30067.0 | 0.67                                      | 20.1           | 7.0            | 5.4            | 3         | 53   |
| Δ                       | 2.CFS.30068.0 | 0.68                                      | 20.4           | 7.1            | 5.4            | 3         | 53   |
| Δ                       | 2.CFS.30069.0 | 0.69                                      | 20.7           | 7.2            | 5.5            | 3         | 53   |
|                         | 2.CFS.30070.0 | 0.70                                      | 21.0           | 7.4            | 5.6            | 3         | 60   |
| Δ                       | 2.CFS.30071.0 | 0.71                                      | 21.3           | 7.5            | 5.7            | 3         | 60   |
| Δ                       | 2.CFS.30072.0 | 0.72                                      | 21.6           | 7.6            | 5.8            | 3         | 60   |
| Δ                       | 2.CFS.30073.0 | 0.73                                      | 21.9           | 7.7            | 5.8            | 3         | 60   |
| Δ                       | 2.CFS.30074.0 | 0.74                                      | 22.2           | 7.8            | 5.9            | 3         | 60   |
|                         | 2.CFS.30075.0 | 0.75                                      | 22.5           | 7.9            | 6.0            | 3         | 60   |
| Δ                       | 2.CFS.30076.0 | 0.76                                      | 22.8           | 8.0            | 6.1            | 3         | 60   |
| Δ                       | 2.CFS.30077.0 | 0.77                                      | 23.1           | 8.1            | 6.2            | 3         | 60   |
| Δ                       | 2.CFS.30078.0 | 0.78                                      | 23.4           | 8.2            | 6.2            | 3         | 60   |
| Δ                       | 2.CFS.30079.0 | 0.79                                      | 23.7           | 8.3            | 6.3            | 3         | 60   |
|                         | 2.CFS.30080.0 | 0.80                                      | 24.0           | 8.4            | 6.4            | 3         | 60   |
| Δ                       | 2.CFS.30081.0 | 0.81                                      | 24.3           | 8.5            | 6.5            | 3         | 60   |
| Δ                       | 2.CFS.30082.0 | 0.82                                      | 24.6           | 8.6            | 6.6            | 3         | 60   |
| Δ                       | 2.CFS.30083.0 | 0.83                                      | 24.9           | 8.7            | 6.6            | 3         | 60   |

<sup>■</sup> Ab Lager verfügbar.

Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2

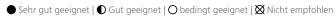


Nicht beschichtet

| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>l</b> <sub>3</sub> | <b>D</b><br>(h6) | L<br>[mm] |
|-------------------------|---------------|---------------------------------------------------|----------------------------|------------------------------|-----------------------|------------------|-----------|
| ■ <                     |               |                                                   |                            |                              |                       |                  |           |
| Δ                       | 2.CFS.30084.0 | 0.84                                              | 25.2                       | 8.8                          | 6.7                   | 3                | 60        |
| •                       | 2.CFS.30085.0 | 0.85                                              | 25.5                       | 8.9                          | 6.8                   | 3                | 64        |
| Δ                       | 2.CFS.30086.0 | 0.86                                              | 25.8                       | 9.0                          | 6.9                   | 3                | 64        |
| Δ                       | 2.CFS.30087.0 | 0.87                                              | 26.1                       | 9.1                          | 7.0                   | 3                | 64        |
| Δ                       | 2.CFS.30088.0 | 0.88                                              | 26.4                       | 9.2                          | 7.0                   | 3                | 64        |
| Δ                       | 2.CFS.30089.0 | 0.89                                              | 26.7                       | 9.3                          | 7.1                   | 3                | 64        |
| •                       | 2.CFS.30090.0 | 0.90                                              | 27.0                       | 9.5                          | 7.2                   | 3                | 64        |
| Δ                       | 2.CFS.30091.0 | 0.91                                              | 27.3                       | 9.6                          | 7.3                   | 3                | 64        |
| Δ                       | 2.CFS.30092.0 | 0.92                                              | 27.6                       | 9.7                          | 7.4                   | 3                | 64        |
| Δ                       | 2.CFS.30093.0 | 0.93                                              | 27.9                       | 9.8                          | 7.4                   | 3                | 64        |
| Δ                       | 2.CFS.30094.0 | 0.94                                              | 28.2                       | 9.9                          | 7.5                   | 3                | 64        |
| •                       | 2.CFS.30095.0 | 0.95                                              | 28.5                       | 10.0                         | 7.6                   | 3                | 64        |
| Δ                       | 2.CFS.30096.0 | 0.96                                              | 28.8                       | 10.1                         | 7.7                   | 3                | 64        |
| Δ                       | 2.CFS.30097.0 | 0.97                                              | 29.1                       | 10.2                         | 7.8                   | 3                | 64        |
| Δ                       | 2.CFS.30098.0 | 0.98                                              | 29.4                       | 10.3                         | 7.8                   | 3                | 64        |
| Δ                       | 2.CFS.30099.0 | 0.99                                              | 29.7                       | 10.4                         | 7.9                   | 3                | 64        |
| •                       | 2.CFS.30100.0 | 1.00                                              | 30.0                       | 10.5                         | 8.0                   | 3                | 70        |
| Δ                       | 2.CFS.30101.0 | 1.01                                              | 30.3                       | 10.6                         | 8.1                   | 3                | 70        |
| Δ                       | 2.CFS.30102.0 | 1.02                                              | 30.6                       | 10.7                         | 8.2                   | 3                | 70        |
| Δ                       | 2.CFS.30103.0 | 1.03                                              | 30.9                       | 10.8                         | 8.2                   | 3                | 70        |
| Δ                       | 2.CFS.30104.0 | 1.04                                              | 31.2                       | 10.9                         | 8.3                   | 3                | 70        |
| •                       | 2.CFS.30105.0 | 1.05                                              | 31.5                       | 11.0                         | 8.4                   | 3                | 70        |
| Δ                       | 2.CFS.30106.0 | 1.06                                              | 31.8                       | 11.1                         | 8.5                   | 3                | 70        |
| Δ                       | 2.CFS.30107.0 | 1.07                                              | 32.1                       | 11.2                         | 8.6                   | 3                | 70        |
| Δ                       | 2.CFS.30108.0 | 1.08                                              | 32.4                       | 11.3                         | 8.6                   | 3                | 70        |
| Δ                       | 2.CFS.30109.0 | 1.09                                              | 32.7                       | 11.4                         | 8.7                   | 3                | 70        |
| •                       | 2.CFS.30110.0 | 1.10                                              | 33.0                       | 11.6                         | 8.8                   | 3                | 70        |
| Δ                       | 2.CFS.30111.0 | 1.11                                              | 33.3                       | 11.7                         | 8.9                   | 3                | 70        |
| Δ                       | 2.CFS.30112.0 | 1.12                                              | 33.6                       | 11.8                         | 9.0                   | 3                | 70        |
| Δ                       | 2.CFS.30113.0 | 1.13                                              | 33.9                       | 11.9                         | 9.0                   | 3                | 70        |
| Δ                       | 2.CFS.30114.0 | 1.14                                              | 34.2                       | 12.0                         | 9.1                   | 3                | 70        |
| •                       | 2.CFS.30115.0 | 1.15                                              | 34.5                       | 12.1                         | 9.2                   | 3                | 70        |
| Δ                       | 2.CFS.30116.0 | 1.16                                              | 34.8                       | 12.2                         | 9.3                   | 3                | 70        |
| Δ                       | 2.CFS.30117.0 | 1.17                                              | 35.1                       | 12.3                         | 9.4                   | 3                | 70        |
| Δ                       | 2.CFS.30118.0 | 1.18                                              | 35.4                       | 12.4                         | 9.4                   | 3                | 70        |
| Δ                       | 2.CFS.30119.0 | 1.19                                              | 35.7                       | 12.5                         | 9.5                   | 3                | 70        |
| •                       | 2.CFS.30120.0 | 1.20                                              | 36.0                       | 12.6                         | 9.6                   | 3                | 70        |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.




# CrazyDrill Flex Steel 30 x d - unbeschichtet

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-                                                    | Werkstoff                                                                                                | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>ν</b> <sub>c</sub><br>[m/min] |                     |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|--------------------|-------------------------|----------------------------------|---------------------|--|
| gruppe                                                        |                                                                                                          |        |                    |                         | iπν<br>Ød1≤0.4                   | Ød1>0.4             |  |
|                                                               |                                                                                                          | 1.0301 | C10                | AISI 1010               | 20130.4                          | 20170.4             |  |
| P Q <sub>1</sub> Q <sub>2</sub> Q <sub>x</sub> Q <sub>x</sub> | Stähle unlegiert<br>Rm < 800 N/mm²                                                                       | 1.0401 | C15                | AISI 1015               | 5 – 40                           | 40 – 60             |  |
|                                                               |                                                                                                          | 1.1191 | C45E/CK45          | AISI 1045               |                                  |                     |  |
|                                                               |                                                                                                          | 1.0044 | S275JR             | AISI 1020               |                                  |                     |  |
|                                                               |                                                                                                          | 1.0044 | 11SMn30            | AISI 1215               |                                  |                     |  |
|                                                               |                                                                                                          | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |                     |  |
|                                                               | Stähle niedriglegiert<br>Rm > 900 N/mm²                                                                  | 1.7131 | 16MnCr5            | AISI 5115               | 5 – 25                           | 25 – 50             |  |
|                                                               |                                                                                                          | 1.3505 | 100Cr6             | AISI 52100              |                                  |                     |  |
|                                                               |                                                                                                          | 1.7225 | 42CrMo4            | AISI 4140               | 3 23                             |                     |  |
|                                                               |                                                                                                          | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |                     |  |
|                                                               | Werkzeugstähle<br>hochlegiert<br>Rm < 1200 N/mm²<br>Rostfreie Stähle-<br>ferritisch<br>Rostfreie Stähle- | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                     |  |
|                                                               |                                                                                                          | 1.2436 | X210CrW12          | AISI D4/D6              | 5 – 20                           | 20 – 35             |  |
|                                                               |                                                                                                          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    |                                  |                     |  |
|                                                               |                                                                                                          | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |                     |  |
|                                                               |                                                                                                          | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |                     |  |
|                                                               |                                                                                                          | 1.4105 | X6CrMoS17          | AISI 430F               |                                  |                     |  |
|                                                               |                                                                                                          | 1.4034 | X46Cr13            | AISI 420C               |                                  |                     |  |
|                                                               | martensitisch  Rostfreie Stähle- martensitisch – PH                                                      | 1.4112 | X90CrMoV18         | AISI 440B               |                                  |                     |  |
|                                                               |                                                                                                          | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |                     |  |
|                                                               |                                                                                                          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |                     |  |
|                                                               |                                                                                                          | 1.4301 | X5CrNi 18-10       | AISI 304                |                                  |                     |  |
|                                                               | Rostfreie Stähle-<br>austenitisch                                                                        | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |                     |  |
|                                                               |                                                                                                          | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |                     |  |
|                                                               |                                                                                                          | 1.4539 | X1NiCrMoCu 25-20-5 |                         |                                  |                     |  |
| K                                                             | Gusseisen                                                                                                | 0.6020 | GG20               | ASTM 30                 | 5 – 40                           | 50 – 100            |  |
|                                                               |                                                                                                          | 0.6030 | GG30               | ASTM 40B                |                                  |                     |  |
|                                                               |                                                                                                          | 0.7040 | GGG40              | ASTM 60-40-18           |                                  | 40 – 80             |  |
|                                                               |                                                                                                          | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |                     |  |
|                                                               | Aluminium<br>Knetlegierungen<br>Aluminium<br>Druckgusslegierungen                                        | 3.2315 | AlMgSi1            | ASTM 6351               | 5 – 40<br>5 – 40                 | 60 – 120<br>50 – 80 |  |
| INI.                                                          |                                                                                                          | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                                  |                     |  |
| N                                                             |                                                                                                          | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |                     |  |
|                                                               |                                                                                                          |        | GD-AlSi10Mg        | UNS A03590              |                                  |                     |  |
|                                                               | Kupfer  Messing bleifrei                                                                                 | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                  |                     |  |
|                                                               |                                                                                                          | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                                  |                     |  |
|                                                               |                                                                                                          | 2.0321 | CuZn37 CW508L      | UNS C27400              |                                  |                     |  |
|                                                               |                                                                                                          | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |                     |  |
|                                                               | Messing, Bronze<br>Rm < 400 N/mm²                                                                        | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 5 – 40                           | 60 – 100            |  |
|                                                               |                                                                                                          | 2.102  | CuSn6              | UNS C51900              | 5 – 40                           | 40 – 60             |  |
|                                                               | Bronze<br>Rm < 600 N/mm <sup>2</sup>                                                                     | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20                           | 20 – 40             |  |
|                                                               |                                                                                                          | 2.096  | CuAl9Mn2           | UNS C63200              | J - ZU                           |                     |  |
|                                                               | Hitzebeständige<br>Stähle                                                                                | 2.4856 |                    | Inconel 625             |                                  |                     |  |
| $S_1$                                                         |                                                                                                          | 2.4668 |                    | Inconel 718             |                                  |                     |  |
| <b>S</b> <sub>2</sub>                                         |                                                                                                          | 2.4617 | NiMo28             | Hastelloy B-2           |                                  |                     |  |
|                                                               |                                                                                                          | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |                     |  |
|                                                               | Litan roin                                                                                               | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |                     |  |
|                                                               |                                                                                                          | 3.7065 | Gr.4               | ASTM B348 / F68         |                                  |                     |  |
| 2                                                             |                                                                                                          | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |                     |  |
| S <sub>3</sub> H <sub>1</sub> H <sub>2</sub>                  |                                                                                                          | 9.9367 | TiAl6Nb7           | ASTM F1295              |                                  |                     |  |
|                                                               |                                                                                                          | 2.4964 | CoCr20W15Ni        | Haynes 25               |                                  |                     |  |
|                                                               |                                                                                                          |        | CrCoMo28           | ASTM F1537              |                                  |                     |  |
|                                                               | Stähle gehärtet<br>< 55 HRC                                                                              | 1.2510 | 100MnCrMoW4        | AISI O1                 |                                  |                     |  |
|                                                               | Stähle gehärtet                                                                                          | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |                     |  |



ANWENDUNGSEMPFEHLUNG





|                |                |                    |                    |                    | <b>f</b> [mm/U]                        |                    |                    |                           |
|----------------|----------------|--------------------|--------------------|--------------------|----------------------------------------|--------------------|--------------------|---------------------------|
| Q <sub>1</sub> | Q <sub>x</sub> | Ød1                | Ød1                | Ød1                | Ød1                                    | Ød1                | Ød1                | Ød1                       |
|                |                | 0.1 mm<br><b>f</b> | 0.2 mm<br><b>f</b> | 0.3 mm<br><b>f</b> | 0.4 mm<br><b>f</b>                     | 0.6 mm<br><b>f</b> | 0.8 mm<br><b>f</b> | 1.0 mm-1.2 mm<br><b>f</b> |
|                |                | •                  | •                  | •                  | •                                      | •                  | •                  | •                         |
| 7xd1           | 0.5xd1         | 0.002              | 0.005              | 0.010              | 0.015                                  | 0.030              | 0.040              | 0.060                     |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
| 7xd1           | 0.5xd1         | 0.002              | 0.003 - 0.005      | 0.008 - 0.010      | 0.012 - 0.015                          | 0.020 - 0.025      | 0.035              | 0.050                     |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
| 7xd1           | 1xd1           | 0.0005             | 0.004              | 0.008              | 0.010                                  | 0.015              | 0.025              | 0.040                     |
|                |                |                    |                    | I.                 |                                        | l                  | <u> </u>           | I.                        |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    | Emnfohlen: (       | CrazyDrill Flex SS                     | T-Inov 30 v d1     |                    |                           |
|                |                |                    |                    | Emplomen.          | irazybilli rick 33                     | 1 1110X 30 X 41    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
| 7xd1           | 1xd1           | 0.002              | 0.005              | 0.010              | 0.015                                  | 0.020              | 0.035              | 0.050                     |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
| 7xd1           | 1xd1           | 0.003              | 0.015              | 0.040              | 0.050                                  | 0.080              | 0.100              | 0.120                     |
| 7xd1           | 1xd1           | 0.003              | 0.015              | 0.040              | 0.050                                  | 0.080              | 0.100              | 0.120                     |
|                |                |                    |                    | Empfohlen: C       | razyDrill Flex Tit                     | anium 30 x d1      |                    |                           |
|                |                |                    |                    | Empfohlen: (       | CrazyDrill Flex SS                     | T-Inox 30 x d1     |                    |                           |
| 7xd1           | 1xd1           | 0.004              | 0.010              | 0.030              | 0.040                                  | 0.060              | 0.080              | 0.100                     |
| 2.5xd1         | 0.5xd1         | 0.002              | 0.004              | 0.006              | 0.010                                  | 0.015              | 0.025              | 0.040                     |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    | Empfohlen: 0       | CrazyDrill Flex SS                     | T-Inox 30 x d1     |                    |                           |
|                |                |                    |                    | Frankallan (       | ······································ | i 20 ·· -l1        |                    |                           |
|                |                |                    |                    |                    | razyDrill Flex Tit                     |                    |                    |                           |
|                |                |                    |                    |                    | razyDrill Flex Tit                     |                    |                    |                           |
|                |                |                    |                    | Empfohlen: 0       | CrazyDrill Flex SS                     | T-Inox 30 x d1     |                    | I                         |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    |                           |
|                |                |                    |                    |                    |                                        |                    |                    | 1                         |



### CrazyDrill Flex Steel 50 x d - beschichtet

#### **BOHREN MIT INTEGRIERTER KÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.3 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 50 x d verfügt über im Schaft integrierte Kühlkanäle, die für eine regelmässige, massive Kühlung der Bohrspitze sorgen. So wird die Temperatur konstant unter Kontrolle gehalten, die Späne aus der Spannut sowie Bohrung gespült und eine verbesserte Standzeit erreicht. Die beschichtete Variante garantiert eine höhere Standzeit und eignet sich damit im Vgl. zur unbeschichteten Variante zum Bohren von grösseren Serien. Auch die Oberflächenqualität profitiert von der Hochleistungsbeschichtung

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

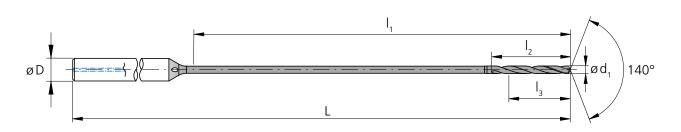
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - beschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







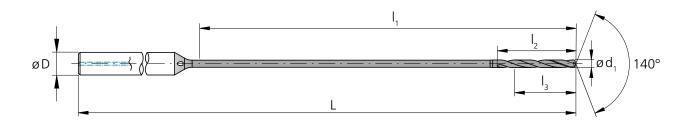

**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> | <b>l</b> <sub>2</sub> | <b>l</b> <sub>3</sub> | <b>D</b> (h6) | L<br>[mm] |
|-------------------------|------------------|---------------------------------------------------|-----------------------|-----------------------|-----------------------|---------------|-----------|
| □ □                     |                  |                                                   |                       |                       |                       |               |           |
|                         | 2.CFS.50030.IK.1 | 0.30                                              | 15.0                  | 3.1                   | 2.4                   | 3             | 53        |
| Δ                       | 2.CFS.50031.IK.1 | 0.31                                              | 15.5                  | 3.2                   | 2.5                   | 3             | 53        |
| Δ                       | 2.CFS.50032.IK.1 | 0.32                                              | 16.0                  | 3.3                   | 2.6                   | 3             | 53        |
| Δ                       | 2.CFS.50033.IK.1 | 0.33                                              | 16.5                  | 3.4                   | 2.6                   | 3             | 53        |
| Δ                       | 2.CFS.50034.IK.1 | 0.34                                              | 17.0                  | 3.5                   | 2.7                   | 3             | 53        |
| -                       | 2.CFS.50035.IK.1 | 0.35                                              | 17.5                  | 3.7                   | 2.8                   | 3             | 60        |
| Δ                       | 2.CFS.50036.IK.1 | 0.36                                              | 18.0                  | 3.8                   | 2.9                   | 3             | 60        |
| Δ                       | 2.CFS.50037.IK.1 | 0.37                                              | 18.5                  | 3.9                   | 3.0                   | 3             | 60        |
| Δ                       | 2.CFS.50038.IK.1 | 0.38                                              | 19.0                  | 4.0                   | 3.0                   | 3             | 60        |
| Δ                       | 2.CFS.50039.IK.1 | 0.39                                              | 19.5                  | 4.1                   | 3.1                   | 3             | 60        |
| •                       | 2.CFS.50040.IK.1 | 0.40                                              | 20.0                  | 4.2                   | 3.2                   | 3             | 60        |
| Δ                       | 2.CFS.50041.IK.1 | 0.41                                              | 20.5                  | 4.3                   | 3.3                   | 3             | 60        |
| Δ                       | 2.CFS.50042.IK.1 | 0.42                                              | 21.0                  | 4.4                   | 3.4                   | 3             | 60        |
| Δ                       | 2.CFS.50043.IK.1 | 0.43                                              | 21.5                  | 4.5                   | 3.4                   | 3             | 60        |
| Δ                       | 2.CFS.50044.IK.1 | 0.44                                              | 22.0                  | 4.6                   | 3.5                   | 3             | 60        |
| •                       | 2.CFS.50045.IK.1 | 0.45                                              | 22.5                  | 4.7                   | 3.6                   | 3             | 60        |
| Δ                       | 2.CFS.50046.IK.1 | 0.46                                              | 23.0                  | 4.8                   | 3.7                   | 3             | 60        |
| Δ                       | 2.CFS.50047.IK.1 | 0.47                                              | 23.5                  | 4.9                   | 3.8                   | 3             | 60        |
| Δ                       | 2.CFS.50048.IK.1 | 0.48                                              | 24.0                  | 5.0                   | 3.8                   | 3             | 60        |
| Δ                       | 2.CFS.50049.IK.1 | 0.49                                              | 24.5                  | 5.1                   | 3.9                   | 3             | 60        |
| •                       | 2.CFS.50050.IK.1 | 0.50                                              | 25.0                  | 5.2                   | 4.0                   | 3             | 64        |
| Δ                       | 2.CFS.50051.IK.1 | 0.51                                              | 25.5                  | 5.3                   | 4.1                   | 3             | 64        |
| Δ                       | 2.CFS.50052.IK.1 | 0.52                                              | 26.0                  | 5.4                   | 4.2                   | 3             | 64        |
| Δ                       | 2.CFS.50053.IK.1 | 0.53                                              | 26.5                  | 5.5                   | 4.2                   | 3             | 64        |
| Δ                       | 2.CFS.50054.IK.1 | 0.54                                              | 27.0                  | 5.6                   | 4.3                   | 3             | 64        |
|                         | 2.CFS.50055.IK.1 | 0.55                                              | 27.5                  | 5.8                   | 4.4                   | 3             | 64        |
| Δ                       | 2.CFS.50056.IK.1 | 0.56                                              | 28.0                  | 5.9                   | 4.5                   | 3             | 64        |
| Δ                       | 2.CFS.50057.IK.1 | 0.57                                              | 28.5                  | 6.0                   | 4.6                   | 3             | 64        |
| Δ                       | 2.CFS.50058.IK.1 | 0.58                                              | 29.0                  | 6.1                   | 4.6                   | 3             | 64        |
| Δ                       | 2.CFS.50059.IK.1 | 0.59                                              | 29.5                  | 6.2                   | 4.7                   | 3             | 64        |
| •                       | 2.CFS.50060.IK.1 | 0.60                                              | 30.0                  | 6.3                   | 4.8                   | 3             | 70        |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flexpilot Steel CrazyDrill Crosspilot



## CrazyDrill Flex Steel 50 x d - beschichtet

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab Lager ∆ auf Anfra  |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFS.50061.IK.1 | 0.61                                      | 30.5           | 6.4            | 4.9            | 3         | 70   |
| Δ                       | 2.CFS.50062.IK.1 | 0.62                                      | 31.0           | 6.5            | 5.0            | 3         | 70   |
| Δ                       | 2.CFS.50063.IK.1 | 0.63                                      | 31.5           | 6.6            | 5.0            | 3         | 70   |
| Δ                       | 2.CFS.50064.IK.1 | 0.64                                      | 32.0           | 6.7            | 5.1            | 3         | 70   |
|                         | 2.CFS.50065.IK.1 | 0.65                                      | 32.5           | 6.8            | 5.2            | 3         | 70   |
| Δ                       | 2.CFS.50066.IK.1 | 0.66                                      | 33.0           | 6.9            | 5.3            | 3         | 70   |
| Δ                       | 2.CFS.50067.IK.1 | 0.67                                      | 33.5           | 7.0            | 5.4            | 3         | 70   |
| Δ                       | 2.CFS.50068.IK.1 | 0.68                                      | 34.0           | 7.1            | 5.4            | 3         | 70   |
| Δ                       | 2.CFS.50069.IK.1 | 0.69                                      | 34.5           | 7.2            | 5.5            | 3         | 70   |
|                         | 2.CFS.50070.IK.1 | 0.70                                      | 35.0           | 7.3            | 5.6            | 3         | 75   |
| Δ                       | 2.CFS.50071.IK.1 | 0.71                                      | 35.5           | 7.4            | 5.7            | 3         | 75   |
| Δ                       | 2.CFS.50072.IK.1 | 0.72                                      | 36.0           | 7.5            | 5.8            | 3         | 75   |
| Δ                       | 2.CFS.50073.IK.1 | 0.73                                      | 36.5           | 7.6            | 5.8            | 3         | 75   |
| Δ                       | 2.CFS.50074.IK.1 | 0.74                                      | 37.0           | 7.7            | 5.9            | 3         | 75   |
|                         | 2.CFS.50075.IK.1 | 0.75                                      | 37.5           | 7.9            | 6.0            | 3         | 75   |
| Δ                       | 2.CFS.50076.IK.1 | 0.76                                      | 38.0           | 8.0            | 6.1            | 3         | 75   |
| Δ                       | 2.CFS.50077.IK.1 | 0.77                                      | 38.5           | 8.1            | 6.2            | 3         | 75   |
| Δ                       | 2.CFS.50078.IK.1 | 0.78                                      | 39.0           | 8.2            | 6.2            | 3         | 75   |
| Δ                       | 2.CFS.50079.IK.1 | 0.79                                      | 39.5           | 8.3            | 6.3            | 3         | 75   |
|                         | 2.CFS.50080.IK.1 | 0.80                                      | 40.0           | 8.4            | 6.4            | 3         | 80   |
| Δ                       | 2.CFS.50081.IK.1 | 0.81                                      | 40.5           | 8.5            | 6.5            | 3         | 80   |
| Δ                       | 2.CFS.50082.IK.1 | 0.82                                      | 41.0           | 8.6            | 6.6            | 3         | 80   |
| Δ                       | 2.CFS.50083.IK.1 | 0.83                                      | 41.5           | 8.7            | 6.6            | 3         | 80   |
| Δ                       | 2.CFS.50084.IK.1 | 0.84                                      | 42.0           | 8.8            | 6.7            | 3         | 80   |
|                         | 2.CFS.50085.IK.1 | 0.85                                      | 42.5           | 8.9            | 6.8            | 3         | 80   |
| Δ                       | 2.CFS.50086.IK.1 | 0.86                                      | 43.0           | 9.0            | 6.9            | 3         | 80   |
| Δ                       | 2.CFS.50087.IK.1 | 0.87                                      | 43.5           | 9.1            | 7.0            | 3         | 80   |
| Δ                       | 2.CFS.50088.IK.1 | 0.88                                      | 44.0           | 9.2            | 7.0            | 3         | 80   |
| Δ                       | 2.CFS.50089.IK.1 | 0.89                                      | 44.5           | 9.3            | 7.1            | 3         | 80   |
|                         | 2.CFS.50090.IK.1 | 0.90                                      | 45.0           | 9.4            | 7.2            | 3         | 85   |

- Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2





| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub> -0.003 -0.006 [mm] | <b>I</b> <sub>1</sub> | <b>l</b> <sub>2</sub> [mm] | I <sub>3</sub> | <b>D</b> (h6) | <b>L</b> [mm] |
|-------------------------|------------------|------------------------------------------|-----------------------|----------------------------|----------------|---------------|---------------|
| ■ <                     |                  |                                          |                       |                            |                |               |               |
| Δ                       | 2.CFS.50091.IK.1 | 0.91                                     | 45.5                  | 9.5                        | 7.3            | 3             | 85            |
| Δ                       | 2.CFS.50092.IK.1 | 0.92                                     | 46.0                  | 9.6                        | 7.4            | 3             | 85            |
| Δ                       | 2.CFS.50093.IK.1 | 0.93                                     | 46.5                  | 9.7                        | 7.4            | 3             | 85            |
| Δ                       | 2.CFS.50094.IK.1 | 0.94                                     | 47.0                  | 9.8                        | 7.5            | 3             | 85            |
| -                       | 2.CFS.50095.IK.1 | 0.95                                     | 47.5                  | 10.0                       | 7.6            | 3             | 85            |
| Δ                       | 2.CFS.50096.IK.1 | 0.96                                     | 48.0                  | 10.1                       | 7.7            | 3             | 85            |
| Δ                       | 2.CFS.50097.IK.1 | 0.97                                     | 48.5                  | 10.2                       | 7.8            | 3             | 85            |
| Δ                       | 2.CFS.50098.IK.1 | 0.98                                     | 49.0                  | 10.3                       | 7.8            | 3             | 85            |
| Δ                       | 2.CFS.50099.IK.1 | 0.99                                     | 49.5                  | 10.4                       | 7.9            | 3             | 85            |
|                         | 2.CFS.50100.IK.1 | 1.00                                     | 50.0                  | 10.5                       | 8.0            | 3             | 90            |
| Δ                       | 2.CFS.50101.IK.1 | 1.01                                     | 50.5                  | 10.6                       | 8.1            | 3             | 90            |
| Δ                       | 2.CFS.50102.IK.1 | 1.02                                     | 51.0                  | 10.7                       | 8.2            | 3             | 90            |
| Δ                       | 2.CFS.50103.IK.1 | 1.03                                     | 51.5                  | 10.8                       | 8.2            | 3             | 90            |
| Δ                       | 2.CFS.50104.IK.1 | 1.04                                     | 52.0                  | 10.9                       | 8.3            | 3             | 90            |
| •                       | 2.CFS.50105.IK.1 | 1.05                                     | 52.5                  | 11.0                       | 8.4            | 3             | 90            |
| Δ                       | 2.CFS.50106.IK.1 | 1.06                                     | 53.0                  | 11.1                       | 8.5            | 3             | 90            |
| Δ                       | 2.CFS.50107.IK.1 | 1.07                                     | 53.5                  | 11.2                       | 8.6            | 3             | 90            |
| Δ                       | 2.CFS.50108.IK.1 | 1.08                                     | 54.0                  | 11.3                       | 8.6            | 3             | 90            |
| Δ                       | 2.CFS.50109.IK.1 | 1.09                                     | 54.5                  | 11.4                       | 8.7            | 3             | 90            |
|                         | 2.CFS.50110.IK.1 | 1.10                                     | 55.0                  | 11.5                       | 8.8            | 3             | 95            |
| Δ                       | 2.CFS.50111.IK.1 | 1.11                                     | 55.5                  | 11.6                       | 8.9            | 3             | 95            |
| Δ                       | 2.CFS.50112.IK.1 | 1.12                                     | 56.0                  | 11.7                       | 9.0            | 3             | 95            |
| Δ                       | 2.CFS.50113.IK.1 | 1.13                                     | 56.5                  | 11.8                       | 9.0            | 3             | 95            |
| Δ                       | 2.CFS.50114.IK.1 | 1.14                                     | 57.0                  | 11.9                       | 9.1            | 3             | 95            |
| •                       | 2.CFS.50115.IK.1 | 1.15                                     | 57.5                  | 12.1                       | 9.2            | 3             | 95            |
| Δ                       | 2.CFS.50116.IK.1 | 1.16                                     | 58.0                  | 12.2                       | 9.3            | 3             | 95            |
| Δ                       | 2.CFS.50117.IK.1 | 1.17                                     | 58.5                  | 12.3                       | 9.4            | 3             | 95            |
| Δ                       | 2.CFS.50118.IK.1 | 1.18                                     | 59.0                  | 12.4                       | 9.4            | 3             | 95            |
| Δ                       | 2.CFS.50119.IK.1 | 1.19                                     | 59.5                  | 12.5                       | 9.5            | 3             | 95            |
|                         | 2.CFS.50120.IK.1 | 1.20                                     | 60.0                  | 12.6                       | 9.6            | 3             | 95            |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flexpilot Steel CrazyDrill Crosspilot



## CrazyDrill Flex Steel 50 x d - beschichtet

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe  | Werkstoff                         | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>v</b><br>[m/r | <b>/</b> c<br>min] |  |
|-----------------------|-----------------------------------|--------|--------------------|-------------------------|------------------|--------------------|--|
| grappe                |                                   |        |                    |                         | Ød1≤0.4          | Ød1>0.4            |  |
|                       |                                   | 1.0301 | C10                | AISI 1010               |                  |                    |  |
| P                     |                                   | 1.0401 | C15                | AISI 1015               |                  |                    |  |
|                       | Stähle unlegiert                  | 1.1191 | C45E/CK45          | AISI 1045               | 5 – 40           | 40 – 60            |  |
| 7 9                   | Rm < 800 N/mm <sup>2</sup>        | 1.0044 | S275JR             | AISI 1020               |                  |                    |  |
|                       |                                   | 1.0715 | 11SMn30            | AISI 1215               |                  |                    |  |
|                       |                                   | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                  |                    |  |
|                       |                                   | 1.7131 | 16MnCr5            | AISI 5115               |                  |                    |  |
|                       | Stähle niedriglegiert             | 1.3505 | 100Cr6             | AISI 52100              | 5 – 25           | 25 – 50            |  |
|                       | Rm > 900 N/mm <sup>2</sup>        | 1.7225 | 42CrMo4            | AISI 4140               |                  |                    |  |
| d <sub>1</sub>        |                                   | 1.2842 | 90MnCrV8           | AISI O2                 |                  |                    |  |
|                       |                                   | 1.2379 | X153CrMoV12        | AISI D2                 |                  |                    |  |
|                       | Werkzeugstähle                    | 1.2436 | X210CrW12          | AISI D4/D6              |                  |                    |  |
| Y/// 1 V/// 1         | hochlegiert                       | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 5 – 20           | 20 – 35            |  |
| iQ <sub>x</sub>       | Rm < 1200 N/mm <sup>2</sup>       | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                  |                    |  |
| Q <sub>x</sub>        | Rostfreie Stähle-                 | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                  |                    |  |
|                       | ferritisch                        | 1.4105 | X6CrMoS17          | AISI 4307 0N3 343000    |                  |                    |  |
| IVI                   | Rostfreie Stähle-                 | 1.4034 | X46Cr13            | AISI 420C               |                  |                    |  |
|                       | martensitisch                     | 1.4112 | X90CrMoV18         | AISI 440B               |                  |                    |  |
|                       | Rostfreie Stähle-                 | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                  |                    |  |
|                       | martensitisch – PH                | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                  |                    |  |
|                       | martensitisen iii                 | 1.4343 | X5CrNi 18-10       | AISI 304                |                  |                    |  |
|                       | Deathair Carlo                    | 1.4435 | X2CrNiMo 18-14-3   | AISI 304<br>AISI 316L   |                  |                    |  |
|                       | Rostfreie Stähle-<br>austenitisch | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                  |                    |  |
|                       | dasternasen                       | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                  |                    |  |
|                       |                                   |        |                    |                         |                  |                    |  |
| 1.7                   |                                   | 0.6020 | GG20               | ASTM 40D                |                  | 50 – 100           |  |
| K                     | Gusseisen                         | 0.6030 | GG30               | ASTM 40B                | 5 – 40           |                    |  |
|                       |                                   | 0.7040 | GGG40              | ASTM 60-40-18           |                  | 40 – 80            |  |
|                       |                                   | 0.7060 | GGG60              | ASTM 80-60-03           |                  |                    |  |
|                       | Aluminium                         | 3.2315 | AlMgSi1            | ASTM 6351               | 5 – 40           | 60 – 120           |  |
|                       | Knetlegierungen                   | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | - '-             |                    |  |
|                       | Aluminium                         | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 5 – 40           | 50 – 80            |  |
|                       | Druckgusslegierungen              |        | GD-AlSi10Mg        | UNS A03590              |                  |                    |  |
|                       | Kupfer                            | 2.004  | Cu-OF / CW008A     | UNS C10100              |                  |                    |  |
|                       | - Capital                         | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                  |                    |  |
|                       | Messing bleifrei                  | 2.0321 | CuZn37 CW508L      | UNS C27400              |                  |                    |  |
|                       |                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                  |                    |  |
|                       | Messing, Bronze                   | 2.0401 | CuZn39Pb3 / CW614N |                         | 5 – 40           | 60 – 100           |  |
|                       | Rm < 400 N/mm <sup>2</sup>        | 2.102  | CuSn6              | UNS C51900              | · •=             | 40 – 60            |  |
|                       | Bronze                            | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20           | 20 – 40            |  |
|                       | Rm < 600 N/mm <sup>2</sup>        | 2.096  | CuAl9Mn2           | UNS C63200              |                  |                    |  |
|                       |                                   | 2.4856 |                    | Inconel 625             |                  |                    |  |
| $S_1$                 | Hitzebeständige                   | 2.4668 |                    | Inconel 718             |                  |                    |  |
| 31                    | Stähle                            | 2.4617 | NiMo28             | Hastelloy B-2           |                  |                    |  |
|                       |                                   | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                  |                    |  |
|                       | Titon rain                        | 3.7035 | Gr.2               | ASTM B348 / F67         |                  |                    |  |
| $S_2$                 | Titan rein                        | 3.7065 | Gr.4               | ASTM B348 / F68         |                  |                    |  |
| <b>J</b> <sub>2</sub> | Titon Logio                       | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                  |                    |  |
|                       | Titan Legierungen                 | 9.9367 | TiAl6Nb7           | ASTM F1295              |                  |                    |  |
| C                     | C-C- Li-                          | 2.4964 | CoCr20W15Ni        | Haynes 25               |                  |                    |  |
| $S_3$                 | CrCo-Legierungen                  |        | CrCoMo28           | ASTM F1537              |                  |                    |  |
|                       | Stähle gehärtet<br>< 55 HRC       | 1.2510 | 100MnCrMoW4        | AISI O1                 |                  |                    |  |
|                       | Stähle gehärtet<br>≥ 55 HRC       | 1.2379 | X153CrMoV12        | AISI D2                 |                  |                    |  |



ANWENDUNGSEMPFEHLUNG





|                |                  |               |               | <b>f</b> [mm/U]         |                |               |
|----------------|------------------|---------------|---------------|-------------------------|----------------|---------------|
| $\mathbf{Q}_1$ | $\mathbf{Q}_{x}$ | Ød1           | Ød1           | Ød1                     | Ød1            | Ød1           |
|                |                  | 0.3 mm        | 0.4 mm        | 0.6 mm                  | 0.8 mm         | 1.0 mm-1.2 mm |
|                |                  | f             | f             | f                       | f              | f             |
|                |                  |               |               |                         |                |               |
| 7xd1           | 0.5xd1           | 0.010         | 0.015         | 0.030                   | 0.040          | 0.060         |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
| 7xd1           | 0.5xd1           | 0.008 - 0.010 | 0.012 - 0.015 | 0.020 - 0.025           | 0.035          | 0.050         |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
| 7xd1           | 0.5xd1           | 0.008         | 0.010         | 0.015                   | 0.025          | 0.040         |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               | Emptohlen: (  | CrazyDrill Flex SS      | T-lnox 50 x d1 |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
| 7xd1           | 0.5xd1           | 0.010         | 0.015         | 0.020                   | 0.035          | 0.050         |
|                |                  |               |               |                         |                |               |
| 7xd1           | 1xd1             | 0.040         | 0.050         | 0.080                   | 0.100          | 0.120         |
| 7xd1           | 1xd1             | 0.040         | 0.050         | 0.080                   | 0.100          | 0.120         |
|                |                  |               | Emnfohlen: (  | <br>CrazyDrill Flex Tit | anium 50 x d1  |               |
|                |                  |               |               |                         |                |               |
|                |                  |               | Empfohlen: (  | CrazyDrill Flex SS      | T-Inox 50 x d1 |               |
| 7xd1           | 1xd1             | 0.030         | 0.040         | 0.060                   | 0.080          | 0.100         |
| 2.5xd1         | 0.5xd1           | 0.006         | 0.010         | 0.015                   | 0.025          | 0.040         |
|                |                  |               |               |                         |                |               |
|                |                  |               | Empfohlen: (  | CrazyDrill Flex SS      | T-Inox 50 x d1 |               |
|                |                  |               | r · ·         | ,                       |                |               |
|                |                  |               | Empfohlen: 0  | CrazyDrill Flex Tit     | anium 50 x d1  |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               | CrazyDrill Flex Tit     |                |               |
|                |                  |               | Empfohlen: (  | CrazyDrill Flex SS      | T-Inox 50 x d1 |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |
|                |                  |               |               |                         |                |               |



### CrazyDrill Flex Steel 50 x d - unbeschichtet

### **BOHREN MIT INTEGRIERTER KÜHLUNG**

Der Hartmetall-Mikrobohrer CrazyDrill Flex Steel eignet sich vor allem für Stähle, Gusseisen, Aluminiumlegierungen, Messing und Bronze. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.3 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Steel 50 x d verfügt über im Schaft integrierte Kühlkanäle, die für eine regelmässige, massive Kühlung der Bohrspitze sorgen. So wird die Temperatur konstant unter Kontrolle gehalten, die Späne aus der Spannut sowie Bohrung gespült und eine verbesserte Standzeit erreicht. Die unbeschichtete Variante eignet sich überall, wo kleine Serien gefertigt werden.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Steel oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

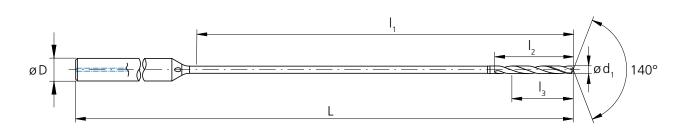
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyDrill Flex Steel - unbeschichtet (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







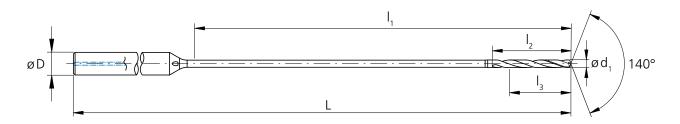

**Z**2



Nicht beschichtet



| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
|                         | 2.CFS.50030.IK.0 | 0.30                                      | 15.0           | 3.2            | 2.4            | 3         | 53   |
| Δ                       | 2.CFS.50031.IK.0 | 0.31                                      | 15.5           | 3.3            | 2.5            | 3         | 53   |
| Δ                       | 2.CFS.50032.IK.0 | 0.32                                      | 16.0           | 3.4            | 2.6            | 3         | 53   |
| Δ                       | 2.CFS.50033.IK.0 | 0.33                                      | 16.5           | 3.5            | 2.6            | 3         | 53   |
| Δ                       | 2.CFS.50034.IK.0 | 0.34                                      | 17.0           | 3.6            | 2.7            | 3         | 53   |
|                         | 2.CFS.50035.IK.0 | 0.35                                      | 17.5           | 3.7            | 2.8            | 3         | 60   |
| Δ                       | 2.CFS.50036.IK.0 | 0.36                                      | 18.0           | 3.8            | 2.9            | 3         | 60   |
| Δ                       | 2.CFS.50037.IK.0 | 0.37                                      | 18.5           | 3.9            | 3.0            | 3         | 60   |
| Δ                       | 2.CFS.50038.IK.0 | 0.38                                      | 19.0           | 4.0            | 3.0            | 3         | 60   |
| Δ                       | 2.CFS.50039.IK.0 | 0.39                                      | 19.5           | 4.1            | 3.1            | 3         | 60   |
|                         | 2.CFS.50040.IK.0 | 0.40                                      | 20.0           | 4.2            | 3.2            | 3         | 60   |
| Δ                       | 2.CFS.50041.IK.0 | 0.41                                      | 20.5           | 4.3            | 3.3            | 3         | 60   |
| Δ                       | 2.CFS.50042.IK.0 | 0.42                                      | 21.0           | 4.4            | 3.4            | 3         | 60   |
| Δ                       | 2.CFS.50043.IK.0 | 0.43                                      | 21.5           | 4.5            | 3.4            | 3         | 60   |
| Δ                       | 2.CFS.50044.IK.0 | 0.44                                      | 22.0           | 4.6            | 3.5            | 3         | 60   |
|                         | 2.CFS.50045.IK.0 | 0.45                                      | 22.5           | 4.7            | 3.6            | 3         | 60   |
| Δ                       | 2.CFS.50046.IK.0 | 0.46                                      | 23.0           | 4.8            | 3.7            | 3         | 60   |
| Δ                       | 2.CFS.50047.IK.0 | 0.47                                      | 23.5           | 4.9            | 3.8            | 3         | 60   |
| Δ                       | 2.CFS.50048.IK.0 | 0.48                                      | 24.0           | 5.0            | 3.8            | 3         | 60   |
| Δ                       | 2.CFS.50049.IK.0 | 0.49                                      | 24.5           | 5.1            | 3.9            | 3         | 60   |
|                         | 2.CFS.50050.IK.0 | 0.50                                      | 25.0           | 5.3            | 4.0            | 3         | 64   |
| Δ                       | 2.CFS.50051.IK.0 | 0.51                                      | 25.5           | 5.4            | 4.1            | 3         | 64   |
| Δ                       | 2.CFS.50052.IK.0 | 0.52                                      | 26.0           | 5.5            | 4.2            | 3         | 64   |
| Δ                       | 2.CFS.50053.IK.0 | 0.53                                      | 26.5           | 5.6            | 4.2            | 3         | 64   |
| Δ                       | 2.CFS.50054.IK.0 | 0.54                                      | 27.0           | 5.7            | 4.3            | 3         | 64   |
|                         | 2.CFS.50055.IK.0 | 0.55                                      | 27.5           | 5.8            | 4.4            | 3         | 64   |
| Δ                       | 2.CFS.50056.IK.0 | 0.56                                      | 28.0           | 5.9            | 4.5            | 3         | 64   |
| Δ                       | 2.CFS.50057.IK.0 | 0.57                                      | 28.5           | 6.0            | 4.6            | 3         | 64   |
| Δ                       | 2.CFS.50058.IK.0 | 0.58                                      | 29.0           | 6.1            | 4.6            | 3         | 64   |
| Δ                       | 2.CFS.50059.IK.0 | 0.59                                      | 29.5           | 6.2            | 4.7            | 3         | 64   |
|                         | 2.CFS.50060.IK.0 | 0.60                                      | 30.0           | 6.3            | 4.8            | 3         | 70   |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flexpilot Steel CrazyDrill Crosspilot



## CrazyDrill Flex Steel 50 x d - unbeschichtet

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b> [mm] | <b>l</b> <sub>3</sub> | <b>D</b><br>(h6) | <b>L</b><br>[mm] |
|-------------------------|------------------|---------------------------------------------------|----------------------------|---------------------------|-----------------------|------------------|------------------|
| Δ                       | 2.CFS.50061.IK.0 | 0.61                                              | 30.5                       | 6.4                       | 4.9                   | 3                | 70               |
| Δ                       | 2.CFS.50062.IK.0 | 0.62                                              | 31.0                       | 6.5                       | 5.0                   | 3                | 70               |
| Δ                       | 2.CFS.50063.IK.0 | 0.63                                              | 31.5                       | 6.6                       | 5.0                   | 3                | 70               |
| Δ                       | 2.CFS.50064.IK.0 | 0.64                                              | 32.0                       | 6.7                       | 5.1                   | 3                | 70               |
| •                       | 2.CFS.50065.IK.0 | 0.65                                              | 32.5                       | 6.8                       | 5.2                   | 3                | 70               |
| Δ                       | 2.CFS.50066.IK.0 | 0.66                                              | 33.0                       | 6.9                       | 5.3                   | 3                | 70               |
| Δ                       | 2.CFS.50067.IK.0 | 0.67                                              | 33.5                       | 7.0                       | 5.4                   | 3                | 70               |
| Δ                       | 2.CFS.50068.IK.0 | 0.68                                              | 34.0                       | 7.1                       | 5.4                   | 3                | 70               |
| Δ                       | 2.CFS.50069.IK.0 | 0.69                                              | 34.5                       | 7.2                       | 5.5                   | 3                | 70               |
| •                       | 2.CFS.50070.IK.0 | 0.70                                              | 35.0                       | 7.4                       | 5.6                   | 3                | 75               |
| Δ                       | 2.CFS.50071.IK.0 | 0.71                                              | 35.5                       | 7.5                       | 5.7                   | 3                | 75               |
| Δ                       | 2.CFS.50072.IK.0 | 0.72                                              | 36.0                       | 7.6                       | 5.8                   | 3                | 75               |
| Δ                       | 2.CFS.50073.IK.0 | 0.73                                              | 36.5                       | 7.7                       | 5.8                   | 3                | 75               |
| Δ                       | 2.CFS.50074.IK.0 | 0.74                                              | 37.0                       | 7.8                       | 5.9                   | 3                | 75               |
| •                       | 2.CFS.50075.IK.0 | 0.75                                              | 37.5                       | 7.9                       | 6.0                   | 3                | 75               |
| Δ                       | 2.CFS.50076.IK.0 | 0.76                                              | 38.0                       | 8.0                       | 6.1                   | 3                | 75               |
| Δ                       | 2.CFS.50077.IK.0 | 0.77                                              | 38.5                       | 8.1                       | 6.2                   | 3                | 75               |
| Δ                       | 2.CFS.50078.IK.0 | 0.78                                              | 39.0                       | 8.2                       | 6.2                   | 3                | 75               |
| Δ                       | 2.CFS.50079.IK.0 | 0.79                                              | 39.5                       | 8.3                       | 6.3                   | 3                | 75               |
| •                       | 2.CFS.50080.IK.0 | 0.80                                              | 40.0                       | 8.4                       | 6.4                   | 3                | 80               |
| Δ                       | 2.CFS.50081.IK.0 | 0.81                                              | 40.5                       | 8.5                       | 6.5                   | 3                | 80               |
| Δ                       | 2.CFS.50082.IK.0 | 0.82                                              | 41.0                       | 8.6                       | 6.6                   | 3                | 80               |
| Δ                       | 2.CFS.50083.IK.0 | 0.83                                              | 41.5                       | 8.7                       | 6.6                   | 3                | 80               |
| Δ                       | 2.CFS.50084.IK.0 | 0.84                                              | 42.0                       | 8.8                       | 6.7                   | 3                | 80               |
| •                       | 2.CFS.50085.IK.0 | 0.85                                              | 42.5                       | 8.9                       | 6.8                   | 3                | 80               |
| Δ                       | 2.CFS.50086.IK.0 | 0.86                                              | 43.0                       | 9.0                       | 6.9                   | 3                | 80               |
| Δ                       | 2.CFS.50087.IK.0 | 0.87                                              | 43.5                       | 9.1                       | 7.0                   | 3                | 80               |
| Δ                       | 2.CFS.50088.IK.0 | 0.88                                              | 44.0                       | 9.2                       | 7.0                   | 3                | 80               |
| Δ                       | 2.CFS.50089.IK.0 | 0.89                                              | 44.5                       | 9.3                       | 7.1                   | 3                | 80               |
|                         | 2.CFS.50090.IK.0 | 0.90                                              | 45.0                       | 9.5                       | 7.2                   | 3                | 85               |

<sup>■</sup> Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2



Nicht beschichtet

| ■ ab Lager ∆ auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | l <sub>3</sub> | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|--------------------------|------------------|---------------------------------------------------|----------------------------|----------------------------|----------------|--------------------------|-----------|
| Δ                        | 2.CFS.50091.IK.0 | 0.91                                              | 45.5                       | 9.6                        | 7.3            | 3                        | 85        |
| Δ                        | 2.CFS.50092.IK.0 | 0.92                                              | 46.0                       | 9.7                        | 7.4            | 3                        | 85        |
| Δ                        | 2.CFS.50093.IK.0 | 0.93                                              | 46.5                       | 9.8                        | 7.4            | 3                        | 85        |
| Δ                        | 2.CFS.50094.IK.0 | 0.94                                              | 47.0                       | 9.9                        | 7.5            | 3                        | 85        |
| •                        | 2.CFS.50095.IK.0 | 0.95                                              | 47.5                       | 10.0                       | 7.6            | 3                        | 85        |
| Δ                        | 2.CFS.50096.IK.0 | 0.96                                              | 48.0                       | 10.1                       | 7.7            | 3                        | 85        |
| Δ                        | 2.CFS.50097.IK.0 | 0.97                                              | 48.5                       | 10.2                       | 7.8            | 3                        | 85        |
| Δ                        | 2.CFS.50098.IK.0 | 0.98                                              | 49.0                       | 10.3                       | 7.8            | 3                        | 85        |
| Δ                        | 2.CFS.50099.IK.0 | 0.99                                              | 49.5                       | 10.4                       | 7.9            | 3                        | 85        |
|                          | 2.CFS.50100.IK.0 | 1.00                                              | 50.0                       | 10.5                       | 8.0            | 3                        | 90        |
| Δ                        | 2.CFS.50101.IK.0 | 1.01                                              | 50.5                       | 10.6                       | 8.1            | 3                        | 90        |
| Δ                        | 2.CFS.50102.IK.0 | 1.02                                              | 51.0                       | 10.7                       | 8.2            | 3                        | 90        |
| Δ                        | 2.CFS.50103.IK.0 | 1.03                                              | 51.5                       | 10.8                       | 8.2            | 3                        | 90        |
| Δ                        | 2.CFS.50104.IK.0 | 1.04                                              | 52.0                       | 10.9                       | 8.3            | 3                        | 90        |
|                          | 2.CFS.50105.IK.0 | 1.05                                              | 52.5                       | 11.0                       | 8.4            | 3                        | 90        |
| Δ                        | 2.CFS.50106.IK.0 | 1.06                                              | 53.0                       | 11.1                       | 8.5            | 3                        | 90        |
| Δ                        | 2.CFS.50107.IK.0 | 1.07                                              | 53.5                       | 11.2                       | 8.6            | 3                        | 90        |
| Δ                        | 2.CFS.50108.IK.0 | 1.08                                              | 54.0                       | 11.3                       | 8.6            | 3                        | 90        |
| Δ                        | 2.CFS.50109.IK.0 | 1.09                                              | 54.5                       | 11.4                       | 8.7            | 3                        | 90        |
|                          | 2.CFS.50110.IK.0 | 1.10                                              | 55.0                       | 11.6                       | 8.8            | 3                        | 95        |
| Δ                        | 2.CFS.50111.IK.0 | 1.11                                              | 55.5                       | 11.7                       | 8.9            | 3                        | 95        |
| Δ                        | 2.CFS.50112.IK.0 | 1.12                                              | 56.0                       | 11.8                       | 9.0            | 3                        | 95        |
| Δ                        | 2.CFS.50113.IK.0 | 1.13                                              | 56.5                       | 11.9                       | 9.0            | 3                        | 95        |
| Δ                        | 2.CFS.50114.IK.0 | 1.14                                              | 57.0                       | 12.0                       | 9.1            | 3                        | 95        |
|                          | 2.CFS.50115.IK.0 | 1.15                                              | 57.5                       | 12.1                       | 9.2            | 3                        | 95        |
| Δ                        | 2.CFS.50116.IK.0 | 1.16                                              | 58.0                       | 12.2                       | 9.3            | 3                        | 95        |
| Δ                        | 2.CFS.50117.IK.0 | 1.17                                              | 58.5                       | 12.3                       | 9.4            | 3                        | 95        |
| Δ                        | 2.CFS.50118.IK.0 | 1.18                                              | 59.0                       | 12.4                       | 9.4            | 3                        | 95        |
| Δ                        | 2.CFS.50119.IK.0 | 1.19                                              | 59.5                       | 12.5                       | 9.5            | 3                        | 95        |
|                          | 2.CFS.50120.IK.0 | 1.20                                              | 60.0                       | 12.6                       | 9.6            | 3                        | 95        |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flexpilot Steel CrazyDrill Crosspilot



## CrazyDrill Flex Steel 50 x d - unbeschichtet

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                         | Werkstoff-            | Werkstoff                   | Wr.Nr.   | DIN                | AISI/ASTM/UNS           |         | <b>/</b> շ<br>min] |  |
|-----------------------------------------|-----------------------|-----------------------------|----------|--------------------|-------------------------|---------|--------------------|--|
|                                         | gruppe                | WEIKSTOII                   | VVI.IVI. | DIN                | AISI/ASTW/ONS           | Ød1≤0.4 | Ød1>0.4            |  |
|                                         |                       |                             | 1 0201   | C10                | AICI 1010               | DU130.4 | DU170.4            |  |
|                                         | В                     |                             | 1.0301   | C10<br>C15         | AISI 1010<br>AISI 1015  |         |                    |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | P                     | Stähle unlegiert            | 1.1191   | C45E/CK45          | AISI 1015               | F 40    | 4060               |  |
| ) Ø                                     |                       | Rm < 800 N/mm <sup>2</sup>  |          |                    |                         | 5 – 40  | 40 – 60            |  |
| \ \/\(\)                                |                       |                             | 1.0044   | \$275JR            | AISI 1020               |         |                    |  |
|                                         |                       |                             | 1.0715   | 11SMn30            | AISI 1215               |         |                    |  |
| \(\mathbb{U}\)                          |                       |                             | 1.5752   | 15NiCr13           | ASTM 3415 / AISI 3310   |         |                    |  |
|                                         |                       | Stähle niedriglegiert       | 1.7131   | 16MnCr5            | AISI 5115               | F 3F    | 25 50              |  |
|                                         |                       | Rm > 900 N/mm <sup>2</sup>  | 1.3505   | 100Cr6             | AISI 52100              | 5 – 25  | 25 – 50            |  |
|                                         |                       |                             | 1.7225   | 42CrMo4            | AISI 4140               |         |                    |  |
| d <sub>1</sub>                          |                       |                             | 1.2842   | 90MnCrV8           | AISI O2                 |         |                    |  |
|                                         |                       | Werkzeugstähle              | 1.2379   | X153CrMoV12        | AISI D2                 |         |                    |  |
| Q <sub>1</sub>                          |                       | hochlegiert                 | 1.2436   | X210CrW12          | AISI D4/D6              | 5 – 20  | 20 – 35            |  |
|                                         |                       | Rm < 1200 N/mm <sup>2</sup> | 1.3343   | HS6-5-2C           | AISI M2 / UNS T11302    |         |                    |  |
| Q <sub>x</sub>                          |                       |                             | 1.3355   | HS18-0-1           | AISI T1 / UNS T12001    |         |                    |  |
| //////l <sup>Qx</sup>                   |                       | Rostfreie Stähle-           | 1.4016   | X6Cr17             | AISI 430 / UNS S43000   |         |                    |  |
| · · · · / / / /                         | M                     | ferritisch                  | 1.4105   | X6CrMoS17          | AISI 430F               |         |                    |  |
|                                         | IVI                   | Rostfreie Stähle-           | 1.4034   | X46Cr13            | AISI 420C               |         |                    |  |
|                                         |                       | martensitisch               | 1.4112   | X90CrMoV18         | AISI 440B               |         |                    |  |
|                                         |                       | Rostfreie Stähle-           | 1.4542   | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |         |                    |  |
|                                         |                       | martensitisch – PH          | 1.4545   | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |         |                    |  |
|                                         |                       |                             | 1.4301   | X5CrNi 18-10       | AISI 304                |         |                    |  |
|                                         |                       | Rostfreie Stähle-           | 1.4435   | X2CrNiMo 18-14-3   | AISI 316L               |         |                    |  |
|                                         |                       | austenitisch                | 1.4441   | X2CrNiMo 18-15-3   | AISI 316LM              |         |                    |  |
|                                         |                       |                             | 1.4539   | X1NiCrMoCu 25-20-5 | AISI 904L               |         |                    |  |
|                                         |                       |                             | 0.6020   | GG20               | ASTM 30                 |         |                    |  |
|                                         |                       |                             | 0.6030   | GG30               | ASTM 40B                |         | 50 – 100           |  |
|                                         | K                     | Gusseisen                   | 0.7040   | GGG40              | ASTM 60-40-18           | 5 – 40  |                    |  |
|                                         |                       |                             | 0.7040   | GGG60              | ASTM 80-60-03           |         | 40 – 80            |  |
|                                         |                       |                             |          |                    |                         |         |                    |  |
|                                         |                       | Aluminium                   | 3.2315   | AlMgSi1            | ASTM 6351               | 5 – 40  | 60 – 120           |  |
|                                         | N                     | Knetlegierungen             | 3.4365   | AlZnMgCu1.5        | ASTM 7075               |         |                    |  |
|                                         |                       | Aluminium                   | 3.2163   | GD-AlSi9Cu3        | ASTM A380               | 5 – 40  | 50 – 80            |  |
|                                         |                       | Druckgusslegierungen        |          | GD-AlSi10Mg        | UNS A03590              |         |                    |  |
|                                         |                       | Kupfer                      | 2.004    | Cu-OF / CW008A     | UNS C10100              |         |                    |  |
|                                         |                       | '                           | 2.0065   | Cu-ETP / CW004A    | UNS C11000              |         |                    |  |
|                                         |                       | Messing bleifrei            | 2.0321   | CuZn37 CW508L      | UNS C27400              |         |                    |  |
|                                         |                       | <u> </u>                    | 2.036    | CuZn40 CW509L      | UNS C28000              |         |                    |  |
|                                         |                       | Messing, Bronze             | 2.0401   | CuZn39Pb3 / CW614N |                         | 5 – 40  | 60 – 100           |  |
|                                         |                       | Rm < 400 N/mm <sup>2</sup>  | 2.102    | CuSn6              | UNS C51900              |         | 40 – 60            |  |
|                                         |                       | Bronze                      | 2.0966   | CuAl10Ni5Fe4       | UNS C63000              | 5 – 20  | 20 – 40            |  |
|                                         |                       | Rm < 600 N/mm <sup>2</sup>  | 2.096    | CuAl9Mn2           | UNS C63200              |         |                    |  |
|                                         |                       |                             | 2.4856   |                    | Inconel 625             |         |                    |  |
|                                         | $S_1$                 | Hitzebeständige             | 2.4668   |                    | Inconel 718             |         |                    |  |
|                                         | 71                    | Stähle                      | 2.4617   | NiMo28             | Hastelloy B-2           |         |                    |  |
|                                         |                       |                             | 2.4665   | NiCr22Fe18Mo       | Hastelloy X             |         |                    |  |
|                                         |                       | Titan rein                  | 3.7035   | Gr.2               | ASTM B348 / F67         |         |                    |  |
|                                         | S <sub>2</sub>        | IIIdii leiii                | 3.7065   | Gr.4               | ASTM B348 / F68         |         |                    |  |
|                                         | 2                     | Titan Logiorum ann          | 3.7165   | TiAl6V4            | ASTM B348 / F136        |         |                    |  |
|                                         |                       | Titan Legierungen           | 9.9367   | TiAl6Nb7           | ASTM F1295              |         |                    |  |
|                                         | C                     | CrCa Lagis                  | 2.4964   | CoCr20W15Ni        | Haynes 25               |         |                    |  |
|                                         | <b>S</b> <sub>3</sub> | CrCo-Legierungen            |          | CrCoMo28           | ASTM F1537              |         |                    |  |
|                                         | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC | 1.2510   | 100MnCrMoW4        | AISI O1                 |         |                    |  |
|                                         |                       | Stähle gehärtet             |          |                    |                         |         |                    |  |
|                                         | H <sub>2</sub>        | ≥ 55 HRC                    | 1.2379   | X153CrMoV12        | AISI D2                 |         |                    |  |



ANWENDUNGSEMPFEHLUNG





|                                      |                  |               |               | <b>f</b> [mm/U]     |                |               |
|--------------------------------------|------------------|---------------|---------------|---------------------|----------------|---------------|
| $\mathbf{Q}_{\scriptscriptstyle{1}}$ | $\mathbf{Q}_{x}$ | Ød1           | Ød1           | Ød1                 | Ød1            | Ød1           |
|                                      |                  | 0.3 mm        | 0.4 mm        | 0.6 mm              | 0.8 mm         | 1.0 mm-1.2 mm |
|                                      |                  | f             | f             | f                   | f              | f             |
|                                      |                  |               |               |                     |                |               |
| 7xd1                                 | 0.5xd1           | 0.010         | 0.015         | 0.030               | 0.040          | 0.060         |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
| 7xd1                                 | 0.5xd1           | 0.008 – 0.010 | 0.012 – 0.015 | 0.020 - 0.025       | 0.035          | 0.050         |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
| 7xd1                                 | 0.5xd1           | 0.008         | 0.010         | 0.015               | 0.025          | 0.040         |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               | Empfohlen: (  | CrazyDrill Flex SS  | T-Inox 50 x d1 |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
| 7xd1                                 | 0.5xd1           | 0.010         | 0.015         | 0.020               | 0.035          | 0.050         |
|                                      |                  |               |               |                     |                |               |
| 714                                  | 414              | 0.040         | 0.050         | 0.000               | 0.100          | 0.130         |
| 7xd1                                 | 1xd1             | 0.040         | 0.050         | 0.080               | 0.100          | 0.120         |
| 7xd1                                 | 1xd1             | 0.040         | 0.050         | 0.080               | 0.100          | 0.120         |
|                                      |                  |               | Empfohlen: (  | TrazyDrill Flex Tit | anium 50 x d1  |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               | Empfohlen: (  | CrazyDrill Flex SS  | T-Inox 50 x d1 |               |
| 7xd1                                 | 1xd1             | 0.030         | 0.040         | 0.060               | 0.080          | 0.100         |
| 2.5xd1                               | 0.5xd1           | 0.006         | 0.010         | 0.015               | 0.025          | 0.040         |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               | Empfohlen: (  | CrazyDrill Flex SS  | T-Inox 50 x d1 |               |
|                                      |                  |               | 1             | ,                   |                |               |
|                                      |                  |               | Empfohlor: (  | razyDrill Elay T:+  | anium EO v d1  |               |
|                                      |                  |               |               | CrazyDrill Flex Tit |                |               |
|                                      |                  |               | Empfohlen: 0  | CrazyDrill Flex Tit | anium 50 x d1  |               |
|                                      |                  |               | Empfohlen: 0  | CrazyDrill Flex SS  | T-Inox 50 x d1 |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               |               |                     |                |               |
|                                      |                  |               | 1             | l.                  | 1              |               |



## CrazyDrill Flex Titanium 30 x d

### **BOHREN MIT AUSSENKÜHLUNG**



Der Hartmetall-Mikrobohrer CrazyDrill Flex Titanium eignet sich für langspanige Materialien wie Titan, Titanlegierungen und Kupfer. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.1 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Titanium 30 x d wird mit einer äusseren Kühlmittelzufuhr verwendet, die Bohrer sind unbeschichtet.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Titanium oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

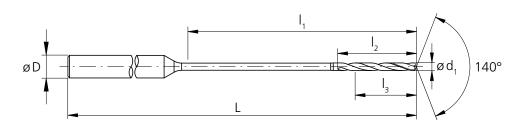
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex Titanium (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.








**Z**2

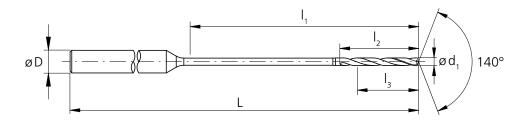


Nicht beschichtet



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>D</b> (h6) | L    |
|-------------------------|---------------|-------------------------------------------|----------------|----------------|----------------|---------------|------|
| ■ ab<br>∆ auf           |               | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]          | [mm] |
|                         | 2.CFT.30010.0 | 0.10                                      | 3.0            | 1.1            | 0.8            | 3             | 45   |
| Δ                       | 2.CFT.30011.0 | 0.11                                      | 3.3            | 1.2            | 0.9            | 3             | 45   |
| Δ                       | 2.CFT.30012.0 | 0.12                                      | 3.6            | 1.3            | 1.0            | 3             | 45   |
| Δ                       | 2.CFT.30013.0 | 0.13                                      | 3.9            | 1.4            | 1.0            | 3             | 45   |
| Δ                       | 2.CFT.30014.0 | 0.14                                      | 4.2            | 1.5            | 1.1            | 3             | 45   |
|                         | 2.CFT.30015.0 | 0.15                                      | 4.5            | 1.6            | 1.2            | 3             | 45   |
| Δ                       | 2.CFT.30016.0 | 0.16                                      | 4.8            | 1.7            | 1.3            | 3             | 45   |
| Δ                       | 2.CFT.30017.0 | 0.17                                      | 5.1            | 1.8            | 1.4            | 3             | 45   |
| Δ                       | 2.CFT.30018.0 | 0.18                                      | 5.4            | 1.9            | 1.4            | 3             | 45   |
| Δ                       | 2.CFT.30019.0 | 0.19                                      | 5.7            | 2.0            | 1.5            | 3             | 45   |
|                         | 2.CFT.30020.0 | 0.20                                      | 6.0            | 2.1            | 1.6            | 3             | 45   |
| Δ                       | 2.CFT.30021.0 | 0.21                                      | 6.3            | 2.2            | 1.7            | 3             | 45   |
| Δ                       | 2.CFT.30022.0 | 0.22                                      | 6.6            | 2.3            | 1.8            | 3             | 45   |
| Δ                       | 2.CFT.30023.0 | 0.23                                      | 6.9            | 2.4            | 1.8            | 3             | 45   |
| Δ                       | 2.CFT.30024.0 | 0.24                                      | 7.2            | 2.5            | 1.9            | 3             | 45   |
|                         | 2.CFT.30025.0 | 0.25                                      | 7.5            | 2.6            | 2.0            | 3             | 45   |
| Δ                       | 2.CFT.30026.0 | 0.26                                      | 7.8            | 2.7            | 2.1            | 3             | 45   |
| Δ                       | 2.CFT.30027.0 | 0.27                                      | 8.1            | 2.8            | 2.2            | 3             | 45   |
| Δ                       | 2.CFT.30028.0 | 0.28                                      | 8.4            | 2.9            | 2.2            | 3             | 45   |
| Δ                       | 2.CFT.30029.0 | 0.29                                      | 8.7            | 3.0            | 2.3            | 3             | 45   |
| •                       | 2.CFT.30030.0 | 0.30                                      | 9.0            | 3.2            | 2.4            | 3             | 50   |
| Δ                       | 2.CFT.30031.0 | 0.31                                      | 9.3            | 3.3            | 2.5            | 3             | 50   |
| Δ                       | 2.CFT.30032.0 | 0.32                                      | 9.6            | 3.4            | 2.6            | 3             | 50   |
| Δ                       | 2.CFT.30033.0 | 0.33                                      | 9.9            | 3.5            | 2.6            | 3             | 50   |
| Δ                       | 2.CFT.30034.0 | 0.34                                      | 10.2           | 3.6            | 2.7            | 3             | 50   |
|                         | 2.CFT.30035.0 | 0.35                                      | 10.5           | 3.7            | 2.8            | 3             | 50   |
| Δ                       | 2.CFT.30036.0 | 0.36                                      | 10.8           | 3.8            | 2.9            | 3             | 50   |
| Δ                       | 2.CFT.30037.0 | 0.37                                      | 11.1           | 3.9            | 3.0            | 3             | 50   |
| Δ                       | 2.CFT.30038.0 | 0.38                                      | 11.4           | 4.0            | 3.0            | 3             | 50   |
| Δ                       | 2.CFT.30039.0 | 0.39                                      | 11.7           | 4.1            | 3.1            | 3             | 50   |
| •                       | 2.CFT.30040.0 | 0.40                                      | 12.0           | 4.2            | 3.2            | 3             | 50   |
| Δ                       | 2.CFT.30041.0 | 0.41                                      | 12.3           | 4.3            | 3.3            | 3             | 50   |
| Δ                       | 2.CFT.30042.0 | 0.42                                      | 12.6           | 4.4            | 3.4            | 3             | 50   |
| Δ                       | 2.CFT.30043.0 | 0.43                                      | 12.9           | 4.5            | 3.4            | 3             | 50   |
| Δ                       | 2.CFT.30044.0 | 0.44                                      | 13.2           | 4.6            | 3.5            | 3             | 50   |
|                         | 2.CFT.30045.0 | 0.45                                      | 13.5           | 4.7            | 3.6            | 3             | 50   |
| Δ                       | 2.CFT.30046.0 | 0.46                                      | 13.8           | 4.8            | 3.7            | 3             | 50   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.


Ergänzende Produkte CrazyDrill Flexpilot Titanium

CrazyDrill Crosspilot



# CrazyDrill Flex Titanium 30 x d

### **BOHREN MIT AUSSENKÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I,   | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|---------------|-------------------------------------------|------|----------------|----------------|-----------|------|
| ■ ab L<br>∆ auf ,       |               | [mm]                                      | [mm] | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFT.30047.0 | 0.47                                      | 14.1 | 4.9            | 3.8            | 3         | 50   |
| Δ                       | 2.CFT.30048.0 | 0.48                                      | 14.4 | 5.0            | 3.8            | 3         | 50   |
| Δ                       | 2.CFT.30049.0 | 0.49                                      | 14.7 | 5.1            | 3.9            | 3         | 50   |
| •                       | 2.CFT.30050.0 | 0.50                                      | 15.0 | 5.3            | 4.0            | 3         | 53   |
| Δ                       | 2.CFT.30051.0 | 0.51                                      | 15.3 | 5.4            | 4.1            | 3         | 53   |
| Δ                       | 2.CFT.30052.0 | 0.52                                      | 15.6 | 5.5            | 4.2            | 3         | 53   |
| Δ                       | 2.CFT.30053.0 | 0.53                                      | 15.9 | 5.6            | 4.2            | 3         | 53   |
| Δ                       | 2.CFT.30054.0 | 0.54                                      | 16.2 | 5.7            | 4.3            | 3         | 53   |
| •                       | 2.CFT.30055.0 | 0.55                                      | 16.5 | 5.8            | 4.4            | 3         | 53   |
| Δ                       | 2.CFT.30056.0 | 0.56                                      | 16.8 | 5.9            | 4.5            | 3         | 53   |
| Δ                       | 2.CFT.30057.0 | 0.57                                      | 17.1 | 6.0            | 4.6            | 3         | 53   |
| Δ                       | 2.CFT.30058.0 | 0.58                                      | 17.4 | 6.1            | 4.6            | 3         | 53   |
| Δ                       | 2.CFT.30059.0 | 0.59                                      | 17.7 | 6.2            | 4.7            | 3         | 53   |
| •                       | 2.CFT.30060.0 | 0.60                                      | 18.0 | 6.3            | 4.8            | 3         | 53   |
| Δ                       | 2.CFT.30061.0 | 0.61                                      | 18.3 | 6.4            | 4.9            | 3         | 53   |
| Δ                       | 2.CFT.30062.0 | 0.62                                      | 18.6 | 6.5            | 5.0            | 3         | 53   |
| Δ                       | 2.CFT.30063.0 | 0.63                                      | 18.9 | 6.6            | 5.0            | 3         | 53   |
| Δ                       | 2.CFT.30064.0 | 0.64                                      | 19.2 | 6.7            | 5.1            | 3         | 53   |
| •                       | 2.CFT.30065.0 | 0.65                                      | 19.5 | 6.8            | 5.2            | 3         | 53   |
| Δ                       | 2.CFT.30066.0 | 0.66                                      | 19.8 | 6.9            | 5.3            | 3         | 53   |
| Δ                       | 2.CFT.30067.0 | 0.67                                      | 20.1 | 7.0            | 5.4            | 3         | 53   |
| Δ                       | 2.CFT.30068.0 | 0.68                                      | 20.4 | 7.1            | 5.4            | 3         | 53   |
| Δ                       | 2.CFT.30069.0 | 0.69                                      | 20.7 | 7.2            | 5.5            | 3         | 53   |
| •                       | 2.CFT.30070.0 | 0.70                                      | 21.0 | 7.4            | 5.6            | 3         | 60   |
| Δ                       | 2.CFT.30071.0 | 0.71                                      | 21.3 | 7.5            | 5.7            | 3         | 60   |
| Δ                       | 2.CFT.30072.0 | 0.72                                      | 21.6 | 7.6            | 5.8            | 3         | 60   |
| Δ                       | 2.CFT.30073.0 | 0.73                                      | 21.9 | 7.7            | 5.8            | 3         | 60   |
| Δ                       | 2.CFT.30074.0 | 0.74                                      | 22.2 | 7.8            | 5.9            | 3         | 60   |
| •                       | 2.CFT.30075.0 | 0.75                                      | 22.5 | 7.9            | 6.0            | 3         | 60   |
| Δ                       | 2.CFT.30076.0 | 0.76                                      | 22.8 | 8.0            | 6.1            | 3         | 60   |
| Δ                       | 2.CFT.30077.0 | 0.77                                      | 23.1 | 8.1            | 6.2            | 3         | 60   |
| Δ                       | 2.CFT.30078.0 | 0.78                                      | 23.4 | 8.2            | 6.2            | 3         | 60   |
| Δ                       | 2.CFT.30079.0 | 0.79                                      | 23.7 | 8.3            | 6.3            | 3         | 60   |
| •                       | 2.CFT.30080.0 | 0.80                                      | 24.0 | 8.4            | 6.4            | 3         | 60   |
| Δ                       | 2.CFT.30081.0 | 0.81                                      | 24.3 | 8.5            | 6.5            | 3         | 60   |
| Δ                       | 2.CFT.30082.0 | 0.82                                      | 24.6 | 8.6            | 6.6            | 3         | 60   |
| Δ                       | 2.CFT.30083.0 | 0.83                                      | 24.9 | 8.7            | 6.6            | 3         | 60   |

- Ab Lager verfügbar.
- ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2



Nicht beschichtet

| Δ 2.CFT.30084.0 0.84 25.2 8.8 0 2.CFT.30085.0 0.85 25.5 8.9 0 Δ 2.CFT.30086.0 0.86 25.8 9.0 0 Δ 2.CFT.30087.0 0.87 26.1 9.1 Δ 2.CFT.30088.0 0.88 26.4 9.2 Δ 2.CFT.30089.0 0.89 26.7 9.3 2.CFT.30090.0 0.90 27.0 9.5 Δ 2.CFT.30091.0 0.91 27.3 9.6 Δ 2.CFT.30092.0 0.92 27.6 9.7 Δ 2.CFT.30093.0 0.93 27.9 9.8 Δ 2.CFT.30094.0 0.94 28.2 9.9 2.CFT.30095.0 0.95 28.5 10.0 Δ 2.CFT.30096.0 0.96 28.8 10.1 Δ 2.CFT.30098.0 0.97 29.1 10.2 Δ 2.CFT.30099.0 0.99 29.7 10.4 2.CFT.30099.0 0.99 29.7 10.4 2.CFT.30090.0 1.00 30.0 10.5 8 Δ 2.CFT.30100.0 1.01 30.3 10.6 8 Δ 2.CFT.30102.0 1.02 30.6 10.7 8 Δ 2.CFT.30105.0 1.03 30.9 10.8 8 Δ 2.CFT.30105.0 1.04 31.2 10.9 8 2.CFT.30105.0 1.05 31.5 11.0 8 Δ 2.CFT.30106.0 1.06 31.8 11.1 8 Δ 2.CFT.30108.0 1.08 32.4 11.3 8 Δ 2.CFT.30108.0 1.09 32.7 11.4 8 Δ 2.CFT.30110.0 1.01 33.0 11.6 8 Δ 2.CFT.30108.0 1.09 32.7 11.4 8 Δ 2.CFT.30112.0 1.10 33.0 11.6 8 Δ 2.CFT.30110.0 1.01 33.0 11.6 8 Δ 2.CFT.30110.0 1.10 33.0 11.6 8 Δ 2.CFT.30112.0 1.12 33.6 11.8 9 Δ 2.CFT.30112.0 1.12 33.6 11.8 9 Δ 2.CFT.30113.0 1.13 33.9 11.9 9                                                                         | l <sub>3</sub> | D<br>(h6) | L    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|------|
| ■ 2.CFT.30085.0 0.85 25.5 8.9 6  Δ 2.CFT.30086.0 0.86 25.8 9.0 6  Δ 2.CFT.30087.0 0.87 26.1 9.1 1  Δ 2.CFT.30088.0 0.88 26.4 9.2 1  Δ 2.CFT.30089.0 0.89 26.7 9.3 1  ■ 2.CFT.30090.0 0.90 27.0 9.5 1  Δ 2.CFT.30091.0 0.91 27.3 9.6 1  Δ 2.CFT.30092.0 0.92 27.6 9.7 1  Δ 2.CFT.30093.0 0.93 27.9 9.8 1  Δ 2.CFT.30095.0 0.95 28.5 10.0 1  Δ 2.CFT.30096.0 0.96 28.8 10.1 1  Δ 2.CFT.30097.0 0.97 29.1 10.2 1  Δ 2.CFT.30098.0 0.98 29.4 10.3 1  Δ 2.CFT.30099.0 0.99 29.7 10.4 10.2 1  Δ 2.CFT.30100.0 1.00 30.0 10.5 8 1  Δ 2.CFT.3010.0 1.01 30.3 10.6 8 1  Δ 2.CFT.3010.0 1.02 30.6 10.7 8 1  Δ 2.CFT.3010.0 1.04 31.2 10.9 8 1  Δ 2.CFT.3010.0 1.05 31.5 11.0 8 1  Δ 2.CFT.3010.0 1.06 31.8 11.1 8 1  Δ 2.CFT.3010.0 1.09 32.7 11.4 8 1  Δ 2.CFT.3010.0 1.09 32.7 11.4 8 1  Δ 2.CFT.3010.0 1.09 32.7 11.4 8 1  Δ 2.CFT.3011.0 1.11 33.3 11.7 8 1  Δ 2.CFT.3011.0 1.11 33.9 11.9 9 1 | [mm]           | [mm]      | [mm] |
| Δ       2.CFT.30086.0       0.86       25.8       9.0       6         Δ       2.CFT.30087.0       0.87       26.1       9.1         Δ       2.CFT.30088.0       0.88       26.4       9.2         Δ       2.CFT.30089.0       0.89       26.7       9.3         Δ       2.CFT.30090.0       0.90       27.0       9.5         Δ       2.CFT.30091.0       0.91       27.3       9.6         Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         Δ       2.CFT.30094.0       0.94       28.2       9.9         Δ       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         Δ       2.CFT.30100.0       1.00       30.0       10.5       3                                                                                                                                                                                                                                                                                | 6.7            | 3         | 60   |
| Δ       2.CFT.30087.0       0.87       26.1       9.1         Δ       2.CFT.30088.0       0.88       26.4       9.2         Δ       2.CFT.30089.0       0.89       26.7       9.3         Δ       2.CFT.30090.0       0.90       27.0       9.5         Δ       2.CFT.30091.0       0.91       27.3       9.6         Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         Δ       2.CFT.30094.0       0.94       28.2       9.9         Δ       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         Δ       2.CFT.30100.0       1.00       30.0       10.5         Δ       2.CFT.30102.0       1.02       30.6       10.7         Δ       2.CFT                                                                                                                                                                                                                                                                         | 6.8            | 3         | 64   |
| Δ       2.CFT.30088.0       0.88       26.4       9.2         Δ       2.CFT.30089.0       0.89       26.7       9.3         ■       2.CFT.30090.0       0.90       27.0       9.5         Δ       2.CFT.30091.0       0.91       27.3       9.6         Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30099.0       0.99       29.7       10.4         Φ       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30100.0       1.00       30.6       10.7       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30105.0       1.03       30.9                                                                                                                                                                                                                                                                        | 6.9            | 3         | 64   |
| Δ 2.CFT.30089.0 0.89 26.7 9.3  ■ 2.CFT.30090.0 0.90 27.0 9.5  Δ 2.CFT.30091.0 0.91 27.3 9.6  Δ 2.CFT.30092.0 0.92 27.6 9.7  Δ 2.CFT.30093.0 0.93 27.9 9.8  Δ 2.CFT.30094.0 0.94 28.2 9.9  ■ 2.CFT.30095.0 0.95 28.5 10.0  Δ 2.CFT.30096.0 0.96 28.8 10.1  Δ 2.CFT.30097.0 0.97 29.1 10.2  Δ 2.CFT.30099.0 0.99 29.7 10.4  ■ 2.CFT.30099.0 1.00 30.0 10.5 8  Δ 2.CFT.30100.0 1.00 30.0 10.5 8  Δ 2.CFT.30101.0 1.01 30.3 10.6 8  Δ 2.CFT.30103.0 1.03 30.9 10.8 8  Δ 2.CFT.30104.0 1.04 31.2 10.9 8  ■ 2.CFT.30105.0 1.05 31.5 11.0 8  Δ 2.CFT.30106.0 1.06 31.8 11.1 8  Δ 2.CFT.30108.0 1.08 32.4 11.3 8  Δ 2.CFT.30109.0 1.09 32.7 11.4 8  Δ 2.CFT.3011.0 1.10 33.0 11.6 8  Δ 2.CFT.3011.0 1.11 33.3 11.7 8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0            | 3         | 64   |
| ■       2.CFT.30090.0       0.90       27.0       9.5         Δ       2.CFT.30091.0       0.91       27.3       9.6         Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30100.0       1.00       30.0       10.5       3         Δ       2.CFT.30100.0       1.00       30.0       10.5       3         Δ       2.CFT.30101.0       1.01       30.3       10.6       3         Δ       2.CFT.30102.0       1.02       30.6       10.7       3         Δ       2.CFT.30103.0       1.03       30.9       10.8       3         Δ       2.CFT.30105.0       1.05       31.5       11.0       3         Δ       2.CFT.30106.0                                                                                                                                                                                                                                                                            | 7.0            | 3         | 64   |
| Δ       2.CFT.30091.0       0.91       27.3       9.6         Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.                                                                                                                                                                                                                                                                          | 7.1            | 3         | 64   |
| Δ       2.CFT.30092.0       0.92       27.6       9.7         Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT                                                                                                                                                                                                                                                                          | 7.2            | 3         | 64   |
| Δ       2.CFT.30093.0       0.93       27.9       9.8         Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ <td>7.3</td> <td>3</td> <td>64</td>                                                                                                                                                                                                                                         | 7.3            | 3         | 64   |
| Δ       2.CFT.30094.0       0.94       28.2       9.9         ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       30.0         Δ       2.CFT.30101.0       1.01       30.3       10.6       30.0         Δ       2.CFT.30102.0       1.02       30.6       10.7       30.0         Δ       2.CFT.30103.0       1.03       30.9       10.8       30.0         Δ       2.CFT.30104.0       1.04       31.2       10.9       30.0         Δ       2.CFT.30105.0       1.05       31.5       11.0       30.0         Δ       2.CFT.30106.0       1.06       31.8       11.1       30.0         Δ       2.CFT.30108.0       1.08       32.4       11.3       30.0         Δ       2.CFT.30110.0       1.10       33.0       11.6 <t< td=""><td>7.4</td><td>3</td><td>64</td></t<>                                                                                                                                                                                                             | 7.4            | 3         | 64   |
| ■       2.CFT.30095.0       0.95       28.5       10.0         Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       30.0         Δ       2.CFT.30101.0       1.01       30.3       10.6       30.0         Δ       2.CFT.30102.0       1.02       30.6       10.7       30.0         Δ       2.CFT.30103.0       1.03       30.9       10.8       30.0         Δ       2.CFT.30104.0       1.04       31.2       10.9       30.0         Δ       2.CFT.30105.0       1.05       31.5       11.0       30.0         Δ       2.CFT.30106.0       1.06       31.8       11.1       30.0         Δ       2.CFT.30108.0       1.08       32.4       11.3       30.0         Δ       2.CFT.30110.0       1.09       32.7       11.4       30.0         Φ       2.CFT.30111.0       1.11       33.3       <                                                                                                                                                                                                                                                     | 7.4            | 3         | 64   |
| Δ       2.CFT.30096.0       0.96       28.8       10.1         Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         Δ       2.CFT.30100.0       1.00       30.0       10.5       30.0         Δ       2.CFT.30101.0       1.01       30.3       10.6       30.0         Δ       2.CFT.30102.0       1.02       30.6       10.7       30.0         Δ       2.CFT.30103.0       1.03       30.9       10.8       30.0         Δ       2.CFT.30104.0       1.04       31.2       10.9       30.0         Δ       2.CFT.30105.0       1.05       31.5       11.0       30.0         Δ       2.CFT.30106.0       1.06       31.8       11.1       30.0         Δ       2.CFT.30107.0       1.07       32.1       11.2       30.0         Δ       2.CFT.30108.0       1.08       32.4       11.3       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0 <td>7.5</td> <td>3</td> <td>64</td>                                                                                                                                                                                                        | 7.5            | 3         | 64   |
| Δ       2.CFT.30097.0       0.97       29.1       10.2         Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         Δ       2.CFT.30100.0       1.00       30.0       10.5       30.0         Δ       2.CFT.30101.0       1.01       30.3       10.6       30.0         Δ       2.CFT.30102.0       1.02       30.6       10.7       30.0         Δ       2.CFT.30103.0       1.03       30.9       10.8       30.0         Δ       2.CFT.30104.0       1.04       31.2       10.9       30.0         Δ       2.CFT.30105.0       1.05       31.5       11.0       30.0         Δ       2.CFT.30106.0       1.06       31.8       11.1       30.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30.0       10.0       30                                                                                                                                                                                                                          | 7.6            | 3         | 64   |
| Δ       2.CFT.30098.0       0.98       29.4       10.3         Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30111.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13                                                                                                                                                                                                                                                                           | 7.7            | 3         | 64   |
| Δ       2.CFT.30099.0       0.99       29.7       10.4         ■       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                            | 7.8            | 3         | 64   |
| ■       2.CFT.30100.0       1.00       30.0       10.5       8         Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                           | 7.8            | 3         | 64   |
| Δ       2.CFT.30101.0       1.01       30.3       10.6       8         Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         Δ       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.9            | 3         | 64   |
| Δ       2.CFT.30102.0       1.02       30.6       10.7       8         Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         ■       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         Φ       2.CFT.30111.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0            | 3         | 70   |
| Δ       2.CFT.30103.0       1.03       30.9       10.8       8         Δ       2.CFT.30104.0       1.04       31.2       10.9       8         ■       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         2.CFT.30111.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.1            | 3         | 70   |
| Δ       2.CFT.30104.0       1.04       31.2       10.9       8         ■       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         Ξ       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2            | 3         | 70   |
| ■       2.CFT.30105.0       1.05       31.5       11.0       8         Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         2.CFT.30111.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.2            | 3         | 70   |
| Δ       2.CFT.30106.0       1.06       31.8       11.1       8         Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.3            | 3         | 70   |
| Δ       2.CFT.30107.0       1.07       32.1       11.2       8         Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         ■       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4            | 3         | 70   |
| Δ       2.CFT.30108.0       1.08       32.4       11.3       8         Δ       2.CFT.30109.0       1.09       32.7       11.4       8         ■       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5            | 3         | 70   |
| Δ       2.CFT.30109.0       1.09       32.7       11.4       8         ■       2.CFT.30110.0       1.10       33.0       11.6       8         Δ       2.CFT.30111.0       1.11       33.3       11.7       8         Δ       2.CFT.30112.0       1.12       33.6       11.8       9         Δ       2.CFT.30113.0       1.13       33.9       11.9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6            | 3         | 70   |
| ■ 2.CFT.30110.0 1.10 33.0 11.6 8 Δ 2.CFT.30111.0 1.11 33.3 11.7 8 Δ 2.CFT.30112.0 1.12 33.6 11.8 9 Δ 2.CFT.30113.0 1.13 33.9 11.9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.6            | 3         | 70   |
| Δ 2.CFT.30111.0 1.11 33.3 11.7 8 Δ 2.CFT.30112.0 1.12 33.6 11.8 9 Δ 2.CFT.30113.0 1.13 33.9 11.9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7            | 3         | 70   |
| Δ 2.CFT.30112.0 1.12 33.6 11.8 9 Δ 2.CFT.30113.0 1.13 33.9 11.9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8            | 3         | 70   |
| Δ 2.CFT.30113.0 1.13 33.9 11.9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.9            | 3         | 70   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.0            | 3         | 70   |
| A 2 CET 20114.0 1.14 24.2 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0            | 3         | 70   |
| Δ 2.CFT.30114.0 1.14 34.2 12.0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.1            | 3         | 70   |
| ■ 2.CFT.30115.0 1.15 34.5 12.1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.2            | 3         | 70   |
| Δ 2.CFT.30116.0 1.16 34.8 12.2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.3            | 3         | 70   |
| Δ 2.CFT.30117.0 1.17 35.1 12.3 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.4            | 3         | 70   |
| Δ 2.CFT.30118.0 1.18 35.4 12.4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.4            | 3         | 70   |
| Δ 2.CFT.30119.0 1.19 35.7 12.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5            | 3         | 70   |
| ■ 2.CFT.30120.0 1.20 36.0 12.6 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.6            | 3         | 70   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Flexpilot Titanium CrazyDrill Crosspilot



# CrazyDrill Flex Titanium 30 x d

### BOHREN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe                                                       | Werkstoff                                     | Wr.Nr.           | DIN                | AISI/ASTM/UNS           |                   | <b>/</b> c<br>min] |
|----------------------------------------------------------------------------|-----------------------------------------------|------------------|--------------------|-------------------------|-------------------|--------------------|
| 3 111                                                                      |                                               |                  |                    |                         | Ød1≤0.4           | Ød1>0.4            |
|                                                                            |                                               | 1.0301           | C10                | AISI 1010               |                   |                    |
| T P                                                                        |                                               | 1.0401           | C15                | AISI 1015               |                   |                    |
|                                                                            | Stähle unlegiert                              | 1.1191           | C45E/CK45          | AISI 1045               |                   |                    |
|                                                                            | Rm < 800 N/mm <sup>2</sup>                    | 1.0044           | S275JR             | AISI 1020               |                   |                    |
| <b>/</b>                                                                   |                                               | 1.0715           | 11SMn30            | AISI 1215               |                   |                    |
| 2//                                                                        |                                               | 1.5752           | 15NiCr13           | ASTM 3415 / AISI 3310   |                   |                    |
|                                                                            |                                               | 1.7131           | 16MnCr5            | AISI 5115               | Empf              | ohlen:             |
|                                                                            | Stähle niedriglegiert                         | 1.3505           | 100Cr6             | AISI 52100              | CrazyDrill Fle    | x Steel 30 x d1    |
|                                                                            | Rm > 900 N/mm <sup>2</sup>                    | 1.7225           | 42CrMo4            | AISI 4140               |                   |                    |
| l <sub>1</sub>                                                             |                                               | 1.2842           | 90MnCrV8           | AISI O2                 |                   |                    |
| <del></del>                                                                |                                               | 1.2379           | X153CrMoV12        | AISI D2                 |                   |                    |
| -\//\ O1                                                                   | Werkzeugstähle                                | 1.2436           | X210CrW12          | AISI D4/D6              |                   |                    |
| <i>\//</i> /  <b>!</b> "                                                   | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>    | 1.3343           | HS6-5-2C           | AISI M2 / UNS T11302    |                   |                    |
| Qx                                                                         | KIII < 1200 IV/IIIII12                        | 1.3355           | HS18-0-1           | AISI T1 / UNS T12001    |                   |                    |
| Qx                                                                         | Rostfreie Stähle-                             | 1.4016           | X6Cr17             | AISI 430 / UNS S43000   |                   |                    |
|                                                                            | ferritisch                                    | 1.4105           | X6CrMoS17          | AISI 430F               |                   |                    |
| M                                                                          | Rostfreie Stähle-                             | 1.4034           | X46Cr13            | AISI 420C               |                   |                    |
|                                                                            | martensitisch                                 | 1.4112           | X90CrMoV18         | AISI 440B               |                   |                    |
|                                                                            | Rostfreie Stähle-                             | 1.4542           | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH | Empf              | ohlen:             |
|                                                                            | martensitisch – PH                            | 1.4545           | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                   | SST-Inox 30 x d1   |
|                                                                            | That cerisicise in the                        | 1.4301           | X5CrNi 18-10       | AISI 304                | Crazy Drim Frence | 551 IIION 50 X G . |
|                                                                            | Rostfreie Stähle-                             | 1.4435           | X2CrNiMo 18-14-3   | AISI 316L               |                   |                    |
|                                                                            | austenitisch                                  | 1.4441           | X2CrNiMo 18-15-3   | AISI 316LM              |                   |                    |
|                                                                            |                                               | 1.4539           | X1NiCrMoCu 25-20-5 | AISI 904L               |                   |                    |
|                                                                            |                                               |                  |                    |                         |                   |                    |
| 1/                                                                         |                                               | 0.6020<br>0.6030 | GG20<br>GG30       | ASTM 40P                | Empf              | ohlen:             |
| K                                                                          | Gusseisen                                     |                  |                    | ASTM 40B                |                   | Steel 30 x d1      |
|                                                                            |                                               | 0.7040           | GGG40              | ASTM 60-40-18           | CrazyDriii Fiex   | ( Steel 50 X u i   |
|                                                                            |                                               | 0.7060           | GGG60              | ASTM 80-60-03           |                   |                    |
|                                                                            | Aluminium                                     | 3.2315           | AlMgSi1            | ASTM 6351               | Ff                | -1-1               |
| N                                                                          | Knetlegierungen                               | 3.4365           | AlZnMgCu1.5        | ASTM 7075               |                   | ohlen:             |
|                                                                            | Aluminium                                     | 3.2163           | GD-AlSi9Cu3        | ASTM A380               | CrazyDriii Fiex   | Steel 30 x d1      |
|                                                                            | Druckgusslegierungen                          |                  | GD-AlSi10Mg        | UNS A03590              |                   |                    |
|                                                                            | Kupfer                                        | 2.004            | Cu-OF / CW008A     | UNS C10100              | 5 – 40            | 20 – 40            |
|                                                                            |                                               | 2.0065           | Cu-ETP / CW004A    | UNS C11000              |                   | <u> </u>           |
|                                                                            | Messing bleifrei                              | 2.0321           | CuZn37 CW508L      | UNS C27400              |                   | ohlen:             |
|                                                                            |                                               | 2.036            | CuZn40 CW509L      | UNS C28000              | CrazyDriii Fiex S | SST-Inox 30 x d1   |
|                                                                            | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401           | CuZn39Pb3 / CW614N |                         |                   |                    |
|                                                                            |                                               | 2.102            | CuSn6              | UNS C51900              |                   | ohlen:             |
|                                                                            | Bronze                                        | 2.0966           | CuAl10Ni5Fe4       | UNS C63000              | CrazyDrill Flex   | Steel 30 x d1      |
|                                                                            | Rm < 600 N/mm <sup>2</sup>                    | 2.096            | CuAl9Mn2           | UNS C63200              |                   |                    |
|                                                                            |                                               | 2.4856           |                    | Inconel 625             |                   |                    |
| S.                                                                         | Hitzebeständige                               | 2.4668           |                    | Inconel 718             | •                 | ohlen:             |
| 71                                                                         | Stähle                                        | 2.4617           | NiMo28             | Hastelloy B-2           | CrazyDrill Flex S | SST-Inox 30 x d1   |
|                                                                            |                                               | 2.4665           | NiCr22Fe18Mo       | Hastelloy X             |                   |                    |
|                                                                            | Titan rein                                    | 3.7035           | Gr.2               | ASTM B348 / F67         | 5 – 20            | 20 – 30            |
| 5                                                                          | TRUIT TEIT                                    | 3.7065           | Gr.4               | ASTM B348 / F68         | 5 20              | 20 - 30            |
| 2                                                                          | Titan Legierungen                             | 3.7165           | TiAl6V4            | ASTM B348 / F136        | 5 – 20            | 20 – 40            |
|                                                                            | Than Ecgiciungen                              | 9.9367           | TiAl6Nb7           | ASTM F1295              | 5 20              | 20 - 40            |
| <b>S</b>                                                                   | CrCo-Legierungen                              | 2.4964           | CoCr20W15Ni        | Haynes 25               |                   | ohlen:             |
| 3                                                                          |                                               |                  | CrCoMo28           | ASTM F1537              | CrazyDrill Flex S | SST-Inox 30 x d1   |
| S <sub>1</sub> S <sub>2</sub> S <sub>3</sub> H <sub>1</sub> H <sub>2</sub> | Stähle gehärtet<br>< 55 HRC                   | 1.2510           | 100MnCrMoW4        | AISI O1                 |                   |                    |
|                                                                            | Stähle gehärtet                               |                  |                    |                         |                   |                    |



ANWENDUNGSEMPFEHLUNG





|                |       |                  |       |                  |       |                  | <b>f</b> [mm | n/U]           |       |                  |       |                |         |                  |
|----------------|-------|------------------|-------|------------------|-------|------------------|--------------|----------------|-------|------------------|-------|----------------|---------|------------------|
| Q <sub>1</sub> | Ø     | d1               | Ø     | d1               | Ø     | d1               | Ø            | d1             | Ø     | d1               | Ø     | d1             | Ø       | d1               |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                | 1.0 - 1 |                  |
|                | f     | $\mathbf{Q}_{x}$ | f     | $\mathbf{Q}_{x}$ | f     | $\mathbf{Q}_{x}$ | f            | Q <sub>x</sub> | f     | $\mathbf{Q}_{x}$ | f     | Q <sub>x</sub> | f       | $\mathbf{Q}_{x}$ |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
| 7xd1           | 0.005 | 0.5xd1           | 0.020 | 0.5xd1           | 0.040 | 0.5xd1           | 0.060        | 0.5xd1         | 0.120 | 0.5xd1           | 0.180 | 0.5xd1         | 0.200   | 0.5xd1           |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
| 3xd1           | 0.002 | 0.2xd1           | 0.005 | 0.25xd1          | 0.007 | 0.25xd1          | 0.010        | 0.25xd1        | 0.015 | 0.3xd1           | 0.025 | 0.5xd1         | 0.035   | 0.5xd1           |
| 3xd1           | 0.002 | 0.5xd1           | 0.010 | 0.25xd1          | 0.015 | 0.3xd1           | 0.020        | 0.5xd1         | 0.050 | 0.5xd1           | 0.090 | 0.5xd1         | 0.140   | 0.5xd1           |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |
|                |       |                  |       |                  |       |                  |              |                |       |                  |       |                |         |                  |



## CrazyDrill Flex Titanium 50 x d

### **BOHREN MIT INTEGRIERTER KÜHLUNG**

Der Hartmetall-Mikrobohrer CrazyDrill Flex Titanium eignet sich für langspanige Materialien wie Titan, Titanlegierungen und Kupfer. Er verfügt über eine hohe Flexibilität dank einem langen und "flexiblen" Verbindungselement zwischen dem Schneidkörper und dem Schaft. So eignet er sich für prozesssicheres Bohren auch unter schwierigen Bedingungen. Er kann einen Mittenversatz von bis zu 40% seines Durchmessers kompensieren. Ausserdem ist er ein idealer Tieflochbohrer für Bohrungen ab 0.3 mm Durchmesser, mit einer wesentlich kürzeren Bohrzeit gegenüber Einlippenbohrern, Laser oder Mikroerosion.

CrazyDrill Flex Titanium 50 x d verfügt über im Schaft integrierte Kühlkanäle, die für eine regelmässige, massive Kühlung der Bohrspitze sorgen. So wird die Temperatur konstant unter Kontrolle gehalten, die Späne aus der Spannut sowie Bohrung gespült und eine verbesserte Standzeit erreicht. Die Bohrer sind unbeschichtet.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Flexpilot Titanium oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

### Kühlschmierstoff, Filter und Druck

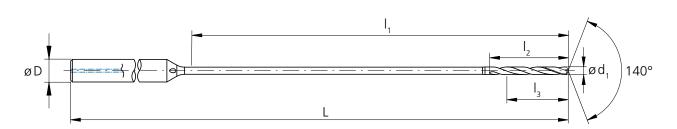
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex Titanium (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.








**Z**2

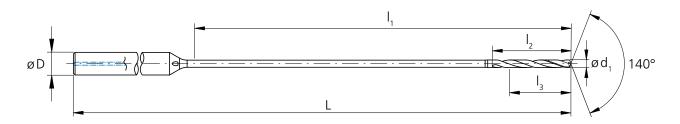


Nicht beschichtet



| ■ ab Lager ∆ auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l</b> <sub>2</sub> [mm] | <b>l</b> <sub>3</sub> | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|--------------------------|------------------|---------------------------------------------------|----------------------------|----------------------------|-----------------------|--------------------------|-----------|
| •                        | 2.CFT.50030.IK.0 | 0.30                                              | 15.0                       | 3.2                        | 2.4                   | 3                        | 53        |
| Δ                        | 2.CFT.50031.IK.0 | 0.31                                              | 15.5                       | 3.3                        | 2.5                   | 3                        | 53        |
| Δ                        | 2.CFT.50032.IK.0 | 0.32                                              | 16.0                       | 3.4                        | 2.6                   | 3                        | 53        |
| Δ                        | 2.CFT.50033.IK.0 | 0.33                                              | 16.5                       | 3.5                        | 2.6                   | 3                        | 53        |
| Δ                        | 2.CFT.50034.IK.0 | 0.34                                              | 17.0                       | 3.6                        | 2.7                   | 3                        | 53        |
|                          | 2.CFT.50035.IK.0 | 0.35                                              | 17.5                       | 3.7                        | 2.8                   | 3                        | 60        |
| Δ                        | 2.CFT.50036.IK.0 | 0.36                                              | 18.0                       | 3.8                        | 2.9                   | 3                        | 60        |
| Δ                        | 2.CFT.50037.IK.0 | 0.37                                              | 18.5                       | 3.9                        | 3.0                   | 3                        | 60        |
| Δ                        | 2.CFT.50038.IK.0 | 0.38                                              | 19.0                       | 4.0                        | 3.0                   | 3                        | 60        |
| Δ                        | 2.CFT.50039.IK.0 | 0.39                                              | 19.5                       | 4.1                        | 3.1                   | 3                        | 60        |
|                          | 2.CFT.50040.IK.0 | 0.40                                              | 20.0                       | 4.2                        | 3.2                   | 3                        | 60        |
| Δ                        | 2.CFT.50041.IK.0 | 0.41                                              | 20.5                       | 4.3                        | 3.3                   | 3                        | 60        |
| Δ                        | 2.CFT.50042.IK.0 | 0.42                                              | 21.0                       | 4.4                        | 3.4                   | 3                        | 60        |
| Δ                        | 2.CFT.50043.IK.0 | 0.43                                              | 21.5                       | 4.5                        | 3.4                   | 3                        | 60        |
| Δ                        | 2.CFT.50044.IK.0 | 0.44                                              | 22.0                       | 4.6                        | 3.5                   | 3                        | 60        |
|                          | 2.CFT.50045.IK.0 | 0.45                                              | 22.5                       | 4.7                        | 3.6                   | 3                        | 60        |
| Δ                        | 2.CFT.50046.IK.0 | 0.46                                              | 23.0                       | 4.8                        | 3.7                   | 3                        | 60        |
| Δ                        | 2.CFT.50047.IK.0 | 0.47                                              | 23.5                       | 4.9                        | 3.8                   | 3                        | 60        |
| Δ                        | 2.CFT.50048.IK.0 | 0.48                                              | 24.0                       | 5.0                        | 3.8                   | 3                        | 60        |
| Δ                        | 2.CFT.50049.IK.0 | 0.49                                              | 24.5                       | 5.1                        | 3.9                   | 3                        | 60        |
|                          | 2.CFT.50050.IK.0 | 0.50                                              | 25.0                       | 5.3                        | 4.0                   | 3                        | 64        |
| Δ                        | 2.CFT.50051.IK.0 | 0.51                                              | 25.5                       | 5.4                        | 4.1                   | 3                        | 64        |
| Δ                        | 2.CFT.50052.IK.0 | 0.52                                              | 26.0                       | 5.5                        | 4.2                   | 3                        | 64        |
| Δ                        | 2.CFT.50053.IK.0 | 0.53                                              | 26.5                       | 5.6                        | 4.2                   | 3                        | 64        |
| Δ                        | 2.CFT.50054.IK.0 | 0.54                                              | 27.0                       | 5.7                        | 4.3                   | 3                        | 64        |
|                          | 2.CFT.50055.IK.0 | 0.55                                              | 27.5                       | 5.8                        | 4.4                   | 3                        | 64        |
| Δ                        | 2.CFT.50056.IK.0 | 0.56                                              | 28.0                       | 5.9                        | 4.5                   | 3                        | 64        |
| Δ                        | 2.CFT.50057.IK.0 | 0.57                                              | 28.5                       | 6.0                        | 4.6                   | 3                        | 64        |
| Δ                        | 2.CFT.50058.IK.0 | 0.58                                              | 29.0                       | 6.1                        | 4.6                   | 3                        | 64        |
| Δ                        | 2.CFT.50059.IK.0 | 0.59                                              | 29.5                       | 6.2                        | 4.7                   | 3                        | 64        |
|                          | 2.CFT.50060.IK.0 | 0.60                                              | 30.0                       | 6.3                        | 4.8                   | 3                        | 70        |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.


Ergänzende Produkte

CrazyDrill Flexpilot Titanium CrazyDrill Crosspilot



## CrazyDrill Flex Titanium 50 x d

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



| ■ ab Lager ∆ auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b> [mm] | <b>l</b> <sub>3</sub> | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] |
|--------------------------|------------------|---------------------------------------------------|----------------------------|---------------------------|-----------------------|--------------------------|-----------|
| Δ                        | 2.CFT.50061.IK.0 | 0.61                                              | 30.5                       | 6.4                       | 4.9                   | 3                        | 70        |
| Δ                        | 2.CFT.50062.IK.0 | 0.62                                              | 31.0                       | 6.5                       | 5.0                   | 3                        | 70        |
| Δ                        | 2.CFT.50063.IK.0 | 0.63                                              | 31.5                       | 6.6                       | 5.0                   | 3                        | 70        |
| Δ                        | 2.CFT.50064.IK.0 | 0.64                                              | 32.0                       | 6.7                       | 5.1                   | 3                        | 70        |
|                          | 2.CFT.50065.IK.0 | 0.65                                              | 32.5                       | 6.8                       | 5.2                   | 3                        | 70        |
| Δ                        | 2.CFT.50066.IK.0 | 0.66                                              | 33.0                       | 6.9                       | 5.3                   | 3                        | 70        |
| Δ                        | 2.CFT.50067.IK.0 | 0.67                                              | 33.5                       | 7.0                       | 5.4                   | 3                        | 70        |
| Δ                        | 2.CFT.50068.IK.0 | 0.68                                              | 34.0                       | 7.1                       | 5.4                   | 3                        | 70        |
| Δ                        | 2.CFT.50069.IK.0 | 0.69                                              | 34.5                       | 7.2                       | 5.5                   | 3                        | 70        |
|                          | 2.CFT.50070.IK.0 | 0.70                                              | 35.0                       | 7.4                       | 5.6                   | 3                        | 75        |
| Δ                        | 2.CFT.50071.IK.0 | 0.71                                              | 35.5                       | 7.5                       | 5.7                   | 3                        | 75        |
| Δ                        | 2.CFT.50072.IK.0 | 0.72                                              | 36.0                       | 7.6                       | 5.8                   | 3                        | 75        |
| Δ                        | 2.CFT.50073.IK.0 | 0.73                                              | 36.5                       | 7.7                       | 5.8                   | 3                        | 75        |
| Δ                        | 2.CFT.50074.IK.0 | 0.74                                              | 37.0                       | 7.8                       | 5.9                   | 3                        | 75        |
|                          | 2.CFT.50075.IK.0 | 0.75                                              | 37.5                       | 7.9                       | 6.0                   | 3                        | 75        |
| Δ                        | 2.CFT.50076.IK.0 | 0.76                                              | 38.0                       | 8.0                       | 6.1                   | 3                        | 75        |
| Δ                        | 2.CFT.50077.IK.0 | 0.77                                              | 38.5                       | 8.1                       | 6.2                   | 3                        | 75        |
| Δ                        | 2.CFT.50078.IK.0 | 0.78                                              | 39.0                       | 8.2                       | 6.2                   | 3                        | 75        |
| Δ                        | 2.CFT.50079.IK.0 | 0.79                                              | 39.5                       | 8.3                       | 6.3                   | 3                        | 75        |
|                          | 2.CFT.50080.IK.0 | 0.80                                              | 40.0                       | 8.4                       | 6.4                   | 3                        | 80        |
| Δ                        | 2.CFT.50081.IK.0 | 0.81                                              | 40.5                       | 8.5                       | 6.5                   | 3                        | 80        |
| Δ                        | 2.CFT.50082.IK.0 | 0.82                                              | 41.0                       | 8.6                       | 6.6                   | 3                        | 80        |
| Δ                        | 2.CFT.50083.IK.0 | 0.83                                              | 41.5                       | 8.7                       | 6.6                   | 3                        | 80        |
| Δ                        | 2.CFT.50084.IK.0 | 0.84                                              | 42.0                       | 8.8                       | 6.7                   | 3                        | 80        |
|                          | 2.CFT.50085.IK.0 | 0.85                                              | 42.5                       | 8.9                       | 6.8                   | 3                        | 80        |
| Δ                        | 2.CFT.50086.IK.0 | 0.86                                              | 43.0                       | 9.0                       | 6.9                   | 3                        | 80        |
| Δ                        | 2.CFT.50087.IK.0 | 0.87                                              | 43.5                       | 9.1                       | 7.0                   | 3                        | 80        |
| Δ                        | 2.CFT.50088.IK.0 | 0.88                                              | 44.0                       | 9.2                       | 7.0                   | 3                        | 80        |
| Δ                        | 2.CFT.50089.IK.0 | 0.89                                              | 44.5                       | 9.3                       | 7.1                   | 3                        | 80        |
|                          | 2.CFT.50090.IK.0 | 0.90                                              | 45.0                       | 9.5                       | 7.2                   | 3                        | 85        |

- Ab Lager verfügbar.
- Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.







**Z**2



Nicht beschichtet

| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>D</b><br>(h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|------------------|------|
| ■ ab<br>∆ auf           |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]             | [mm] |
| Δ                       | 2.CFT.50091.IK.0 | 0.91                                      | 45.5           | 9.6            | 7.3            | 3                | 85   |
| Δ                       | 2.CFT.50092.IK.0 | 0.92                                      | 46.0           | 9.7            | 7.4            | 3                | 85   |
| Δ                       | 2.CFT.50093.IK.0 | 0.93                                      | 46.5           | 9.8            | 7.4            | 3                | 85   |
| Δ                       | 2.CFT.50094.IK.0 | 0.94                                      | 47.0           | 9.9            | 7.5            | 3                | 85   |
|                         | 2.CFT.50095.IK.0 | 0.95                                      | 47.5           | 10.0           | 7.6            | 3                | 85   |
| Δ                       | 2.CFT.50096.IK.0 | 0.96                                      | 48.0           | 10.1           | 7.7            | 3                | 85   |
| Δ                       | 2.CFT.50097.IK.0 | 0.97                                      | 48.5           | 10.2           | 7.8            | 3                | 85   |
| Δ                       | 2.CFT.50098.IK.0 | 0.98                                      | 49.0           | 10.3           | 7.8            | 3                | 85   |
| Δ                       | 2.CFT.50099.IK.0 | 0.99                                      | 49.5           | 10.4           | 7.9            | 3                | 85   |
|                         | 2.CFT.50100.IK.0 | 1.00                                      | 50.0           | 10.5           | 8.0            | 3                | 90   |
| Δ                       | 2.CFT.50101.IK.0 | 1.01                                      | 50.5           | 10.6           | 8.1            | 3                | 90   |
| Δ                       | 2.CFT.50102.IK.0 | 1.02                                      | 51.0           | 10.7           | 8.2            | 3                | 90   |
| Δ                       | 2.CFT.50103.IK.0 | 1.03                                      | 51.5           | 10.8           | 8.2            | 3                | 90   |
| Δ                       | 2.CFT.50104.IK.0 | 1.04                                      | 52.0           | 10.9           | 8.3            | 3                | 90   |
|                         | 2.CFT.50105.IK.0 | 1.05                                      | 52.5           | 11.0           | 8.4            | 3                | 90   |
| Δ                       | 2.CFT.50106.IK.0 | 1.06                                      | 53.0           | 11.1           | 8.5            | 3                | 90   |
| Δ                       | 2.CFT.50107.IK.0 | 1.07                                      | 53.5           | 11.2           | 8.6            | 3                | 90   |
| Δ                       | 2.CFT.50108.IK.0 | 1.08                                      | 54.0           | 11.3           | 8.6            | 3                | 90   |
| Δ                       | 2.CFT.50109.IK.0 | 1.09                                      | 54.5           | 11.4           | 8.7            | 3                | 90   |
|                         | 2.CFT.50110.IK.0 | 1.10                                      | 55.0           | 11.6           | 8.8            | 3                | 95   |
| Δ                       | 2.CFT.50111.IK.0 | 1.11                                      | 55.5           | 11.7           | 8.9            | 3                | 95   |
| Δ                       | 2.CFT.50112.IK.0 | 1.12                                      | 56.0           | 11.8           | 9.0            | 3                | 95   |
| Δ                       | 2.CFT.50113.IK.0 | 1.13                                      | 56.5           | 11.9           | 9.0            | 3                | 95   |
| Δ                       | 2.CFT.50114.IK.0 | 1.14                                      | 57.0           | 12.0           | 9.1            | 3                | 95   |
|                         | 2.CFT.50115.IK.0 | 1.15                                      | 57.5           | 12.1           | 9.2            | 3                | 95   |
| Δ                       | 2.CFT.50116.IK.0 | 1.16                                      | 58.0           | 12.2           | 9.3            | 3                | 95   |
| Δ                       | 2.CFT.50117.IK.0 | 1.17                                      | 58.5           | 12.3           | 9.4            | 3                | 95   |
| Δ                       | 2.CFT.50118.IK.0 | 1.18                                      | 59.0           | 12.4           | 9.4            | 3                | 95   |
| Δ                       | 2.CFT.50119.IK.0 | 1.19                                      | 59.5           | 12.5           | 9.5            | 3                | 95   |
|                         | 2.CFT.50120.IK.0 | 1.20                                      | 60.0           | 12.6           | 9.6            | 3                | 95   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte

CrazyDrill Flexpilot Titanium CrazyDrill Crosspilot



# CrazyDrill Flex Titanium 50 x d

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                       | Werkstoff-                                                                            |                                         |                  |                     |                                    |                          | V <sub>c</sub>             |
|-----------------------|---------------------------------------------------------------------------------------|-----------------------------------------|------------------|---------------------|------------------------------------|--------------------------|----------------------------|
|                       | gruppe                                                                                | Werkstoff                               | Wr.Nr.           | DIN                 | AISI/ASTM/UNS                      |                          | /min]                      |
|                       |                                                                                       |                                         |                  |                     |                                    | Ød1≤0.4                  | Ød1>0.4                    |
|                       |                                                                                       |                                         | 1.0301           | C10                 | AISI 1010                          |                          |                            |
| <del>\  \  \  \</del> | P                                                                                     | Curil I i i                             | 1.0401           | C15                 | AISI 1015                          |                          |                            |
|                       |                                                                                       | Stähle unlegiert<br>Rm < 800 N/mm²      | 1.1191           | C45E/CK45           | AISI 1045                          |                          |                            |
| Y Y                   |                                                                                       | KIII < 800 IV/IIIII12                   | 1.0044           | S275JR              | AISI 1020                          |                          |                            |
|                       |                                                                                       |                                         | 1.0715           | 11SMn30             | AISI 1215                          |                          |                            |
|                       |                                                                                       |                                         | 1.5752           | 15NiCr13            | ASTM 3415 / AISI 3310              |                          |                            |
| Ψ                     |                                                                                       |                                         | 1.7131           | 16MnCr5             | AISI 5115                          | Emp <sup>-</sup>         | fohlen:                    |
|                       |                                                                                       | Stähle niedriglegiert                   | 1.3505           | 100Cr6              | AISI 52100                         | CrazyDrill Fle           | x Steel 50 x d1            |
|                       |                                                                                       | Rm > 900 N/mm <sup>2</sup>              | 1.7225           | 42CrMo4             | AISI 4140                          |                          |                            |
| d <sub>1</sub>        |                                                                                       |                                         | 1.2842           | 90MnCrV8            | AISI O2                            |                          |                            |
|                       |                                                                                       |                                         | 1.2379           | X153CrMoV12         | AISI D2                            |                          |                            |
| Q <sub>1</sub>        |                                                                                       | Werkzeugstähle                          | 1.2436           | X210CrW12           | AISI D4/D6                         |                          |                            |
|                       |                                                                                       | hochlegiert                             | 1.3343           | HS6-5-2C            | AISI M2 / UNS T11302               |                          |                            |
| Qx                    |                                                                                       | Rm < 1200 N/mm <sup>2</sup>             | 1.3355           | HS18-0-1            | AISI T1 / UNS T12001               |                          |                            |
| Qx                    |                                                                                       | Dtf:- COULT                             |                  |                     |                                    |                          |                            |
| <u> </u>              | n /                                                                                   | Rostfreie Stähle-<br>ferritisch         | 1.4016<br>1.4105 | X6Cr17<br>X6CrMoS17 | AISI 430 / UNS S43000<br>AISI 430F |                          |                            |
|                       | M                                                                                     |                                         | 1.4105           | X46Cr13             | AISI 420C                          |                          |                            |
|                       |                                                                                       | Rostfreie Stähle-<br>martensitisch      |                  | X90CrMoV18          |                                    |                          |                            |
|                       |                                                                                       |                                         | 1.4112           |                     | AISI 440B                          | Emnf                     | ohlen:                     |
|                       |                                                                                       | Rostfreie Stähle-<br>martensitisch – PH | 1.4542           | X5CrNiCuNb 16-4     | AISI 630 / ASTM 17-4 PH            |                          | SST-Inox 50 x d1           |
|                       |                                                                                       | martensitisch – Fn                      | 1.4545           | X5CrNiCuNb 15-5     | ASTM 15-5 PH                       | CrazyDriii riex .        | 331-III0X 30 X U I         |
|                       |                                                                                       |                                         | 1.4301           | X5CrNi 18-10        | AISI 304                           |                          |                            |
|                       |                                                                                       | Rostfreie Stähle-                       | 1.4435           | X2CrNiMo 18-14-3    | AISI 316L                          |                          |                            |
|                       |                                                                                       | austenitisch                            | 1.4441           | X2CrNiMo 18-15-3    | AISI 316LM                         |                          |                            |
|                       |                                                                                       |                                         | 1.4539           | X1NiCrMoCu 25-20-5  | AISI 904L                          |                          |                            |
|                       |                                                                                       |                                         | 0.6020           | GG20                | ASTM 30                            |                          |                            |
|                       | K                                                                                     | Gusseisen                               | 0.6030           | GG30                | ASTM 40B                           |                          | ohlen:                     |
|                       |                                                                                       | Gusselsell                              | 0.7040           | GGG40               | ASTM 60-40-18                      | CrazyDrill Fle           | x Steel 50 x d1            |
|                       |                                                                                       |                                         | 0.7060           | GGG60               | ASTM 80-60-03                      |                          |                            |
|                       |                                                                                       | Aluminium                               | 3.2315           | AlMgSi1             | ASTM 6351                          |                          |                            |
|                       | NI                                                                                    | Knetlegierungen                         | 3.4365           | AlZnMgCu1.5         | ASTM 7075                          | Empf                     | ohlen:                     |
|                       | 1.41                                                                                  | Aluminium                               | 3.2163           | GD-AlSi9Cu3         | ASTM A380                          | CrazyDrill Flex          | x Steel 50 x d1            |
|                       |                                                                                       | Druckgusslegierungen                    | 3.2381           | GD-AlSi10Mg         | UNS A03590                         |                          |                            |
|                       |                                                                                       | Vf                                      | 2.004            | Cu-OF / CW008A      | UNS C10100                         | F 30                     | 20 40                      |
|                       |                                                                                       | Kupter                                  | 2.0065           | Cu-ETP / CW004A     | UNS C11000                         | 5 – 20                   | 20 – 40                    |
|                       |                                                                                       | N.A                                     | 2.0321           | CuZn37 CW508L       | UNS C27400                         | Empf                     | ohlen:                     |
|                       |                                                                                       | Messing bleifrei                        | 2.036            | CuZn40 CW509L       | UNS C28000                         |                          | SST-Inox 50 x d1           |
|                       |                                                                                       | Messing, Bronze                         | 2.0401           | CuZn39Pb3 / CW614N  |                                    |                          |                            |
|                       |                                                                                       | Rm < 400 N/mm <sup>2</sup>              | 2.102            | CuSn6               | UNS C51900                         | lama                     | ohlen:                     |
|                       |                                                                                       | Bronze                                  | 2.0966           | CuAl10Ni5Fe4        | UNS C63000                         |                          | x Steel 50 x d1            |
|                       |                                                                                       | Rm < 600 N/mm <sup>2</sup>              | 2.096            | CuAl9Mn2            | UNS C63200                         | ,                        |                            |
|                       | Alumin Knetleg Alumin Druckg Kupfer  Messing Rm < 4 Bronze Rm < 6  S1  Hitzebe Stähle |                                         | 2.4856           |                     | Inconel 625                        |                          |                            |
|                       |                                                                                       | Llitando está a alima                   | 2.4658           |                     | Inconel 718                        | Fmnf                     | ohlen:                     |
|                       | <b>D</b> <sub>1</sub>                                                                 | Hitzebeständige<br>Stähle               | 2.4617           | NiMo28              | Hastelloy B-2                      |                          | SST-Inox 50 x d1           |
|                       |                                                                                       | Starrie                                 | 2.4665           | NiCr22Fe18Mo        | Hastelloy X                        | C. G.C., D. III T. ICA . |                            |
|                       |                                                                                       |                                         | 3.7035           | Gr.2                | ASTM B348 / F67                    |                          |                            |
|                       | S <sub>1</sub> Hitzebes Stähle                                                        | Titan rein                              | 3.7055           | Gr.4                | ASTM B348 / F68                    | 5 – 20                   | 20 – 30                    |
|                       | S <sub>2</sub>                                                                        |                                         | 3.7165           | TiAl6V4             | ASTM B348 / F136                   |                          |                            |
|                       | _                                                                                     | Titan Legierungen                       | 9.9367           | TiAl6Nb7            | ASTM F1295                         | 5 – 20                   | 20 – 40                    |
|                       |                                                                                       |                                         | 2.4964           | CoCr20W15Ni         |                                    | F (                      | ioblos                     |
|                       | <b>S</b> <sub>3</sub>                                                                 | CrCo-Legierungen                        | 2.4904           | CrCoMo28            | Haynes 25<br>ASTM F1537            |                          | ohlen:<br>SST-Inox 50 x d1 |
|                       | H <sub>1</sub>                                                                        | Stähle gehärtet<br>< 55 HRC             | 1.2510           | 100MnCrMoW4         | AISI O1                            |                          |                            |
|                       | $H_2$                                                                                 | Stähle gehärtet                         | 1.2379           | Y153CrMo\/12        | AISI D2                            |                          |                            |
|                       |                                                                                       | ≥ 55 HRC                                | 1.23/9           | X153CrMoV12         | AISI UZ                            |                          |                            |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                                     | -     |         |       |                | <b>f</b> [mm/U] |                |       |        |       | 12             |
|-------------------------------------|-------|---------|-------|----------------|-----------------|----------------|-------|--------|-------|----------------|
| $\mathbf{Q}_{\scriptscriptstyle 1}$ |       |         |       | d1<br>mm       |                 |                |       |        |       |                |
|                                     |       |         |       | Q <sub>x</sub> |                 |                |       |        |       |                |
|                                     |       | Ψx      |       | Q <sub>x</sub> |                 | Q <sub>x</sub> | •     | - Qx   | •     | Q <sub>x</sub> |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
| 7xd1                                | 0.040 | 0.3xd1  | 0.060 | 0.375xd1       | 0.120           | 0.3xd1         | 0.180 | 0.3xd1 | 0.200 | 0.4xd1         |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
| 3xd1                                | 0.007 | 0.25xd1 | 0.010 | 0.25xd1        | 0.015           | 0.25xd1        | 0.025 | 0.4xd1 | 0.035 | 0.3xd1         |
| JAU1                                | 3.007 | 5.23AUT | 3.010 | 0.23AUT        | 0.010           | 0.23,01        | 0.023 | JAU I  | 0.033 | J.J.u I        |
| 3xd1                                | 0.015 | 0.3xd1  | 0.020 | 0.375xd1       | 0.050           | 0.3xd1         | 0.090 | 0.3xd1 | 0.140 | 0.4xd1         |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |
|                                     |       |         |       |                |                 |                |       |        |       |                |



### CrazyDrill Flex SST-Inox 30 x d

#### **BOHREN MIT INTEGRIERTER KÜHLUNG**



Der Mikro-Tieflochbohrer aus Hartmetall CrazyDrill Flex SST-Inox 30 x d ist konzipiert für das Bohren von rost-, säure- und hitzebeständigen Materialien. Speziell an ihm sind die degressive Spiralnutengeometrie, die im Schaft integrierten Kühlkanäle und die wirksame Hochleistungsbeschichtung.

CrazyDrill Flex SST-Inox verfügt über integrierte Kühlkanäle im Schaft, die schon ab 15 bar für eine konstante, massive Kühlung der Schneiden sorgen. Die Temperatur wird konstant unter Kontrolle gehalten, ein wichtiger Faktor bei Materialien mit schlechter Wärmeleitfähigkeit. Die Späne werden so aus der Spannute gespült und insgesamt wird eine verbesserte Standzeit erreicht. Die Hochleistungsbeschichtung sorgt zusätzlich für eine hohe Standzeit.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

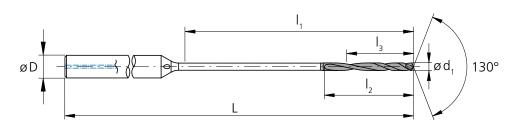
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex SST-Inox (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







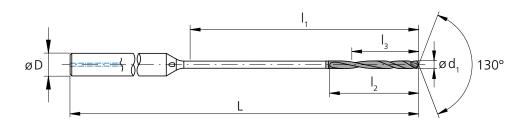

**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | I <sub>2</sub> | l <sub>3</sub> | <b>D</b> (h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|---------------|------|
| ■ ab<br>∆ au            |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]          | [mm] |
|                         | 2.CFI.30030.IK.1 | 0.30                                      | 9.0            | 2.9            | 2.4            | 3             | 50   |
| Δ                       | 2.CFI.30031.IK.1 | 0.31                                      | 9.3            | 3.0            | 2.5            | 3             | 50   |
| Δ                       | 2.CFI.30032.IK.1 | 0.32                                      | 9.6            | 3.1            | 2.6            | 3             | 50   |
| Δ                       | 2.CFI.30033.IK.1 | 0.33                                      | 9.9            | 3.2            | 2.6            | 3             | 50   |
| Δ                       | 2.CFI.30034.IK.1 | 0.34                                      | 10.2           | 3.3            | 2.7            | 3             | 50   |
|                         | 2.CFI.30035.IK.1 | 0.35                                      | 10.5           | 3.4            | 2.8            | 3             | 50   |
| Δ                       | 2.CFI.30036.IK.1 | 0.36                                      | 10.8           | 3.5            | 2.9            | 3             | 50   |
| Δ                       | 2.CFI.30037.IK.1 | 0.37                                      | 11.1           | 3.6            | 3.0            | 3             | 50   |
| Δ                       | 2.CFI.30038.IK.1 | 0.38                                      | 11.4           | 3.7            | 3.0            | 3             | 50   |
| Δ                       | 2.CFI.30039.IK.1 | 0.39                                      | 11.7           | 3.8            | 3.1            | 3             | 50   |
|                         | 2.CFI.30040.IK.1 | 0.40                                      | 12.0           | 3.9            | 3.2            | 3             | 50   |
| Δ                       | 2.CFI.30041.IK.1 | 0.41                                      | 12.3           | 4.0            | 3.3            | 3             | 50   |
| Δ                       | 2.CFI.30042.IK.1 | 0.42                                      | 12.6           | 4.1            | 3.4            | 3             | 50   |
| Δ                       | 2.CFI.30043.IK.1 | 0.43                                      | 12.9           | 4.2            | 3.4            | 3             | 50   |
| Δ                       | 2.CFI.30044.IK.1 | 0.44                                      | 13.2           | 4.3            | 3.5            | 3             | 50   |
|                         | 2.CFI.30045.IK.1 | 0.45                                      | 13.5           | 4.4            | 3.6            | 3             | 50   |
| Δ                       | 2.CFI.30046.IK.1 | 0.46                                      | 13.8           | 4.5            | 3.7            | 3             | 50   |
| Δ                       | 2.CFI.30047.IK.1 | 0.47                                      | 14.1           | 4.6            | 3.8            | 3             | 50   |
| Δ                       | 2.CFI.30048.IK.1 | 0.48                                      | 14.4           | 4.7            | 3.8            | 3             | 50   |
| Δ                       | 2.CFI.30049.IK.1 | 0.49                                      | 14.7           | 4.8            | 3.9            | 3             | 50   |
|                         | 2.CFI.30050.IK.1 | 0.50                                      | 15.0           | 4.9            | 4.0            | 3             | 53   |
| Δ                       | 2.CFI.30051.IK.1 | 0.51                                      | 15.3           | 5.0            | 4.1            | 3             | 53   |
| Δ                       | 2.CFI.30052.IK.1 | 0.52                                      | 15.6           | 5.1            | 4.2            | 3             | 53   |
| Δ                       | 2.CFI.30053.IK.1 | 0.53                                      | 15.9           | 5.2            | 4.2            | 3             | 53   |
| Δ                       | 2.CFI.30054.IK.1 | 0.54                                      | 16.2           | 5.3            | 4.3            | 3             | 53   |
|                         | 2.CFI.30055.IK.1 | 0.55                                      | 16.5           | 5.4            | 4.4            | 3             | 53   |
| Δ                       | 2.CFI.30056.IK.1 | 0.56                                      | 16.8           | 5.5            | 4.5            | 3             | 53   |
| Δ                       | 2.CFI.30057.IK.1 | 0.57                                      | 17.1           | 5.6            | 4.6            | 3             | 53   |
| Δ                       | 2.CFI.30058.IK.1 | 0.58                                      | 17.4           | 5.7            | 4.6            | 3             | 53   |
| Δ                       | 2.CFI.30059.IK.1 | 0.59                                      | 17.7           | 5.8            | 4.7            | 3             | 53   |
|                         | 2.CFI.30060.IK.1 | 0.60                                      | 18.0           | 5.9            | 4.8            | 3             | 53   |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Pilot SST-Inox CrazyDrill Crosspilot



## CrazyDrill Flex SST-Inox 30 x d

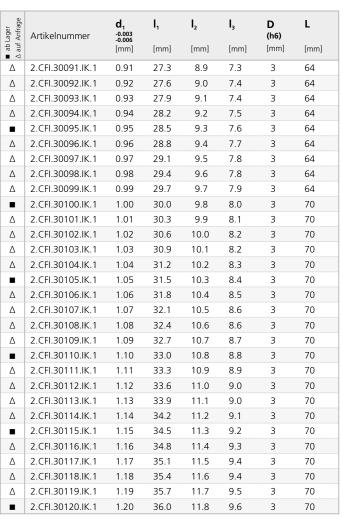
### **BOHREN MIT INTEGRIERTER KÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | l <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|-----------|------|
| ■ ab<br>∆ auf           |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |
| Δ                       | 2.CFI.30061.IK.1 | 0.61                                      | 18.3           | 6.0            | 4.9            | 3         | 53   |
| Δ                       | 2.CFI.30062.IK.1 | 0.62                                      | 18.6           | 6.1            | 5.0            | 3         | 53   |
| Δ                       | 2.CFI.30063.IK.1 | 0.63                                      | 18.9           | 6.2            | 5.0            | 3         | 53   |
| Δ                       | 2.CFI.30064.IK.1 | 0.64                                      | 19.2           | 6.3            | 5.1            | 3         | 53   |
| •                       | 2.CFI.30065.IK.1 | 0.65                                      | 19.5           | 6.4            | 5.2            | 3         | 53   |
| Δ                       | 2.CFI.30066.IK.1 | 0.66                                      | 19.8           | 6.5            | 5.3            | 3         | 53   |
| Δ                       | 2.CFI.30067.IK.1 | 0.67                                      | 20.1           | 6.6            | 5.4            | 3         | 53   |
| Δ                       | 2.CFI.30068.IK.1 | 0.68                                      | 20.4           | 6.7            | 5.4            | 3         | 53   |
| Δ                       | 2.CFI.30069.IK.1 | 0.69                                      | 20.7           | 6.8            | 5.5            | 3         | 53   |
| -                       | 2.CFI.30070.IK.1 | 0.70                                      | 21.0           | 6.9            | 5.6            | 3         | 60   |
| Δ                       | 2.CFI.30071.IK.1 | 0.71                                      | 21.3           | 7.0            | 5.7            | 3         | 60   |
| Δ                       | 2.CFI.30072.IK.1 | 0.72                                      | 21.6           | 7.1            | 5.8            | 3         | 60   |
| Δ                       | 2.CFI.30073.IK.1 | 0.73                                      | 21.9           | 7.2            | 5.8            | 3         | 60   |
| Δ                       | 2.CFI.30074.IK.1 | 0.74                                      | 22.2           | 7.3            | 5.9            | 3         | 60   |
| •                       | 2.CFI.30075.IK.1 | 0.75                                      | 22.5           | 7.4            | 6.0            | 3         | 60   |
| Δ                       | 2.CFI.30076.IK.1 | 0.76                                      | 22.8           | 7.4            | 6.1            | 3         | 60   |
| Δ                       | 2.CFI.30077.IK.1 | 0.77                                      | 23.1           | 7.5            | 6.2            | 3         | 60   |
| Δ                       | 2.CFI.30078.IK.1 | 0.78                                      | 23.4           | 7.6            | 6.2            | 3         | 60   |
| Δ                       | 2.CFI.30079.IK.1 | 0.79                                      | 23.7           | 7.7            | 6.3            | 3         | 60   |
| -                       | 2.CFI.30080.IK.1 | 0.80                                      | 24.0           | 7.8            | 6.4            | 3         | 60   |
| Δ                       | 2.CFI.30081.IK.1 | 0.81                                      | 24.3           | 7.9            | 6.5            | 3         | 60   |
| Δ                       | 2.CFI.30082.IK.1 | 0.82                                      | 24.6           | 8.0            | 6.6            | 3         | 60   |
| Δ                       | 2.CFI.30083.IK.1 | 0.83                                      | 24.9           | 8.1            | 6.6            | 3         | 60   |
| Δ                       | 2.CFI.30084.IK.1 | 0.84                                      | 25.2           | 8.2            | 6.7            | 3         | 60   |
|                         | 2.CFI.30085.IK.1 | 0.85                                      | 25.5           | 8.3            | 6.8            | 3         | 64   |
| Δ                       | 2.CFI.30086.IK.1 | 0.86                                      | 25.8           | 8.4            | 6.9            | 3         | 64   |
| Δ                       | 2.CFI.30087.IK.1 | 0.87                                      | 26.1           | 8.5            | 7.0            | 3         | 64   |
| Δ                       | 2.CFI.30088.IK.1 | 0.88                                      | 26.4           | 8.6            | 7.0            | 3         | 64   |
| Δ                       | 2.CFI.30089.IK.1 | 0.89                                      | 26.7           | 8.7            | 7.1            | 3         | 64   |
|                         | 2.CFI.30090.IK.1 | 0.90                                      | 27.0           | 8.8            | 7.2            | 3         | 64   |

■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.








**Z**2







■ Ab Lager verfügbar. Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Pilot SST-Inox CrazyDrill Crosspilot



## CrazyDrill Flex SST-Inox 30 x d

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-            | Werkstoff                                                                                                                                                                                                                                                                         | Wr.Nr.   | DIN                | AISI/ASTM/UNS                                                                                                                                                                                                                                                                                                                                                | <b>V</b> ,<br>[m/m |         |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|--|
| gruppe                | Werkston                                                                                                                                                                                                                                                                          | VVI.IVI. | DIN                | AISI/ASTIVI/ONS                                                                                                                                                                                                                                                                                                                                              | Ød1≤0.4            | Ød1>0.4 |  |
|                       |                                                                                                                                                                                                                                                                                   | 1.0301   | C10                | AISI 1010                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| D D                   |                                                                                                                                                                                                                                                                                   | 1.0401   | C15                | AISI 1015                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| P                     | Stähle unlegiert                                                                                                                                                                                                                                                                  | 1.1191   | C45E/CK45          | AISI 1045                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       | Rm < 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                        | 1.0044   | S275JR             | AISI 1020                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 1.0715   | 11SMn30            | AISI 1215                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| <u> </u>              |                                                                                                                                                                                                                                                                                   | 1.5752   | 15NiCr13           | ASTM 3415 / AISI 3310                                                                                                                                                                                                                                                                                                                                        |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 1.7131   | 16MnCr5            | AISI 5115                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       | Stähle niedriglegiert                                                                                                                                                                                                                                                             | 1.3505   | 100Cr6             | AISI 52100                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       | Rm > 900 N/mm <sup>2</sup>                                                                                                                                                                                                                                                        | 1.7225   | 42CrMo4            | AISI 4140                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| . d <sub>1</sub> .    |                                                                                                                                                                                                                                                                                   | 1.2842   | 90MnCrV8           | AISI O2                                                                                                                                                                                                                                                                                                                                                      |                    |         |  |
| u1                    |                                                                                                                                                                                                                                                                                   | 1.2379   | X153CrMoV12        | AISI D2                                                                                                                                                                                                                                                                                                                                                      |                    |         |  |
|                       | Werkzeugstähle                                                                                                                                                                                                                                                                    | 1.2436   | X210CrW12          | AISI D4/D6                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       | hochlegiert                                                                                                                                                                                                                                                                       | 1.3343   | HS6-5-2C           | AISI M2 / UNS T11302                                                                                                                                                                                                                                                                                                                                         |                    |         |  |
| lo <sub>v</sub>       | Rm < 1200 N/mm <sup>2</sup>                                                                                                                                                                                                                                                       | 1.3355   | HS18-0-1           | AISI T1 / UNS T12001                                                                                                                                                                                                                                                                                                                                         |                    |         |  |
| iQ <sub>x</sub>       |                                                                                                                                                                                                                                                                                   |          |                    |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                 | 1.4016   | X6Cr17             | AISI 430 / UNS S43000                                                                                                                                                                                                                                                                                                                                        | 30 – 40            | 40 – 50 |  |
| M                     | ferritisch                                                                                                                                                                                                                                                                        | 1.4105   | X6CrMoS17          | AISI 430F                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                 | 1.4034   | X46Cr13            | AISI 420C                                                                                                                                                                                                                                                                                                                                                    | 20 – 30            | 30 – 40 |  |
|                       | martensitisch                                                                                                                                                                                                                                                                     | 1.4112   | X90CrMoV18         | AISI 440B                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                 | 1.4542   | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH                                                                                                                                                                                                                                                                                                                                      | 20 – 30            | 30 – 40 |  |
|                       | martensitisch – PH                                                                                                                                                                                                                                                                | 1.4545   | X5CrNiCuNb 15-5    | ASTM 15-5 PH                                                                                                                                                                                                                                                                                                                                                 |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 1.4301   | X5CrNi 18-10       |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       | Rostfreie Stähle-                                                                                                                                                                                                                                                                 | 1.4435   | X2CrNiMo 18-14-3   |                                                                                                                                                                                                                                                                                                                                                              | 20 – 30            | 30 – 40 |  |
|                       | austenitisch                                                                                                                                                                                                                                                                      | 1.4441   | X2CrNiMo 18-15-3   |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 1.4539   | X1NiCrMoCu 25-20-5 | AISI 904L                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 0.6020   | GG20               | ASTM 30                                                                                                                                                                                                                                                                                                                                                      |                    |         |  |
| K                     | Cussian                                                                                                                                                                                                                                                                           | 0.6030   | GG30               | ASTM 40B                                                                                                                                                                                                                                                                                                                                                     |                    |         |  |
|                       | Gusselsen                                                                                                                                                                                                                                                                         | 0.7040   | GGG40              | ASTM 60-40-18                                                                                                                                                                                                                                                                                                                                                |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 0.7060   | GGG60              | ASTM 80-60-03                                                                                                                                                                                                                                                                                                                                                |                    |         |  |
|                       | Aluminium                                                                                                                                                                                                                                                                         | 3.2315   | AlMgSi1            | ASTM 6351                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| N                     | Knetlegierungen                                                                                                                                                                                                                                                                   | 3.4365   | AlZnMgCu1.5        | ASTM 7075                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
| IN I                  | Aluminium                                                                                                                                                                                                                                                                         | 3.2163   | GD-AlSi9Cu3        | ASTM A380                                                                                                                                                                                                                                                                                                                                                    |                    |         |  |
|                       | Druckgusslegierungen                                                                                                                                                                                                                                                              | 3.2381   | GD-AlSi10Mg        | UNS A03590                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 2.004    | Cu-OF / CW008A     | UNS C10100                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       | Kupter                                                                                                                                                                                                                                                                            | 2.0065   | Cu-ETP / CW004A    | UNS C11000                                                                                                                                                                                                                                                                                                                                                   | 20 – 30            | 35 – 60 |  |
|                       |                                                                                                                                                                                                                                                                                   | 2.0321   | CuZn37 CW508L      | UNS C27400                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       | Messing bleifrei                                                                                                                                                                                                                                                                  | 2.036    | CuZn40 CW509L      | UNS C28000                                                                                                                                                                                                                                                                                                                                                   | 20 – 30            | 35 – 60 |  |
|                       | Messing Bronze                                                                                                                                                                                                                                                                    | 2.0401   | CuZn39Pb3 / CW614N | UNS C38500                                                                                                                                                                                                                                                                                                                                                   |                    |         |  |
|                       | Rm < 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                        | 2.102    | CuSn6              |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       | Bronze                                                                                                                                                                                                                                                                            | 2.0966   | CuAl10Ni5Fe4       |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       | Rm < 600 N/mm <sup>2</sup>                                                                                                                                                                                                                                                        | 2.096    | CuAl9Mn2           |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
|                       | Gusseisen 0.60  Gusseisen 0.60 0.70 0.70 Aluminium 3.23 Knetlegierungen 3.43 Aluminium 3.21 Druckgusslegierungen 3.23 Kupfer 2.00 Messing bleifrei 2.03 Messing, Bronze 2.04 Rm < 400 N/mm² 2.10 Bronze 2.09 Rm < 600 N/mm² 2.48 Hitzebeständige 2.46 Stähle 2.46 Titan rein 3.70 |          |                    |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
| <u></u>               | 11641                                                                                                                                                                                                                                                                             | 2.4668   |                    |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
| $S_1$                 |                                                                                                                                                                                                                                                                                   | 2.4617   | NiMo28             | ASTM 30 ASTM 40B ASTM 40B ASTM 60-40-18 ASTM 60-60-03 ASTM 6351 ASTM 7075 ASTM A380 UNS A03590 UNS C10100 AUS C11000 UNS C27400 UNS C27400 UNS C28000 G14N UNS C38500 UNS C51900 UNS C63000 UNS C63000 UNS C63000 UNS C63000 UNS C63000 UNS C63000 ASTM 6384 ASTM B348 / F67 ASTM B348 / F67 ASTM B348 / F68 ASTM B348 / F68 ASTM F1295 Haynes 25 ASTM F1537 | 10 – 20            | 20 – 30 |  |
| •                     | Startic                                                                                                                                                                                                                                                                           | 2.4665   | NiCr22Fe18Mo       | ,                                                                                                                                                                                                                                                                                                                                                            |                    |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 3.7035   | Gr.2               | -                                                                                                                                                                                                                                                                                                                                                            |                    |         |  |
| C                     | Titan rein                                                                                                                                                                                                                                                                        | 3.7065   | Gr.4               |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
| $S_2$                 |                                                                                                                                                                                                                                                                                   | 3.7165   | TiAl6V4            |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
| _                     | Titan Legierungen                                                                                                                                                                                                                                                                 | 9.9367   | TiAl6Nb7           |                                                                                                                                                                                                                                                                                                                                                              | 10 – 20            |         |  |
|                       |                                                                                                                                                                                                                                                                                   | 2.4964   | CoCr20W15Ni        |                                                                                                                                                                                                                                                                                                                                                              |                    |         |  |
| <b>S</b> <sub>3</sub> | CrCo-Legierungen                                                                                                                                                                                                                                                                  | 2.4304   | CrCoMo28           | -                                                                                                                                                                                                                                                                                                                                                            | 20 – 30            | 30 – 40 |  |
| H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                                                                                                                                                                                                                                                       | 1.2510   | 100MnCrMoW4        | AISI O1                                                                                                                                                                                                                                                                                                                                                      |                    |         |  |
| $H_2$                 | Stähle gehärtet                                                                                                                                                                                                                                                                   | 1.2379   | X153CrMoV12        | AISI D2                                                                                                                                                                                                                                                                                                                                                      |                    |         |  |



ANWENDUNGSEMPFEHLUNG





|                |                | <b>f</b> [mm/U]    |                           |                           |                           |                           |                    |  |  |  |
|----------------|----------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|--|--|--|
| Q <sub>1</sub> | Q <sub>x</sub> | Ød1<br>0.3 mm<br>f | Ød1<br>0.4 mm<br><b>f</b> | Ød1<br>0.6 mm<br><b>f</b> | Ød1<br>0.8 mm<br><b>f</b> | Ød1<br>1.0 mm<br><b>f</b> | Ød1<br>1.2 mm<br>f |  |  |  |
|                |                |                    |                           |                           |                           |                           |                    |  |  |  |
|                |                |                    | Em                        | pfohlen: CrazyD           | rill Flex Steel 30        | x d1                      |                    |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.015 – 0.020      | 0.015 – 0.020             | 0.020 – 0.030             | 0.020 – 0.030             | 0.030 – 0.040             | 0.040 - 0.050      |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.015 - 0.020      | 0.015 - 0.020             | 0.020 - 0.025             | 0.020 - 0.025             | 0.025 – 0.035             | 0.040 - 0.050      |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.015 - 0.020      | 0.015 - 0.020             | 0.020 - 0.025             | 0.020 - 0.025             | 0.025 - 0.035             | 0.040 - 0.050      |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.010 – 0.020      | 0.010 – 0.020             | 0.015 – 0.025             | 0.020 - 0.030             | 0.025 – 0.035             | 0.035 – 0.045      |  |  |  |
|                |                |                    | Em                        | ofohlen: CrazyDı          | rill Flex Steel 30        | x d1                      |                    |  |  |  |
|                |                |                    | Em                        | ofohlen: CrazyDı          | rill Flex Steel 30        | x d1                      |                    |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.040              | 0.045                     | 0.050                     | 0.060                     | 0.070                     | 0.080              |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.040              | 0.045                     | 0.050                     | 0.060                     | 0.070                     | 0.080              |  |  |  |
|                |                |                    | Em                        | ofohlen: CrazyDi          | rill Flex Steel 30        | x d1                      |                    |  |  |  |
| 2xd1 – 3xd1    | 0.2xd1         | 0.010 – 0.020      | 0.010 – 0.020             | 0.015 – 0.025             | 0.020 - 0.030             | 0.025 – 0.035             | 0.035 – 0.045      |  |  |  |
|                |                |                    | Empf                      | ohlen: CrazyDrill         | Flex Titanium 3           | 0 x d1                    |                    |  |  |  |
| 2xd1 – 3xd1    | 0.5xd1         | 0.010 - 0.020      | 0.010 - 0.020             | 0.015 - 0.025             | 0.020 - 0.030             | 0.025 - 0.035             | 0.035 - 0.045      |  |  |  |
|                |                |                    |                           |                           |                           |                           |                    |  |  |  |
|                |                |                    |                           |                           |                           |                           |                    |  |  |  |



### CrazyDrill Flex SST-Inox 50 x d

### **BOHREN MIT INTEGRIERTER KÜHLUNG**



CrazyDrill Flex SST-Inox verfügt über integrierte Kühlkanäle im Schaft, die schon ab 15 bar für eine konstante, massive Kühlung der Schneiden sorgen. Die Temperatur wird konstant unter Kontrolle gehalten, ein wichtiger Faktor bei Materialien mit schlechter Wärmeleitfähigkeit. Die Späne werden so aus der Spannute gespült und insgesamt wird eine verbesserte Standzeit erreicht. Die Hochleistungsbeschichtung sorgt zusätzlich für eine hohe Standzeit.

Empfohlen ist eine Pilotbohrung mit CrazyDrill Pilot SST-Inox oder CrazyDrill Crosspilot auf schrägen Oberflächen. Details finden Sie beim Bohrprozess.

#### Kühlschmierstoff, Filter und Druck

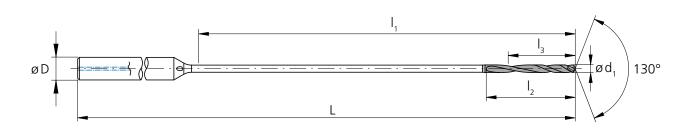
Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Bohrprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyDrill Flex SST-Inox (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







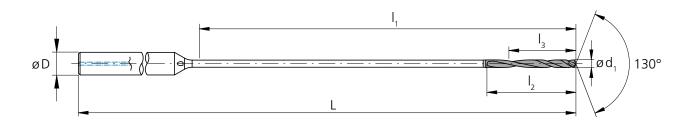

**Z**2







| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub> -0.003 -0.006 | I,   | l <sub>2</sub> | I <sub>3</sub> | D<br>(h6) | L    |
|-------------------------|------------------|-------------------------------------|------|----------------|----------------|-----------|------|
| ■ □                     |                  | [mm]                                | [mm] | [mm]           | [mm]           | [mm]      | [mm] |
|                         | 2.CFI.50030.IK.1 | 0.30                                | 15.0 | 2.9            | 2.4            | 3         | 53   |
| Δ                       | 2.CFI.50031.IK.1 | 0.31                                | 15.5 | 3.0            | 2.5            | 3         | 53   |
| Δ                       | 2.CFI.50032.IK.1 | 0.32                                | 16.0 | 3.1            | 2.6            | 3         | 53   |
| Δ                       | 2.CFI.50033.IK.1 | 0.33                                | 16.5 | 3.2            | 2.6            | 3         | 53   |
| Δ                       | 2.CFI.50034.IK.1 | 0.34                                | 17.0 | 3.3            | 2.7            | 3         | 53   |
| •                       | 2.CFI.50035.IK.1 | 0.35                                | 17.5 | 3.4            | 2.8            | 3         | 53   |
| Δ                       | 2.CFI.50036.IK.1 | 0.36                                | 18.0 | 3.5            | 2.9            | 3         | 53   |
| Δ                       | 2.CFI.50037.IK.1 | 0.37                                | 18.5 | 3.6            | 3.0            | 3         | 53   |
| Δ                       | 2.CFI.50038.IK.1 | 0.38                                | 19.0 | 3.7            | 3.0            | 3         | 53   |
| Δ                       | 2.CFI.50039.IK.1 | 0.39                                | 19.5 | 3.8            | 3.1            | 3         | 53   |
| -                       | 2.CFI.50040.IK.1 | 0.40                                | 20.0 | 3.9            | 3.2            | 3         | 53   |
| Δ                       | 2.CFI.50041.IK.1 | 0.41                                | 20.5 | 4.0            | 3.3            | 3         | 60   |
| Δ                       | 2.CFI.50042.IK.1 | 0.42                                | 21.0 | 4.1            | 3.4            | 3         | 60   |
| Δ                       | 2.CFI.50043.IK.1 | 0.43                                | 21.5 | 4.2            | 3.4            | 3         | 60   |
| Δ                       | 2.CFI.50044.IK.1 | 0.44                                | 22.0 | 4.3            | 3.5            | 3         | 60   |
| -                       | 2.CFI.50045.IK.1 | 0.45                                | 22.5 | 4.4            | 3.6            | 3         | 60   |
| Δ                       | 2.CFI.50046.IK.1 | 0.46                                | 23.0 | 4.5            | 3.7            | 3         | 60   |
| Δ                       | 2.CFI.50047.IK.1 | 0.47                                | 23.5 | 4.6            | 3.8            | 3         | 60   |
| Δ                       | 2.CFI.50048.IK.1 | 0.48                                | 24.0 | 4.7            | 3.8            | 3         | 60   |
| Δ                       | 2.CFI.50049.IK.1 | 0.49                                | 24.5 | 4.8            | 3.9            | 3         | 60   |
| •                       | 2.CFI.50050.IK.1 | 0.50                                | 25.0 | 4.9            | 4.0            | 3         | 60   |
| Δ                       | 2.CFI.50051.IK.1 | 0.51                                | 25.5 | 5.0            | 4.1            | 3         | 64   |
| Δ                       | 2.CFI.50052.IK.1 | 0.52                                | 26.0 | 5.1            | 4.2            | 3         | 64   |
| Δ                       | 2.CFI.50053.IK.1 | 0.53                                | 26.5 | 5.2            | 4.2            | 3         | 64   |
| Δ                       | 2.CFI.50054.IK.1 | 0.54                                | 27.0 | 5.3            | 4.3            | 3         | 64   |
|                         | 2.CFI.50055.IK.1 | 0.55                                | 27.5 | 5.4            | 4.4            | 3         | 64   |
| Δ                       | 2.CFI.50056.IK.1 | 0.56                                | 28.0 | 5.5            | 4.5            | 3         | 64   |
| Δ                       | 2.CFI.50057.IK.1 | 0.57                                | 28.5 | 5.6            | 4.6            | 3         | 64   |
| Δ                       | 2.CFI.50058.IK.1 | 0.58                                | 29.0 | 5.7            | 4.6            | 3         | 64   |
| Δ                       | 2.CFI.50059.IK.1 | 0.59                                | 29.5 | 5.8            | 4.7            | 3         | 64   |
|                         | 2.CFI.50060.IK.1 | 0.60                                | 30.0 | 5.9            | 4.8            | 3         | 64   |


■ Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

Ergänzende Produkte CrazyDrill Pilot SST-Inox CrazyDrill Crosspilot



## CrazyDrill Flex SST-Inox 50 x d

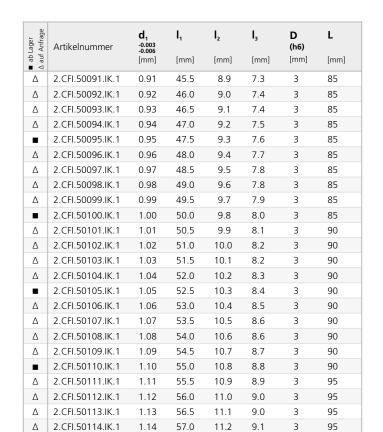
### **BOHREN MIT INTEGRIERTER KÜHLUNG**



| ab Lager<br>auf Anfrage | Artikelnummer    | <b>d</b> <sub>1</sub><br>-0.003<br>-0.006 | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>D</b> (h6) | L    |
|-------------------------|------------------|-------------------------------------------|----------------|----------------|----------------|---------------|------|
| ■ ab L<br>∆ auf         |                  | [mm]                                      | [mm]           | [mm]           | [mm]           | [mm]          | [mm] |
| Δ                       | 2.CFI.50061.IK.1 | 0.61                                      | 30.5           | 6.0            | 4.9            | 3             | 70   |
| Δ                       | 2.CFI.50062.IK.1 | 0.62                                      | 31.0           | 6.1            | 5.0            | 3             | 70   |
| Δ                       | 2.CFI.50063.IK.1 | 0.63                                      | 31.5           | 6.2            | 5.0            | 3             | 70   |
| Δ                       | 2.CFI.50064.IK.1 | 0.64                                      | 32.0           | 6.3            | 5.1            | 3             | 70   |
|                         | 2.CFI.50065.IK.1 | 0.65                                      | 32.5           | 6.4            | 5.2            | 3             | 70   |
| Δ                       | 2.CFI.50066.IK.1 | 0.66                                      | 33.0           | 6.5            | 5.3            | 3             | 70   |
| Δ                       | 2.CFI.50067.IK.1 | 0.67                                      | 33.5           | 6.6            | 5.4            | 3             | 70   |
| Δ                       | 2.CFI.50068.IK.1 | 0.68                                      | 34.0           | 6.7            | 5.4            | 3             | 70   |
| Δ                       | 2.CFI.50069.IK.1 | 0.69                                      | 34.5           | 6.8            | 5.5            | 3             | 70   |
|                         | 2.CFI.50070.IK.1 | 0.70                                      | 35.0           | 6.9            | 5.6            | 3             | 70   |
| Δ                       | 2.CFI.50071.IK.1 | 0.71                                      | 35.5           | 7.0            | 5.7            | 3             | 75   |
| Δ                       | 2.CFI.50072.IK.1 | 0.72                                      | 36.0           | 7.1            | 5.8            | 3             | 75   |
| Δ                       | 2.CFI.50073.IK.1 | 0.73                                      | 36.5           | 7.2            | 5.8            | 3             | 75   |
| Δ                       | 2.CFI.50074.IK.1 | 0.74                                      | 37.0           | 7.3            | 5.9            | 3             | 75   |
|                         | 2.CFI.50075.IK.1 | 0.75                                      | 37.5           | 7.4            | 6.0            | 3             | 75   |
| Δ                       | 2.CFI.50076.IK.1 | 0.76                                      | 38.0           | 7.4            | 6.1            | 3             | 75   |
| Δ                       | 2.CFI.50077.IK.1 | 0.77                                      | 38.5           | 7.5            | 6.2            | 3             | 75   |
| Δ                       | 2.CFI.50078.IK.1 | 0.78                                      | 39.0           | 7.6            | 6.2            | 3             | 75   |
| Δ                       | 2.CFI.50079.IK.1 | 0.79                                      | 39.5           | 7.7            | 6.3            | 3             | 75   |
|                         | 2.CFI.50080.IK.1 | 0.80                                      | 40.0           | 7.8            | 6.4            | 3             | 75   |
| Δ                       | 2.CFI.50081.IK.1 | 0.81                                      | 40.5           | 7.9            | 6.5            | 3             | 80   |
| Δ                       | 2.CFI.50082.IK.1 | 0.82                                      | 41.0           | 8.0            | 6.6            | 3             | 80   |
| Δ                       | 2.CFI.50083.IK.1 | 0.83                                      | 41.5           | 8.1            | 6.6            | 3             | 80   |
| Δ                       | 2.CFI.50084.IK.1 | 0.84                                      | 42.0           | 8.2            | 6.7            | 3             | 80   |
|                         | 2.CFI.50085.IK.1 | 0.85                                      | 42.5           | 8.3            | 6.8            | 3             | 80   |
| Δ                       | 2.CFI.50086.IK.1 | 0.86                                      | 43.0           | 8.4            | 6.9            | 3             | 80   |
| Δ                       | 2.CFI.50087.IK.1 | 0.87                                      | 43.5           | 8.5            | 7.0            | 3             | 80   |
| Δ                       | 2.CFI.50088.IK.1 | 0.88                                      | 44.0           | 8.6            | 7.0            | 3             | 80   |
| Δ                       | 2.CFI.50089.IK.1 | 0.89                                      | 44.5           | 8.7            | 7.1            | 3             | 80   |
|                         | 2.CFI.50090.IK.1 | 0.90                                      | 45.0           | 8.8            | 7.2            | 3             | 80   |

- Ab Lager verfügbar. ∆ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.








**Z**2







■ Ab Lager verfügbar. Δ Lieferzeit auf Anfrage, Mindestbestellmenge 5 Stk.

2.CFI.50115.IK.1

2.CFI.50116.IK.1

2.CFI.50117.IK.1

2.CFI.50118.IK.1

2.CFI.50119.IK.1

2.CFI.50120.IK.1

Δ

Δ

Δ

Δ

1.15

1.16

1.17

1.18

1.19

1.20

57.5

58.0

58.5

59.0

59.5

60.0

11.3

11.4

11.5

11.6

11.7

11.8

9.2

9.3

9.4

9.4

9.5

9.6

Ergänzende Produkte CrazyDrill Pilot SST-Inox CrazyDrill Crosspilot

3

3

3

3

3

3

95

95

95

95

95

95



## CrazyDrill Flex SST-Inox 50 x d

### BOHREN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-          |                                         |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | V <sub>c</sub> |   |
|---------------------|-----------------------------------------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---|
| gruppe              | Werkstoff                               | Wr.Nr. | DIN                | AISI/ASTM/UNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | /min]          |   |
|                     |                                         |        | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ød1≤0.4        | Ød1>0.4        |   |
|                     |                                         | 1.0301 | C10                | AISI 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
| ( <del>     </del>  | Stähle unlegiert                        | 1.0401 | C15                | AISI 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
| \h <i>i</i> /     - | Rm < 800 N/mm <sup>2</sup>              | 1.1191 | C45E/CK45          | AISI 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
| K.                  | 1411 < 000 14/11111                     | 1.0044 | S275JR             | AISI 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
| <i> </i>            |                                         | 1.0715 | 11SMn30            | AISI 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
|                     |                                         | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                |   |
|                     | Carlete este deigle giont               | 1.7131 | 16MnCr5            | AISI 5115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
|                     | Stähle niedriglegiert<br>Rm > 900 N/mm² | 1.3505 | 100Cr6             | AISI 52100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
|                     | NIII > 300 IV/IIIIII                    | 1.7225 | 42CrMo4            | AISI 4140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
| , d <sub>1</sub> ,  |                                         | 1.2842 | 90MnCrV8           | AISI O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |   |
| 77 777              |                                         | 1.2379 | X153CrMoV12        | AISI D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |   |
| 01                  | Werkzeugstähle                          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | hochlegiert                             |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
| Q <sub>x</sub>      | Rm < 1200 N/mm <sup>2</sup>             |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
| iQ <sub>x</sub>     | 4                                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | +              |   |
|                     | Rostfreie Stähle-                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25–35<br>25–35 | 35-40          |   |
| M                   | ferritisch                              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | Rostfreie Stähle-                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 35-40          |   |
|                     | martensitisch                           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | Rostfreie Stähle-                       | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25–35          | 35-40          |   |
|                     | martensitisch – PH                      | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 33- 40         |   |
|                     |                                         | 1.4301 | X5CrNi 18-10       | AISI 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25–35          |                |   |
|                     | Rostfreie Stähle-<br>austenitisch       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 35-40          |   |
|                     |                                         | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 35-40          |   |
|                     |                                         | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |   |
|                     | 4                                       | 0.6020 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     |                                         |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
| K                   | Gusseisen                               |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     |                                         |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | 4                                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | +              |   |
|                     | Aluminium                               |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
| N                   | Knetlegierungen                         |        | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | Aluminium                               |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201            |                |   |
|                     | Druckgusslegierungen                    |        | -                  | AISI 52100 AISI 4140 AISI O2 AISI D2 AISI D4/D6 AISI M2 / UNS T11302 AISI 4307 UNS 543000 AISI 430F AISI 440B AISI 440B AISI 630 / ASTM 17-4 PH ASTM 15-5 PH AISI 304 AISI 316L AISI 316L AISI 316LM 5 AISI 904L ASTM 40B ASTM 40B ASTM 60-40-18 ASTM 63-00-03 ASTM 6351 ASTM 6351 ASTM 6351 ASTM 6350 UNS C10100 UNS C11000 UNS C11000 UNS C27400 UNS C27400 UNS C28000 UNS C28000 UNS C38500 UNS C38500 UNS C63200 UNS C63200 Inconel 625 Inconel 718 Hastelloy B-2 Hastelloy X ASTM B348 / F67 ASTM B348 / F67 ASTM B348 / F67 ASTM B348 / F68 ASTM B348 / F68 ASTM B348 / F68 ASTM B348 / F67 ASTM B348 / F68 ASTM B348 / F68 ASTM B348 / F67 ASTM B348 / F67 ASTM B348 / F68 ASTM B348 / F68 ASTM B348 / F68 |                |                |   |
|                     | Kupfer                                  | 1.2379 | 20 – 30            | 35 – 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |   |
|                     | Kupici                                  |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 33             |   |
|                     | Messing bleifrei                        | 2.0321 | CuZn37 CW508L      | UNS C27400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 20          | 35 – 60        |   |
|                     | Messing bieitrei                        | 2.036  | CuZn40 CW509L      | UNS C28000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 – 30        | 33 – 00        |   |
|                     | Messing, Bronze                         | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
|                     | Rm < 400 N/mm <sup>2</sup>              | 2.102  | CuSn6              | UNS C51900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
|                     | Bronze                                  | 2.0966 | CuAl10Ni5Fe4       | UNS C63000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
|                     | Rm < 600 N/mm <sup>2</sup>              | 2.096  | CuAl9Mn2           | UNS C63200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
|                     |                                         |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     |                                         |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 – 20        |                |   |
| $ S_1 $             | Hitzebeständige                         |        | NUM 4020           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 20 – 30        |   |
|                     | Stähle                                  |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | -                                       |        |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                | - |
|                     | Titan rein                              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
| $S_2$               | 1163.1.763.1                            |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | Titan Legierungen                       | 3.7165 | TiAl6V4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     |                                         | 9.9367 | TiAl6Nb7           | ASTM F1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
| C                   | CrCo-Legierungen                        | 2.4964 | CoCr20W15Ni        | Haynes 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 20          | 20, 40         |   |
| $S_3$               |                                         |        | CrCoMo28           | ASTM F1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 – 30        | 30 – 40        |   |
|                     | Carlela and restau                      |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |   |
|                     | Stähle gehärtet                         | 4.0540 | 100MnCrMoW4        | AISI O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |   |
| H.                  |                                         | 1.2510 | 10010111C11010004  | 7 (15) (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |   |
| $H_1$ $H_2$         | < 55 HRC Stähle gehärtet                | 1.2510 | TOOIVITCTIVIOVV4   | 7 (15) (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                | - |



ANWENDUNGSEMPFEHLUNG





|                                      |                    |              |              | <b>f</b> [mi      | m/U]                 |             |             |
|--------------------------------------|--------------------|--------------|--------------|-------------------|----------------------|-------------|-------------|
| $\mathbf{Q}_{\scriptscriptstyle{1}}$ | $\mathbf{Q}_{x}$   | Ød1          | Ød1          | Ød1               | Ød1                  | Ød1         | Ød1         |
|                                      |                    | 0.3 mm       | 0.4 mm       | 0.6 mm            | 0.8 mm               | 1.0 mm      | 1.2 mm      |
|                                      |                    | f            | f            | f                 | f                    | f           | f           |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              | Em           | pfohlen: CrazyD   | rill Flex Steel 50   | x d1        |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
| 2 14 2 1                             | 0.2 14 . 5 . 7 . 7 | 0.040 - 7.15 | 0.040 - 5-15 | 0.045             | 0.045                | 0.000       | 0.040       |
| 2xd1 – 3xd1                          | 0.2xd1-0.5xd1      | 0.010-0.015  | 0.010-0.015  | 0.015-0.020       | 0.015-0.020          | 0.030-0.040 | 0.040-0.050 |
| 2xd1 – 3xd1                          | 0.2xd1-0.5xd1      | 0.010-0.015  | 0.010-0.015  | 0.015-0.020       | 0.015-0.020          | 0.030-0.040 | 0.040-0.050 |
| 2xd1 – 3xd1                          | 0.2xd1-0.5xd1      | 0.010-0.015  | 0.010-0.015  | 0.015-0.020       | 0.015-0.020          | 0.030-0.040 | 0.040-0.050 |
|                                      |                    |              |              |                   |                      |             |             |
| 2xd1 – 3xd1                          | 0.2xd1 – 0.5xd1    | 0.005-0.010  | 0.005-0.010  | 0.010-0.015       | 0.010-0.015          | 0.020-0.030 | 0.030-0.040 |
| zar sar                              | 0.2Ad1 0.3Ad1      | 0.005 0.010  | 0.005        | 0.010 0.013       | 0.010 0.013          | 0.020 0.030 | 0.050 0.010 |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              | Emp          | pfohlen: CrazyDı  | rill Flex Steel 50   | x d1        |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              | Emp          | pfohlen: CrazyDı  | rill Flex Steel 50   | x d1        |             |
|                                      |                    |              |              |                   |                      |             |             |
| 2xd1 – 3xd1                          | 0.5xd1             | 0.040        | 0.045        | 0.050             | 0.060                | 0.070       | 0.080       |
| 2xd1 – 3xd1                          | 0.5xd1             | 0.040        | 0.045        | 0.050             | 0.060                | 0.070       | 0.080       |
| ZAGT SAGT                            | 0.5xd1             | 0.040        | 0.045        | 0.030             | 0.000                | 0.070       | 0.000       |
|                                      |                    |              | Emi          | pfohlen: CrazyDı  | rill Flav Staal 50 s | v d1        |             |
|                                      |                    |              | בווון        | promen. Crazyoi   | III Flex Steel 50 /  | A U I       |             |
|                                      |                    |              |              |                   |                      |             |             |
| 2xd1 – 3xd1                          | 0.2xd1             | 0.010-0.020  | 0.010-0.020  | 0.015-0.025       | 0.020-0.030          | 0.025-0.035 | 0.035-0.045 |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              | ,                 |                      |             |             |
|                                      |                    |              | Empf         | ohlen: CrazyDrill | Flex Titanium 50     | 0 x d1      |             |
|                                      |                    |              |              |                   |                      |             |             |
| 2xd1 – 3xd1                          | 0.5xd1             | 0.010-0.020  | 0.010-0.020  | 0.015-0.025       | 0.020-0.030          | 0.025-0.035 | 0.035-0.045 |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |
|                                      |                    |              |              |                   |                      |             |             |



# PRÄZISES UND SCHNELLES BOHREN AB Ø 0.1 MM BIS 50 X D

# Kühlschmierstoff, Filter und Druck

**Kühlschmierung:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Die grossen Kühlkanäle erlauben einen Standardfilter. Filterqualität ≤ 0.050 mm.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter zu beachten.



**Kühlmitteldruck:** Um prozesssicher zu bohren, werden Mindestdrücke (siehe Tabelle) benötigt. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.

| Drehzahl        | [U/min] | ≤ 10′000 | > 10′000 |
|-----------------|---------|----------|----------|
| Minimaler Druck | [bar]   | 15       | 30       |

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Kühlmitteldruck zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird und somit den Bohrer perfekt kühlt, schmiert und die Späne wegspült.

06

# Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".



# PRÄZISES UND SCHNELLES BOHREN AB Ø 0.1 MM BIS 50 X D

# CrazyDrill Flex 20 x d, 30 x d, 50 x d

Mikron Tool empfiehlt für alle Typen CrazyDrill Flex eine Pilotbohrung:

# CrazyDrill Flex SST-Inox

- CrazyDrill Pilot SST-Inox als Pilotbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

# **CrazyDrill Flex Steel**

- CrazyDrill Flexpilot Steel als Pilotbohrer
- CrazyDrill Crosspilot als Pilotbohrer auf schrägen Oberflächen

# **CrazyDrill Flex Titanium**

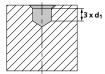
- CrazyDrill Flexpilot Titanium als Pilotbohrer
- **CrazyDrill Crosspilot** als Pilotbohrer auf schrägen Oberflächen

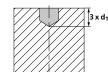
### **Pilotbohren und Bohren**

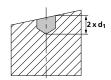
Die Pilotbohrung mit CrazyDrill Flexpilot / CrazyDrill Pilot SST-Inox ist der perfekte Ausgangspunkt für eine präzise Bohrung (Positions- und Fluchtungsgenauigkeit) und einen stabilen Bearbeitungsprozess. Dasselbe gilt für den Pilotbohrer CrazyDrill Crosspilot auf schrägen Oberflächen.

Die Qualität der Bohrung (Positionsgenauigkeit, Fluchtungsgenauigkeit, kein messbarer Übergang von Pilot- zu Folgebohrer) und ein stabiler Bearbeitungsprozess sind durch die abgestimmte Toleranz der Werkzeuge gewährleistet.

06


# **BOHRPROZESS**


# Bohrung gemäss DIN 66025 / PAL

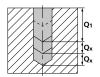

G83 Tiefbohrzyklus mit Spanbruch und Entspänen Q = Tiefe des jeweiligen Bohrstosses

# 1 | PILOTBOHRUNG

- Mit CrazyDrill Pilot SST-Inox (gerade Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen) für die Version CrazyDrill Flex SST-Inox.
- Mit CrazyDrill Flexpilot Steel bzw. Titanium (gerade Oberflächen) oder CrazyDrill Crosspilot (schräge Oberflächen) für die Version CrazyDrill Flex Steel bzw. Titanium.



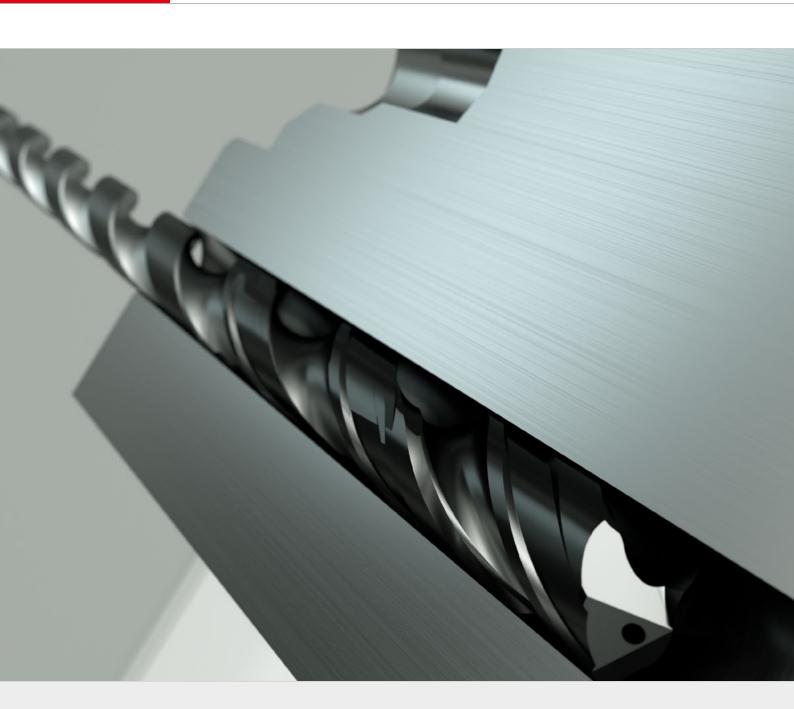





# 2 | BOHRUNG

Erster Bohrstoss Q1 mit CrazyDrill Flex SST-Inox / CrazyDrill Flex Steel / Titanium bis zu einer maximalen Bohrtiefe von Q<sub>1</sub> in einem einzigen Bohrstoss (siehe Schnittdatentabelle), anschliessend entspänen.




Weitere Bohrstösse Q<sub>X</sub> gemäss Schnittdatentabelle, anschliessend entspänen.



### Bemerkung:

Zwischen den Bohrstössen kann komplett aus der Bohrung gefahren werden. Beim Auftreten von Aufschwingungen empfehlen wir, nicht komplett aus der Bohrung zu fahren. Nach Erreichen der gewünschten Bohrtiefe kann mit reduziertem Eilgang oder ggf. Eilgang (bei idealen Bedingungen) zurückgefahren werden.

# Kundenspezifische Bohrer



# Mikron Tool produziert Hartmetall - Bohrwerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb der folgenden Bereiche:

#### **MERKMALE**

■ Durchmesser min.: 0.1 mm

■ Durchmesser max.: 32.0 mm, grösser nach Abklärung

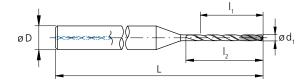
■ Bohrtiefe max: 50 x d

■ Maximale Werkzeuglänge: 415 mm

■ Werkzeugdurchmesser Toleranz max.: ± 0.5 µm

■ Fase und Spitzenwinkel: nach Bedarf

■ Stufenbohrer: siehe kundenspezifische Stufenbohrer


■ Konzentrizität zwischen Schaft und Werkzeugdurchmesser: generell ≤ 2 µm

■ Schneiden Anzahl: 1, 2 oder 3

■ Schneidenrichtung: Bohrer rechtsschneidend oder Bohrer linksschneidend

■ Konische und zylindrische Bohrer

■ Material Bohrer: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



#### **BESCHICHTUNGEN**

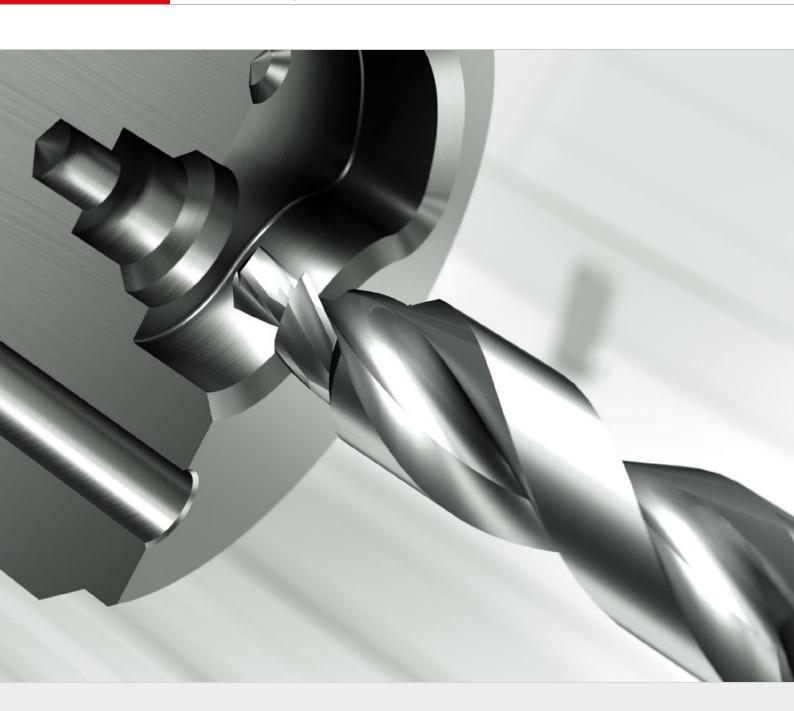
Verschiedene, wird auf Anwendungsfall abgestimmt

#### KÜHLUNG

- Bohrer mit Innenkühlung spiralisiert bis an Bohrerspitze
- Bohrer mit integrierter Kühlung im Schaft
- Bohrer für äussere Kühlmittelzufuhr

# **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HE (Whistle Notch)
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch


# **MATERIAL ANWENDUNG**

Bohrer für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe usw.

# **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten.

# Kundenspezifische Stufenbohrer



06

# Mikron Tool produziert Hartmetall - Stufenbohrwerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

#### **MERKMALE**

■ Durchmesser min.: 0.1 mm

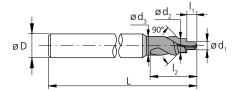
■ Durchmesser max.: 32.0 mm, grösser nach Abklärung

■ Bohrtiefe max: je nach Anwendung

■ Maximale Werkzeuglänge: 330 mm

■ Werkzeugdurchmesser Toleranz max.: ± 0.5 µm

■ Fase und Spitzenwinkel: nach Bedarf


■ Konzentrizität zwischen Schaft und Werkzeugdurchmesser: generell ≤ 2 µm

■ Schneiden Anzahl: 2

■ Schneidenrichtung: Bohrer rechtsschneidend oder Bohrer linksschneidend

■ Formen: Konische Bohrer, zylindrische Bohrer usw.

■ Material Bohrer: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



#### **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung

#### KÜHLUNG

- Bohrer mit Innenkühlung spiralisiert bis an Bohrerspitze
- Bohrer mit Innenkühlung gerade im Schaft
- Bohrer für äussere Kühlmittelzufuhr

# **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HE (Whistle Notch)
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch

# **MATERIAL ANWENDUNG**

Bohrer für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe usw.

# **BEHANDLUNGEN**

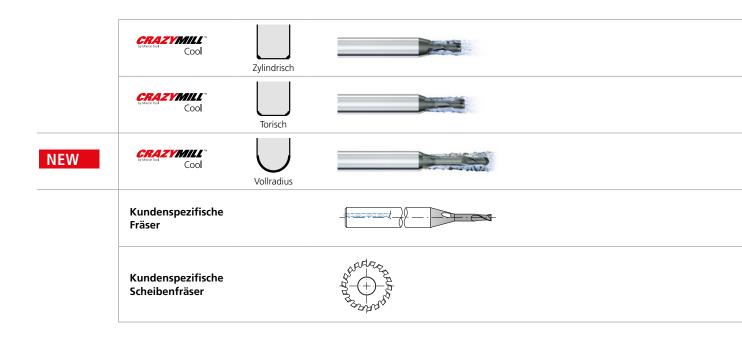
Kantenpräparation, Polieren der Nuten.

# crazy about milling



 $\equiv$ 

07


FRÄSEN

| ÜBERSICHT                            | 480 |
|--------------------------------------|-----|
| CRAZYMILL COOL ZYLINDRISCH / TORISCH | 482 |
| CRAZYMILL COOL VOLLRADIUS            | 516 |
| KUNDENSPEZIFISCHE FRÄSER             | 548 |
| KUNDENSPEZIFISCHE SCHEIBENFRÄSER     | 550 |

07

# Übersicht

# ZERSPANUNGSLÖSUNGEN



| _ |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

|  | ø-Bereich<br>[mm]<br>max.                   | -sgu                           |         | Р                                   | M                   | K         | N                      | S <sub>1</sub>                 | S <sub>2</sub>                        | S₃                   | H₁                            | H <sub>2</sub>                |       |
|--|---------------------------------------------|--------------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|-------|
|  |                                             | max.<br>Bearbeitungs-<br>tiefe | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitzebe-<br>ständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC | Seite |
|  | 0.3 – 6.0                                   | 1.5 x d<br>3 x d<br>5 x d      |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 482   |
|  | 0.3 – 6.0                                   | 1.5 x d<br>3 x d<br>5 x d      |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 482   |
|  | 0.3 – 8.0                                   | 2 x d<br>3 x d<br>5 x d        |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | Ø                             | 516   |
|  | 0.3 – 32.0                                  | nach<br>Bedarf                 |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 548   |
|  | Innen<br>2.0 – 40.0<br>Breite<br>1.0 – 30.0 | -                              |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | Ø                             | 550   |



# **PATENTED**

# CrazyMill Cool Zylindrisch / Torisch







Mit CrazyMill Cool gelingt Mikron Tool ein Quantensprung im Fräsen von rostfreiem Stahl, Titan, Chrom-Kobalt-Legierungen und Superalloys. Drei Ausführungen von Mikrofräsern in Durchmessern von 0.3 – 6.0 mm und mit Frästiefen bis zu 5 x d stehen zur Verfügung. Diese sind als zylindrische (scharfkantig mit minimaler Schutzphase 45°) oder torische (mit Eckenradius) Version verfügbar.

Die Stärken dieses Vollhartmetall-Schaftfräsers mit integrierter Kühlung sind das Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Er vereinigt HSC (HighSpeedCutting) und HPC (HighPerformanceCutting) und wird so zum HSPC-Fräser (HighSpeedPerformanceCutting). Dank seiner spezieller Schneidengeometrie und der konstanten und massiven Kühlung der Schneiden bedeutet dieser Fräser einen Quantensprung für die Bearbeitung von rostfreiem Stahl, Titan, Chrom-Kobalt-Legierungen und Superalloys.



# **PATENTED**

# Quantensprung beim Fräsen

# Fräsen mit Innenkühlung für Schrupp- und Schlichtbearbeitungen

Mit CrazyMill Cool gelingt Mikron Tool ein Quantensprung im Fräsen von rostfreiem Stahl, Titan, Chrom-Kobalt-Legierungen und Superalloys. Drei Versionen von zylindrischen (scharfkantig mit minimaler Schutzphase von 45°) oder torischen (mit Eckenradius) Mikrofräsern in Durchmessern von 0.3 – 6.0 mm und mit Frästiefen bis zu 5 x d stehen zur Verfügung. Die Schneidenlänge beträgt immer 1.5 x d.

- CrazyMill Cool Zylindrisch, Typ A Frästiefe 1.5 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Zylindrisch, Typ B Frästiefe 3 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Zylindrisch, Typ C Frästiefe 5 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Torisch, Typ A Frästiefe 1.5 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Torisch, Typ B Frästiefe 3 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Torisch, Typ C Frästiefe 5 x d, Kühlung im Schaft, Z = 2



| 1.5 x d                                          | 3 x d                                            | 5 x d                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beschichtet Integrierte Kühlung                  | Beschichtet Integrierte Kühlung                  | Beschichtet Integrierte Kühlung                  |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  |                                                  |                                                  | 1   SCHAFT  Der robuste Hartmetallschaft garantiert ein stabiles und schwingungsfreies Fräsen. Hohe Präzision und hervorragende Oberflächengüte werden erreicht.                                                                                                                                                                                                                                   |
|                                                  |                                                  | 2                                                | 2   INTEGRIERTE KÜHLUNG - PATENTIERT  Die im Schaft integrierten Kühlkanäle garantieren eine konstante und massive Kühlung der Schneiden und eine optimale Abfuhr der Späne. Das Resultat ist eine erhöhte Schnittgeschwindigkeit und Schnittliefe a, sowie Oberflächengüte.                                                                                                                       |
|                                                  |                                                  | 1                                                | 3   HARTMETALL  Das speziell entwickelte Ultrafeinkorn- Hartmetall erfüllt alle Anforderungen in Bezug auf die mechanischen Eigenschaften.  4   BESCHICHTUNG  Die Hochleistungsbeschichtung RIP ist wärme- und verschleissresistent, verhindert ein Verkleben der Schneiden und garantiert einen optimalen Spänetransport. Das Resultat                                                            |
|                                                  |                                                  | 5                                                | ist eine hohe Standzeit des Werkzeuges.  5   SCHNEIDENGEOMETRIE Entwickelt für die Bearbeitung von schwer zerspanbaren Materialien wie rostfreie Stähle, Titan und Titanlegierungen sowie hitzebeständige Legierungen. Erlaubt sowohl Schruppen als auch Schlichten mit hoher Oberflächengüte. Dank seiner hohen Laufruhe wird der Fräser auch bei grösserer Umschlingung vibrationsfrei arbeiten. |
| CrazyMill Cool<br>Zylindrisch / Torisch<br>Typ A | CrazyMill Cool<br>Zylindrisch / Torisch<br>Typ B | CrazyMill Cool<br>Zylindrisch / Torisch<br>Typ C | Fräserspitze                                                                                                                                                                                                                                                                                                                                                                                       |



# Vorteile und Anwendungen

# DER SCHRUPP- UND SCHLICHTFRÄSER MIT INNENKÜHLUNG, AB 0.3 MM

KÜRZERE BEARBEITUNGSZEIT | Höchste Abtragsraten

■ ERHÖHTE STANDZEIT | Durch patentierte effiziente Kühlung

HOHE PROZESSSICHERHEIT | Dank integrierter Kühlung

HOHE OBERFLÄCHENQUALITÄT Dank spezieller Geometrie



#### TEIL

Knochenschraube mit Torxkopf

### WERKSTOFF

X2CrNiMo 18-14-3 / 1.4435 / AISI 316L

### **BEARBEITUNG**

- Schruppen und Schlichten
- d = 6 mm

## WERKZEUG

Mikron Tool - CrazyMill Cool Torisch

| DATEN            | MIKRON TOOL                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Werkzeugtyp      | CrazyMill Cool Torisch - Hartmetall - Beschichtet - Integrierte Kühlung                                                              |
| Artikelnummer    | 2.CMC30.B3Z2.600.1                                                                                                                   |
|                  | Schruppen $v_c = 260 \text{ m/min}$ $f_z = 0.035 \text{ mm}$ $a_p = 4 \text{ mm}$ $a_e = 1 \text{ mm}$ $Z = 2$ $r = 0.5 \text{ mm}$  |
| Schnittdaten     | Schlichten $v_c = 180 \text{ m/min}$ $f_z = 0.015 \text{ mm}$ $a_p = 1 \text{ mm}$ $a_e = 1 \text{ mm}$ $Z = 2$ $z = 0.3 \text{ mm}$ |
| Bearbeitungszeit | 27 sek                                                                                                                               |





















| MATERIALGRUPPE                              |         | BEISPIELE      |                   |
|---------------------------------------------|---------|----------------|-------------------|
|                                             | Wr. Nr. | DIN            | AISI / ASTM / UNS |
| Gruppe P<br>Unlegierte u.                   | 1.0401  | C15            | 1015              |
| legierte Stähle                             | 1.3505  | 100Cr6         | 52100             |
|                                             | 1.2436  | X210CrW12      | D4 / D6           |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105  | X6CrMoS17      | 430F              |
|                                             | 1.4112  | X90CrMoV18     | 440B              |
|                                             | 1.4301  | X5CrNi 18-10   | 304               |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040  | GGG40          | 60-40-18          |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315  | AlMgSi1        | 6351              |
|                                             | 3.2163  | GD-AlSi9Cu3    | A380              |
|                                             | 2.004   | Cu-OF / CW008A | C10100            |
|                                             | 2.0321  | CuZn37 CW508L  | C27400            |
|                                             | 2.102   | CuSn6          | C51900            |
|                                             | 2.096   | CuAl9Mn2       | C63200            |
| <b>Gruppe S1</b> Hitzebeständige Stähle     | 2.4856  |                | INCONEL 625       |
|                                             | 2.4665  | NiCr22Fe18Mo   | HASTELLOY X       |
| Gruppe S2<br>Titan rein u.                  | 3.7035  | Gr.2           | B348 / F67        |
| Titan Legierungen                           | 3.7165  | TiAl6V4        | B348 / F136       |
| <b>Gruppe S3</b><br>CrCo Legierungen        | 2.4964  | CoCr20W15Ni    | HAYNES 25         |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510  | 100MnCrMoW4    | 01                |



# CrazyMill Cool Zylindrisch - Typ A - 1.5 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG

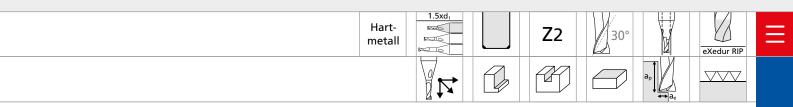


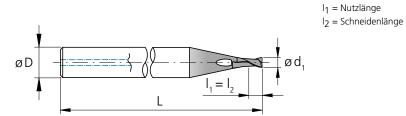
Fräser CrazyMill Cool Typ A, scharfkantig mit kleiner, definierter Schutzphase von 45°, für eine max. Bearbeitungstiefe von 1.5 x d und mit einer Schneidenlänge von 1.5 x d:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


## Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Zylindrisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01 | I <sub>1</sub> | I <sub>2</sub> | D<br>(h6) | L    | 45°  |
|-------|--------------------|-----------------------------------|----------------|----------------|-----------|------|------|
| ab =  |                    | [mm]                              | [mm]           | [mm]           | [mm]      | [mm] | [mm] |
| •     | 2.CMC30.A1Z2.030.1 | 0.3                               | 0.45           | 0.45           | 3         | 38   | 0.02 |
| -     | 2.CMC30.A1Z2.040.1 | 0.4                               | 0.60           | 0.60           | 3         | 38   | 0.02 |
| •     | 2.CMC30.A1Z2.050.1 | 0.5                               | 0.75           | 0.75           | 3         | 38   | 0.02 |
| -     | 2.CMC30.A1Z2.060.1 | 0.6                               | 0.90           | 0.90           | 3         | 38   | 0.02 |
| -     | 2.CMC30.A1Z2.080.1 | 0.8                               | 1.20           | 1.20           | 3         | 38   | 0.02 |
| -     | 2.CMC30.A1Z2.100.1 | 1.0                               | 1.50           | 1.50           | 4         | 40   | 0.02 |
| •     | 2.CMC30.A1Z2.120.1 | 1.2                               | 1.80           | 1.80           | 4         | 40   | 0.03 |
| •     | 2.CMC30.A1Z2.150.1 | 1.5                               | 2.25           | 2.25           | 4         | 40   | 0.03 |
| •     | 2.CMC30.A1Z2.180.1 | 1.8                               | 2.70           | 2.70           | 4         | 40   | 0.03 |
| •     | 2.CMC30.A1Z2.200.1 | 2.0                               | 3.00           | 3.00           | 4         | 40   | 0.03 |
| •     | 2.CMC30.A1Z2.250.1 | 2.5                               | 3.75           | 3.75           | 6         | 45   | 0.04 |
| •     | 2.CMC30.A1Z2.300.1 | 3.0                               | 4.50           | 4.50           | 6         | 50   | 0.04 |
| -     | 2.CMC30.A1Z2.400.1 | 4.0                               | 6.00           | 6.00           | 6         | 50   | 0.04 |
| •     | 2.CMC30.A1Z2.600.1 | 6.0                               | 9.00           | 9.00           | 10        | 60   | 0.04 |



# CrazyMill Cool Torisch - Typ A - 1.5 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG

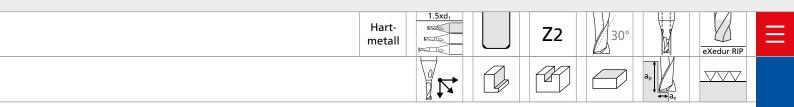


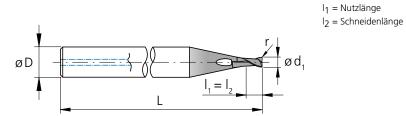
Fräser CrazyMill Cool Typ A mit Eckenradius für eine max. Bearbeitungstiefe von 1.5 x d und mit einer Schneidenlänge von 1.5 x d:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


## Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Torisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| ab Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] | <b>r</b><br>[mm] |
|----------|--------------------|-------------------------------------------|----------------------------|------------------------------|--------------------------|------------------|------------------|
| •        | 2.CMC30.A2Z2.030.1 | 0.3                                       | 0.45                       | 0.45                         | 3                        | 38               | 0.05             |
| _        | 2.CMC30.A2Z2.040.1 | 0.4                                       | 0.60                       | 0.60                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.A2Z2.050.1 | 0.5                                       | 0.75                       | 0.75                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.A3Z2.050.1 | 0.5                                       | 0.75                       | 0.75                         | 3                        | 38               | 0.10             |
|          | 2.CMC30.A2Z2.060.1 | 0.6                                       | 0.90                       | 0.90                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.A3Z2.060.1 | 0.6                                       | 0.90                       | 0.90                         | 3                        | 38               | 0.10             |
|          | 2.CMC30.A2Z2.080.1 | 0.8                                       | 1.20                       | 1.20                         | 3                        | 38               | 0.05             |
| -        | 2.CMC30.A3Z2.080.1 | 0.8                                       | 1.20                       | 1.20                         | 3                        | 38               | 0.10             |
|          | 2.CMC30.A2Z2.100.1 | 1.0                                       | 1.50                       | 1.50                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.A3Z2.100.1 | 1.0                                       | 1.50                       | 1.50                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.A2Z2.120.1 | 1.2                                       | 1.80                       | 1.80                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.A3Z2.120.1 | 1.2                                       | 1.80                       | 1.80                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.A2Z2.150.1 | 1.5                                       | 2.25                       | 2.25                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.A3Z2.150.1 | 1.5                                       | 2.25                       | 2.25                         | 4                        | 40               | 0.30             |
| •        | 2.CMC30.A2Z2.180.1 | 1.8                                       | 2.70                       | 2.70                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.A3Z2.180.1 | 1.8                                       | 2.70                       | 2.70                         | 4                        | 40               | 0.30             |
| •        | 2.CMC30.A2Z2.200.1 | 2.0                                       | 3.00                       | 3.00                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.A3Z2.200.1 | 2.0                                       | 3.00                       | 3.00                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.A4Z2.200.1 | 2.0                                       | 3.00                       | 3.00                         | 4                        | 40               | 0.50             |
|          | 2.CMC30.A2Z2.250.1 | 2.5                                       | 3.75                       | 3.75                         | 6                        | 45               | 0.20             |
| •        | 2.CMC30.A3Z2.250.1 | 2.5                                       | 3.75                       | 3.75                         | 6                        | 45               | 0.50             |
| •        | 2.CMC30.A2Z2.300.1 | 3.0                                       | 4.50                       | 4.50                         | 6                        | 50               | 0.20             |
| -        | 2.CMC30.A3Z2.300.1 | 3.0                                       | 4.50                       | 4.50                         | 6                        | 50               | 0.50             |
| -        | 2.CMC30.A2Z2.400.1 | 4.0                                       | 6.00                       | 6.00                         | 6                        | 50               | 0.20             |
| •        | 2.CMC30.A3Z2.400.1 | 4.0                                       | 6.00                       | 6.00                         | 6                        | 50               | 0.50             |
| -        | 2.CMC30.A2Z2.600.1 | 6.0                                       | 9.00                       | 9.00                         | 10                       | 60               | 0.50             |
| •        | 2.CMC30.A3Z2.600.1 | 6.0                                       | 9.00                       | 9.00                         | 10                       | 60               | 1.00             |



# CrazyMill Cool Zylindrisch / Torisch - Typ A - 1.5 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                   | Werkstoff-            |                                                     |        |                    |                         |                | ðd1            |  |
|-----------------------------------|-----------------------|-----------------------------------------------------|--------|--------------------|-------------------------|----------------|----------------|--|
|                                   | gruppe                | Werkstoff                                           | Wr.Nr. | DIN                | AISI/ASTM/UNS           | 0.3-           | 0.4 mm         |  |
|                                   |                       |                                                     |        |                    |                         | V <sub>c</sub> | f <sub>z</sub> |  |
|                                   |                       |                                                     | 1.0301 | C10                | AISI 1010               |                |                |  |
|                                   | P                     | Stähle unlegiert                                    | 1.0401 | C15                | AISI 1015               |                |                |  |
| Konventionelles                   |                       |                                                     | 1.1191 | C45E/CK45          | AISI 1045               | 60             | 0.004 - 0.006  |  |
| Nutfräsen                         |                       | Rm < 800 N/mm <sup>2</sup>                          | 1.0044 | S275JR             | AISI 1020               |                |                |  |
|                                   |                       |                                                     | 1.0715 | 11SMn30            | AISI 1215               |                |                |  |
|                                   |                       |                                                     | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                |                |  |
|                                   |                       |                                                     | 1.7131 | 16MnCr5            | AISI 5115               |                |                |  |
|                                   |                       | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6             | AISI 52100              | 60             | 0.003 – 0.005  |  |
|                                   |                       | KIII > 900 IV/IIIII12                               | 1.7225 | 42CrMo4            | AISI 4140               |                |                |  |
|                                   |                       |                                                     | 1.2842 | 90MnCrV8           | AISI O2                 |                |                |  |
| $\blacksquare a_0 = 1 \times d_1$ |                       |                                                     | 1.2379 | X153CrMoV12        | AISI D2                 |                |                |  |
|                                   |                       | Werkzeugstähle                                      | 1.2436 | X210CrW12          | AISI D4/D6              |                |                |  |
|                                   |                       | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 60             | 0.003 – 0.005  |  |
|                                   |                       | Km < 1200 Wmm²                                      | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                |                |  |
|                                   |                       | D+f:- C+# - -                                       | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                |                |  |
|                                   | D. //                 | Rostfreie Stähle-<br>ferritisch                     | 1.4105 | X6CrMoS17          | AISI 430F               | 60             | 0.004 - 0.006  |  |
|                                   | M                     |                                                     | 1.4034 | X46Cr13            | AISI 420C               |                |                |  |
| <b>P g</b>                        |                       | Rostfreie Stähle-<br>martensitisch                  | 1.4112 | X90CrMoV18         | AISI 440B               | 60             | 0.003 – 0.005  |  |
| LA                                |                       |                                                     | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                |                |  |
|                                   |                       | Rostfreie Stähle-<br>martensitisch – PH             | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 60             | 0.003 - 0.005  |  |
|                                   |                       | THAT CONSTRUCTION TO THE                            | 1.4343 | X5CrNi 18-10       | AISI 304                |                |                |  |
|                                   |                       | D+f:- C+# - -                                       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                |                |  |
|                                   |                       | Rostfreie Stähle-<br>austenitisch                   | 1.4441 | X2CrNiMo 18-14-3   | AISI 316LM              | 60             | 0.003 - 0.005  |  |
|                                   |                       | dasteriniseri                                       | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                |                |  |
|                                   |                       |                                                     |        |                    |                         |                |                |  |
| <i>V</i>                          | 1.7                   |                                                     | 0.6020 | GG20               | ASTM 30                 |                |                |  |
|                                   | K                     | Gusseisen                                           | 0.6030 | GG30               | ASTM 40B                | 60             | 0.002 - 0.004  |  |
| $d_1$                             |                       |                                                     | 0.7040 | GGG40              | ASTM 60-40-18           |                |                |  |
| 15 21                             |                       |                                                     | 0.7060 | GGG60              | ASTM 80-60-03           |                |                |  |
|                                   |                       | Aluminium                                           | 3.2315 | AlMgSi1            | ASTM 6351               | 60             | 0.005 - 0.007  |  |
|                                   | N                     | Knetlegierungen                                     | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                | 0.007          |  |
|                                   |                       | Aluminium                                           | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 60             | 0.005 - 0.007  |  |
|                                   |                       | Druckgusslegierungen                                | 3.2381 | GD-AlSi10Mg        | UNS A03590              |                |                |  |
| 3 <b>1</b> // \                   |                       | Kupfer                                              | 2.004  | Cu-OF / CW008A     | UNS C10100              | 60             | 0.005 – 0.007  |  |
| $a_p$                             |                       |                                                     | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                |                |  |
|                                   |                       | Messing bleifrei                                    | 2.0321 | CuZn37 CW508L      | UNS C27400              | 60             | 0.005 – 0.007  |  |
|                                   |                       | J                                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                |                |  |
|                                   |                       | Messing, Bronze                                     | 2.0401 | CuZn39Pb3 / CW614N |                         | 60             | 0.005 - 0.007  |  |
|                                   |                       | Rm < 400 N/mm <sup>2</sup>                          | 2.102  | CuSn6              | UNS C51900              |                |                |  |
|                                   |                       | Bronze                                              | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 60             | 0.005 - 0.007  |  |
|                                   |                       | Rm < 600 N/mm <sup>2</sup>                          | 2.096  | CuAl9Mn2           | UNS C63200              |                |                |  |
|                                   |                       |                                                     | 2.4856 |                    | Inconel 625             |                |                |  |
|                                   | S <sub>1</sub>        | Hitzebeständige                                     | 2.4668 |                    | Inconel 718             | 60             | 0.002 – 0.003  |  |
|                                   | <b>J</b> 1            | Stähle                                              | 2.4617 | NiMo28             | Hastelloy B-2           | 00             | 0.002 0.003    |  |
|                                   |                       |                                                     | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                |                |  |
|                                   |                       | Titan rein                                          | 3.7035 | Gr.2               | ASTM B348 / F67         | 60             | 0.003 – 0.005  |  |
|                                   | S <sub>2</sub>        |                                                     | 3.7065 | Gr.4               | ASTM B348 / F68         |                |                |  |
|                                   | - 2                   | Titan Legierungen                                   | 3.7165 | TiAl6V4            | ASTM B348 / F136        | 60             | 0.003 – 0.005  |  |
|                                   |                       |                                                     | 9.9367 | TiAl6Nb7           | ASTM F1295              | - •            |                |  |
|                                   | <b>S</b> <sub>3</sub> | CrCo-Legierungen                                    | 2.4964 | CoCr20W15Ni        | Haynes 25               | 60             | 0.002 - 0.003  |  |
|                                   | 3                     |                                                     |        | CrCoMo28           | ASTM F1537              |                |                |  |
|                                   | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4        | AISI O1                 | 60             | 0.003 – 0.005  |  |
|                                   | $H_2$                 | Stähle gehärtet<br>≥ 55 HRC                         | 1.2379 | X153CrMoV12        | AISI D2                 |                |                |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm] lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen

Ød1

Ød1

Ød1

Ød1



Ød1

Ød1



| 0.5.08         |                                  |     |                |                | 2.0-2.5 mm     |     |                      | 20  |                              | 10 60 |               |
|----------------|----------------------------------|-----|----------------|----------------|----------------|-----|----------------------|-----|------------------------------|-------|---------------|
|                | -0.8 mm<br><b>f</b> <sub>z</sub> |     |                |                | -1.8 mm        |     | <b>f<sub>z</sub></b> |     | 3.0 mm <b>f</b> <sub>z</sub> |       | -6.0 mm       |
| V <sub>c</sub> | T <sub>Z</sub>                   | ₩,  | I <sub>Z</sub> | V <sub>C</sub> | I <sub>z</sub> | Vc  | I <sub>Z</sub>       | Vc  | I <sub>Z</sub>               | Vc    | Iz            |
| 100            | 0.008 – 0.012                    | 140 | 0.013 – 0.015  | 180            | 0.022 - 0.024  | 200 | 0.030 - 0.032        | 220 | 0.046                        | 260   | 0.048         |
| 100            | 0.007 – 0.010                    | 140 | 0.012 – 0.014  | 180            | 0.020 – 0.022  | 200 | 0.028 – 0.030        | 220 | 0.044                        | 260   | 0.046         |
| 100            | 0.006 – 0.009                    | 140 | 0.009 – 0.011  | 180            | 0.018 – 0.020  | 200 | 0.026 – 0.028        | 220 | 0.040                        | 260   | 0.042         |
| 100            | 0.008 - 0.012                    | 140 | 0.014 – 0.016  | 180            | 0.022 - 0.024  | 200 | 0.030 - 0.032        | 220 | 0.044                        | 260   | 0.046         |
| 100            | 0.007 - 0.010                    | 140 | 0.013 - 0.015  | 180            | 0.020 - 0.022  | 200 | 0.028 - 0.030        | 220 | 0.042                        | 260   | 0.044         |
| 100            | 0.007 - 0.010                    | 140 | 0.013 – 0.015  | 180            | 0.020 - 0.022  | 200 | 0.028 - 0.030        | 220 | 0.042                        | 260   | 0.044         |
| 100            | 0.006 – 0.009                    | 140 | 0.010 – 0.012  | 180            | 0.016 – 0.018  | 200 | 0.026 - 0.028        | 220 | 0.040                        | 260   | 0.042         |
| 100            | 0.005 – 0.008                    | 120 | 0.010 – 0.020  | 140            | 0.022 – 0.025  | 160 | 0.026 – 0.035        | 180 | 0.040 – 0.046                | 200   | 0.050 – 0.054 |
| 100            | 0.010 - 0.014                    | 140 | 0.015 – 0.017  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.052                        | 260   | 0.055         |
| 100            | 0.010 - 0.014                    | 140 | 0.015 - 0.017  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.050                        | 260   | 0.053         |
| 100            | 0.012 - 0.016                    | 140 | 0.018 - 0.020  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.052                        | 260   | 0.055         |
| 100            | 0.012 - 0.016                    | 140 | 0.018 - 0.020  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.052                        | 260   | 0.055         |
| 100            | 0.012 - 0.016                    | 140 | 0.018 - 0.020  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.052                        | 260   | 0.055         |
| 100            | 0.010 - 0.014                    | 140 | 0.016 - 0.018  | 180            | 0.024 - 0.026  | 200 | 0.032 - 0.034        | 220 | 0.052                        | 260   | 0.055         |
| 100            | 0.004 – 0.006                    | 120 | 0.007 – 0.008  | 130            | 0.009 – 0.010  | 140 | 0.010 – 0.012        | 150 | 0.015                        | 170   | 0.020         |
| 100            | 0.006 - 0.009                    | 120 | 0.014 - 0.016  | 130            | 0.018 - 0.020  | 140 | 0.026 - 0.028        | 150 | 0.040                        | 170   | 0.042         |
| 100            | 0.006 - 0.009                    | 120 | 0.014 - 0.016  | 130            | 0.018 - 0.020  | 140 | 0.026 - 0.028        | 150 | 0.040                        | 170   | 0.042         |
| 100            | 0.004 - 0.006                    | 140 | 0.007 - 0.008  | 160            | 0.009 - 0.010  | 180 | 0.010 - 0.012        | 200 | 0.015                        | 220   | 0.020         |
| 80             | 0.006 – 0.007                    | 100 | 0.008 - 0.010  | 140            | 0.012 - 0.016  | 180 | 0.018 - 0.024        | 200 | 0.030                        | 240   | 0.035         |
|                |                                  |     |                |                |                |     |                      |     |                              |       |               |



# CrazyMill Cool Zylindrisch / Torisch - Typ A - 1.5 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                                | Werkstoff-                  | Manhata ff                   | M/w NIw | DIN                     | AISI/ASTM/UNS           | 0.7              | <b>Ød1</b><br>3–0.4 mm |  |
|------------------------------------------------|-----------------------------|------------------------------|---------|-------------------------|-------------------------|------------------|------------------------|--|
| Ğ                                              | gruppe                      | Werkstoff                    | Wr.Nr.  | DIN                     | AISI/ASTM/UNS           | ν <sub>c</sub>   |                        |  |
|                                                |                             |                              | 4.0204  | C40                     | AIGI 4040               | Vc               | I <sub>z</sub>         |  |
|                                                | <b>D</b>                    |                              | 1.0301  | C10                     | AISI 1010               |                  |                        |  |
| Umfangfräsen                                   | P                           | Stähle unlegiert             | 1.0401  | C15                     | AISI 1015               |                  |                        |  |
|                                                | -                           | Rm < 800 N/mm <sup>2</sup>   | 1.1191  | C45E/CK45               | AISI 1045               | 60               | 0.005 – 0.007          |  |
|                                                |                             |                              | 1.0044  | S275JR                  | AISI 1020               |                  |                        |  |
| $\leftarrow$                                   |                             |                              | 1.0715  | 11SMn30                 | AISI 1215               |                  |                        |  |
|                                                |                             |                              | 1.5752  | 15NiCr13                | ASTM 3415 / AISI 3310   |                  |                        |  |
|                                                |                             | Stähle niedriglegiert        | 1.7131  | 16MnCr5                 | AISI 5115               |                  |                        |  |
|                                                |                             | Rm > 900 N/mm <sup>2</sup>   | 1.3505  | 100Cr6                  | AISI 52100              | 60               | 0.004 – 0.006          |  |
| - a - 1 v d                                    |                             |                              | 1.7225  | 42CrMo4                 | AISI 4140               |                  |                        |  |
| $\mathbf{a}_{p} = 1 \mathbf{x} \mathbf{d}_{1}$ |                             |                              | 1.2842  | 90MnCrV8                | AISI O2                 |                  |                        |  |
| $\mathbf{a}_{e} = 0.3 \times \mathbf{d}_{1}$   |                             | Werkzeugstähle               | 1.2379  | X153CrMoV12             | AISI D2                 |                  |                        |  |
|                                                |                             | hochlegiert                  | 1.2436  | X210CrW12               | AISI D4/D6              | 60               | 0.004 - 0.006          |  |
|                                                |                             | Rm < 1200 N/mm <sup>2</sup>  | 1.3343  | HS6-5-2C                | AISI M2 / UNS T11302    |                  |                        |  |
|                                                |                             |                              | 1.3355  | HS18-0-1                | AISI T1 / UNS T12001    |                  |                        |  |
| Trochoidales                                   |                             | Rostfreie Stähle-            | 1.4016  | X6Cr17                  | AISI 430 / UNS S43000   | 60               | 0.005 – 0.007          |  |
| Nutenfräsen                                    | M                           | ferritisch                   | 1.4105  | X6CrMoS17               | AISI 430F               | 60               | 0.005 - 0.007          |  |
| Tuterii useri                                  | IVI                         | Rostfreie Stähle-            | 1.4034  | X46Cr13                 | AISI 420C               | 60               | 0.004 - 0.006          |  |
| $\alpha \alpha$                                |                             | martensitisch                | 1.4112  | X90CrMoV18              | AISI 440B               | 60               | 0.004 - 0.006          |  |
|                                                |                             | Rostfreie Stähle-            | 1.4542  | X5CrNiCuNb 16-4         | AISI 630 / ASTM 17-4 PH | <b>CO</b>        | 0.004 0.006            |  |
|                                                |                             | martensitisch – PH           | 1.4545  | X5CrNiCuNb 15-5         | ASTM 15-5 PH            | 60               | 0.004 - 0.006          |  |
|                                                |                             |                              | 1.4301  | X5CrNi 18-10            | AISI 304                |                  |                        |  |
|                                                |                             | Rostfreie Stähle-            | 1.4435  | X2CrNiMo 18-14-3        | AISI 316L               | 60 0.004 - 0.006 | 0.004 0.005            |  |
|                                                |                             | austenitisch                 | 1.4441  | X2CrNiMo 18-15-3        | AISI 316LM              |                  |                        |  |
| $\mathbf{a}_{p} = 1 \times \mathbf{d}_{1}$     |                             |                              | 1.4539  | X1NiCrMoCu 25-20-5      | AISI 904L               |                  |                        |  |
| ■ a <sub>e</sub> =0.1 x d₁                     |                             |                              | 0.6020  | GG20                    | ASTM 30                 |                  |                        |  |
|                                                | V                           |                              | 0.6030  | GG30                    | ASTM 40B                |                  |                        |  |
|                                                | K                           | Gusseisen                    | 0.7040  | GGG40                   | ASTM 60-40-18           | 60               | 0.003 – 0.005          |  |
|                                                |                             |                              | 0.7060  | GGG60                   | ASTM 80-60-03           |                  |                        |  |
|                                                |                             | Aluminium<br>Knetlegierungen | 3.2315  | AlMgSi1                 | ASTM 6351               |                  |                        |  |
|                                                | N I                         |                              | 3.4365  | AlZnMgCu1.5             | ASTM 7075               | 60               | 0.006 - 0.008          |  |
|                                                | N                           | Aluminium                    | 3.2163  | GD-AlSi9Cu3             | ASTM A380               |                  |                        |  |
| <b>V Y</b>                                     |                             | Druckgusslegierunger         |         | GD-AlSi10Mg             | UNS A03590              | 60               | 0.006 – 0.008          |  |
| \ <i>\</i> \\                                  |                             |                              | 2.004   | Cu-OF / CW008A          | UNS C10100              |                  |                        |  |
| [ZA]                                           |                             | Kupfer                       | 2.0065  | Cu-ETP / CW004A         | UNS C11000              | 60               | 0.006 – 0.008          |  |
|                                                |                             |                              | 2.0321  | CuZn37 CW508L           | UNS C27400              |                  |                        |  |
|                                                |                             | Messing bleifrei             | 2.036   | CuZn40 CW509L           | UNS C28000              | 60               | 0.006 - 0.008          |  |
|                                                |                             | Messing, Bronze              | 2.0401  | CuZn39Pb3 / CW614N      |                         |                  |                        |  |
|                                                |                             | Rm < 400 N/mm <sup>2</sup>   | 2.102   | CuSn6                   | UNS C51900              | 60               | 0.006 - 0.008          |  |
|                                                |                             | Bronze                       | 2.0966  | CuAl10Ni5Fe4            | UNS C63000              |                  |                        |  |
| <i>y</i>                                       |                             | Rm < 600 N/mm <sup>2</sup>   | 2.096   | CuAl9Mn2                | UNS C63200              | 60               | 0.006 - 0.008          |  |
|                                                |                             |                              | 2.4856  | Car iisiiiii            | Inconel 625             |                  |                        |  |
| $d_1$                                          |                             | 110 1 0 1                    | 2.4658  |                         | Inconel 718             |                  |                        |  |
|                                                | $S_1$                       | Hitzebeständige<br>Stähle    | 2.4617  | NiMo28                  | Hastelloy B-2           | 60               | 0.003 - 0.004          |  |
|                                                | '                           | Jane                         | 2.4617  | NiCr22Fe18Mo            | Hastelloy X             |                  |                        |  |
|                                                |                             |                              | 3.7035  | Gr.2                    | ASTM B348 / F67         |                  |                        |  |
| <u> </u>                                       | C                           | Titan rein                   | 3.7035  | Gr.4                    | ASTM B348 / F68         | 60               | 0.004 - 0.006          |  |
|                                                | $S_2$                       |                              | 3.7165  | TiAl6V4                 | ASTM B348 / F136        |                  |                        |  |
| a <sub>p</sub>     //                          | _                           | Titan Legierungen            | 9.9367  | TiAl6Nb7                | ASTM F1295              | 60               | 0.004 - 0.006          |  |
|                                                | _                           |                              |         |                         |                         |                  |                        |  |
| <b>↔</b> a <sub>e</sub>                        | S <sub>3</sub>              | CrCo-Legierungen             | 2.4964  | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537 | 60               | 0.003 - 0.004          |  |
|                                                | J                           |                              |         | CICUIVIUZO              | UCCI I INITED           |                  |                        |  |
|                                                | $H_{\scriptscriptstyle{1}}$ | Stähle gehärtet<br>< 55 HRC  | 1.2510  | 100MnCrMoW4             | AISI O1                 | 60               | 0.004 - 0.006          |  |
|                                                | $H_2$                       | Stähle gehärtet<br>≥ 55 HRC  | 1.2379  | X153CrMoV12             | AISI D2                 |                  |                        |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen





| Ød1                   |                | <b>Ød1 Ød1</b> 0.5-0.8mm 1.0-1.2mm |                |                | <b>Ød1</b><br>5–1.8 mm | <b>Ød1</b><br>2.0–2.5 mm |                |                       | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0–6.0 mm |                |  |
|-----------------------|----------------|------------------------------------|----------------|----------------|------------------------|--------------------------|----------------|-----------------------|----------------------|--------------------------|----------------|--|
| <b>V</b> <sub>c</sub> | f <sub>z</sub> | <b>V</b> <sub>c</sub>              | f <sub>z</sub> | V <sub>c</sub> | f <sub>z</sub>         | V <sub>c</sub>           | f <sub>z</sub> | <b>V</b> <sub>c</sub> | f <sub>z</sub>       | V <sub>c</sub>           | f <sub>z</sub> |  |
| 100                   | 0.010 - 0.014  | 140                                | 0.015 – 0.017  | 200            | 0.024 – 0.026          | 220                      | 0.034 – 0.036  | 240                   | 0.048                | 280                      | 0.050          |  |
| 100                   | 0.009 - 0.012  | 140                                | 0.014 – 0.016  | 200            | 0.022 – 0.024          | 220                      | 0.032 – 0.034  | 240                   | 0.046                | 280                      | 0.048          |  |
| 100                   | 0.008 - 0.011  | 140                                | 0.011 – 0.013  | 200            | 0.020 – 0.022          | 220                      | 0.030 – 0.032  | 240                   | 0.042                | 280                      | 0.044          |  |
| 100                   | 0.010 - 0.014  | 140                                | 0.016 - 0.018  | 200            | 0.024 - 0.026          | 220                      | 0.034 - 0.036  | 240                   | 0.046                | 280                      | 0.048          |  |
| 100                   | 0.009 - 0.012  | 140                                | 0.015 - 0.017  | 200            | 0.022 - 0.024          | 220                      | 0.032 - 0.034  | 240                   | 0.044                | 280                      | 0.046          |  |
| 100                   | 0.009 - 0.012  | 140                                | 0.015 - 0.017  | 200            | 0.022 - 0.024          | 220                      | 0.032 - 0.034  | 240                   | 0.044                | 280                      | 0.046          |  |
| 100                   | 0.008 - 0.011  | 140                                | 0.012 – 0.014  | 200            | 0.016 – 0.018          | 220                      | 0.030 - 0.032  | 240                   | 0.042                | 280                      | 0.044          |  |
| 100                   | 0.006 - 0.009  | 120                                | 0.011 – 0.022  | 140            | 0.024 – 0.026          | 160                      | 0.028 - 0.036  | 180                   | 0.042 - 0.048        | 200                      | 0.052 - 0.057  |  |
| 100                   | 0.012 - 0.016  | 140                                | 0.018 - 0.020  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.012 - 0.016  | 140                                | 0.018 - 0.020  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.014 - 0.018  | 140                                | 0.020 - 0.022  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.014 - 0.018  | 140                                | 0.020 - 0.022  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.014 - 0.018  | 140                                | 0.020 - 0.022  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.012 - 0.016  | 140                                | 0.018 - 0.020  | 200            | 0.026 - 0.028          | 220                      | 0.036 - 0.040  | 240                   | 0.058                | 280                      | 0.060          |  |
| 100                   | 0.004 - 0.006  | 120                                | 0.007 – 0.008  | 130            | 0.009 – 0.010          | 140                      | 0.010 – 0.012  | 150                   | 0.015                | 170                      | 0.020          |  |
| 100                   | 0.008 - 0.011  | 120                                | 0.016 - 0.018  | 130            | 0.020 - 0.022          | 140                      | 0.028 - 0.030  | 150                   | 0.042                | 170                      | 0.044          |  |
| 100                   | 0.008 - 0.011  | 120                                | 0.016 - 0.018  | 130            | 0.020 - 0.022          | 140                      | 0.028 - 0.030  | 150                   | 0.042                | 170                      | 0.044          |  |
| 100                   | 0.004 - 0.006  | 140                                | 0.007 - 0.008  | 180            | 0.009 - 0.010          | 200                      | 0.010 - 0.012  | 220                   | 0.015                | 240                      | 0.020          |  |
| 80                    | 0.007 - 0.009  | 100                                | 0.010 - 0.012  | 140            | 0.014 - 0.018          | 180                      | 0.020 - 0.026  | 200                   | 0.035                | 240                      | 0.040          |  |
|                       |                |                                    |                |                |                        |                          |                |                       |                      |                          |                |  |



# CrazyMill Cool Zylindrisch - Typ B - 3 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG

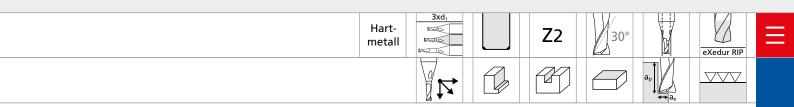


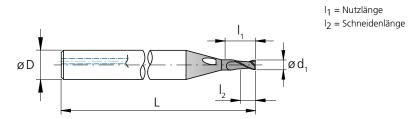
Fräser CrazyMill Cool Typ B, scharfkantig mit kleiner, definierter Schutzphase von 45°, für eine max. Bearbeitungstiefe von 3 x d, mit einer Schneidenlänge von 1.5 x d und Halsfreischliff:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


## Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Zylindrisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| ■ ab Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01<br>[mm] | <b>l</b> <sub>1</sub><br>[mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] | <b>45°</b> [mm] |
|------------|--------------------|-------------------------------------------|-------------------------------|------------------------------|--------------------------|------------------|-----------------|
| •          | 2.CMC30.B1Z2.030.1 | 0.3                                       | 0.9                           | 0.45                         | 3                        | 38               | 0.02            |
| •          | 2.CMC30.B1Z2.040.1 | 0.4                                       | 1.2                           | 0.60                         | 3                        | 38               | 0.02            |
| •          | 2.CMC30.B1Z2.050.1 | 0.5                                       | 1.5                           | 0.75                         | 3                        | 38               | 0.02            |
| -          | 2.CMC30.B1Z2.060.1 | 0.6                                       | 1.8                           | 0.90                         | 3                        | 38               | 0.02            |
| •          | 2.CMC30.B1Z2.080.1 | 0.8                                       | 2.4                           | 1.20                         | 3                        | 38               | 0.02            |
| -          | 2.CMC30.B1Z2.100.1 | 1.0                                       | 3.0                           | 1.50                         | 4                        | 40               | 0.02            |
| •          | 2.CMC30.B1Z2.120.1 | 1.2                                       | 3.6                           | 1.80                         | 4                        | 40               | 0.03            |
| -          | 2.CMC30.B1Z2.150.1 | 1.5                                       | 4.5                           | 2.25                         | 4                        | 40               | 0.03            |
| •          | 2.CMC30.B1Z2.180.1 | 1.8                                       | 5.4                           | 2.70                         | 4                        | 40               | 0.03            |
| -          | 2.CMC30.B1Z2.200.1 | 2.0                                       | 6.0                           | 3.00                         | 4                        | 40               | 0.03            |
| •          | 2.CMC30.B1Z2.250.1 | 2.5                                       | 7.5                           | 3.75                         | 6                        | 45               | 0.04            |
| •          | 2.CMC30.B1Z2.300.1 | 3.0                                       | 9.0                           | 4.50                         | 6                        | 50               | 0.04            |
| •          | 2.CMC30.B1Z2.400.1 | 4.0                                       | 12.0                          | 6.00                         | 6                        | 55               | 0.04            |
| -          | 2.CMC30.B1Z2.600.1 | 6.0                                       | 18.0                          | 9.00                         | 10                       | 65               | 0.04            |



# CrazyMill Cool Torisch - Typ B - 3 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG

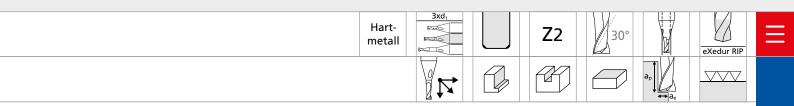


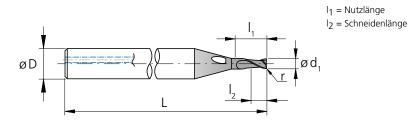
CrazyMill Cool Typ B mit Eckenradius für eine max. Bearbeitungstiefe von 3 x d und mit einer Schneidenlänge von 1.5 x d:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


## Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Torisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| ab Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01<br>[mm] | <b>I</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] | <b>r</b><br>[mm] |
|----------|--------------------|-------------------------------------------|----------------------------|------------------------------|--------------------------|------------------|------------------|
|          | 2.CMC30.B2Z2.030.1 | 0.3                                       | 0.9                        | 0.45                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.B2Z2.040.1 | 0.4                                       | 1.2                        | 0.60                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.B2Z2.050.1 | 0.5                                       | 1.5                        | 0.75                         | 3                        | 38               | 0.05             |
| -        | 2.CMC30.B3Z2.050.1 | 0.5                                       | 1.5                        | 0.75                         | 3                        | 38               | 0.10             |
| -        | 2.CMC30.B2Z2.060.1 | 0.6                                       | 1.8                        | 0.90                         | 3                        | 38               | 0.05             |
|          | 2.CMC30.B3Z2.060.1 | 0.6                                       | 1.8                        | 0.90                         | 3                        | 38               | 0.10             |
|          | 2.CMC30.B2Z2.080.1 | 0.8                                       | 2.4                        | 1.20                         | 3                        | 38               | 0.05             |
| •        | 2.CMC30.B3Z2.080.1 | 0.8                                       | 2.4                        | 1.20                         | 3                        | 38               | 0.10             |
|          | 2.CMC30.B2Z2.100.1 | 1.0                                       | 3.0                        | 1.50                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.B3Z2.100.1 | 1.0                                       | 3.0                        | 1.50                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.B2Z2.120.1 | 1.2                                       | 3.6                        | 1.80                         | 4                        | 40               | 0.10             |
|          | 2.CMC30.B3Z2.120.1 | 1.2                                       | 3.6                        | 1.80                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.B2Z2.150.1 | 1.5                                       | 4.5                        | 2.25                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.B3Z2.150.1 | 1.5                                       | 4.5                        | 2.25                         | 4                        | 40               | 0.30             |
|          | 2.CMC30.B2Z2.180.1 | 1.8                                       | 5.4                        | 2.70                         | 4                        | 40               | 0.10             |
| •        | 2.CMC30.B3Z2.180.1 | 1.8                                       | 5.4                        | 2.70                         | 4                        | 40               | 0.30             |
| •        | 2.CMC30.B2Z2.200.1 | 2.0                                       | 6.0                        | 3.00                         | 4                        | 40               | 0.10             |
| -        | 2.CMC30.B3Z2.200.1 | 2.0                                       | 6.0                        | 3.00                         | 4                        | 40               | 0.20             |
| •        | 2.CMC30.B4Z2.200.1 | 2.0                                       | 6.0                        | 3.00                         | 4                        | 40               | 0.50             |
| •        | 2.CMC30.B2Z2.250.1 | 2.5                                       | 7.5                        | 3.75                         | 6                        | 45               | 0.20             |
| •        | 2.CMC30.B3Z2.250.1 | 2.5                                       | 7.5                        | 3.75                         | 6                        | 45               | 0.50             |
| •        | 2.CMC30.B2Z2.300.1 | 3.0                                       | 9.0                        | 4.50                         | 6                        | 50               | 0.20             |
| •        | 2.CMC30.B3Z2.300.1 | 3.0                                       | 9.0                        | 4.50                         | 6                        | 50               | 0.50             |
| •        | 2.CMC30.B2Z2.400.1 | 4.0                                       | 12.0                       | 6.00                         | 6                        | 55               | 0.20             |
| •        | 2.CMC30.B3Z2.400.1 | 4.0                                       | 12.0                       | 6.00                         | 6                        | 55               | 0.50             |
| •        | 2.CMC30.B2Z2.600.1 | 6.0                                       | 18.0                       | 9.00                         | 10                       | 65               | 0.50             |
| •        | 2.CMC30.B3Z2.600.1 | 6.0                                       | 18.0                       | 9.00                         | 10                       | 65               | 1.00             |



# CrazyMill Cool Zylindrisch / Torisch - Typ B - 3 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                                     | Werkstoff-            | Werkstoff                     | Wr.Nr.   | DIN                | AISI/ASTM/UNS           |                  | 0d1                                                                                                                                                                                                                             |  |
|-----------------------------------------------------|-----------------------|-------------------------------|----------|--------------------|-------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                     | gruppe                | Werkston                      | VVI.INI. | DIN                | AISI/ASTIVI/UNS         |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               |          |                    |                         | V <sub>c</sub>   | l <sub>z</sub>                                                                                                                                                                                                                  |  |
|                                                     |                       |                               | 1.0301   | C10                | AISI 1010               |                  |                                                                                                                                                                                                                                 |  |
| Konventionelles                                     | P                     | Stähle unlegiert              | 1.0401   | C15                | AISI 1015               |                  | 0.004 - 0.006  0.003 - 0.005  0.004 - 0.006  0.003 - 0.005  0.003 - 0.005  0.003 - 0.005  0.003 - 0.005  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007  0.005 - 0.007 |  |
| Nutfräsen                                           |                       | Rm < 800 N/mm <sup>2</sup>    | 1.1191   | C45E/CK45          | AISI 1045               | 60               |                                                                                                                                                                                                                                 |  |
| Nuttrasen                                           |                       |                               | 1.0044   | S275JR             | AISI 1020               |                  |                                                                                                                                                                                                                                 |  |
| $\alpha \alpha$                                     |                       |                               | 1.0715   | 11SMn30            | AISI 1215               |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               | 1.5752   | 15NiCr13           | ASTM 3415 / AISI 3310   |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Stähle niedriglegiert         | 1.7131   | 16MnCr5            | AISI 5115               |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Rm > 900 N/mm <sup>2</sup>    | 1.3505   | 100Cr6             | AISI 52100              | 60               | 0.003 - 0.005                                                                                                                                                                                                                   |  |
|                                                     |                       |                               | 1.7225   | 42CrMo4            | AISI 4140               |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               | 1.2842   | 90MnCrV8           | AISI O2                 |                  |                                                                                                                                                                                                                                 |  |
| $\blacksquare a_p = 1 \times d_1$                   |                       | \                             | 1.2379   | X153CrMoV12        | AISI D2                 |                  |                                                                                                                                                                                                                                 |  |
| _ a                                                 |                       | Werkzeugstähle<br>hochlegiert | 1.2436   | X210CrW12          | AISI D4/D6              | 60               | 0.003 - 0.005                                                                                                                                                                                                                   |  |
| ■ a <sub>p</sub> = 0.5 x d₁<br>für Gruppe S₁ und S₃ |                       | Rm < 1200 N/mm <sup>2</sup>   | 1.3343   | HS6-5-2C           | AISI M2 / UNS T11302    |                  | 0.003                                                                                                                                                                                                                           |  |
| Tur Gruppe 31 unu 33                                |                       |                               | 1.3355   | HS18-0-1           | AISI T1 / UNS T12001    |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Rostfreie Stähle-             | 1.4016   | X6Cr17             | AISI 430 / UNS S43000   |                  | 0.004 0.005                                                                                                                                                                                                                     |  |
|                                                     | M                     | ferritisch                    | 1.4105   | X6CrMoS17          | AISI 430F               | 60               | 0.004 - 0.006                                                                                                                                                                                                                   |  |
|                                                     | IVI                   | Rostfreie Stähle-             | 1.4034   | X46Cr13            | AISI 420C               | 60               | 60 0.003 – 0.005                                                                                                                                                                                                                |  |
|                                                     |                       | martensitisch                 | 1.4112   | X90CrMoV18         | AISI 440B               | 60               | 0.003 – 0.005                                                                                                                                                                                                                   |  |
|                                                     |                       | Rostfreie Stähle-             | 1.4542   | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH | 60 0.003 – 0.005 | 0.000 0.005                                                                                                                                                                                                                     |  |
|                                                     |                       | martensitisch – PH            | 1.4545   | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                  |                                                                                                                                                                                                                                 |  |
| M                                                   |                       |                               | 1.4301   | X5CrNi 18-10       | AISI 304                | 60 0.003 – 0.005 |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Rostfreie Stähle-             | 1.4435   | X2CrNiMo 18-14-3   | AISI 316L               |                  | 0.000 0.005                                                                                                                                                                                                                     |  |
|                                                     |                       | austenitisch                  | 1.4441   | X2CrNiMo 18-15-3   | AISI 316LM              | 60               | 60 0.003 – 0.005                                                                                                                                                                                                                |  |
|                                                     |                       |                               | 1.4539   | X1NiCrMoCu 25-20-5 | AISI 904L               |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               | 0.6020   | GG20               | ASTM 30                 |                  |                                                                                                                                                                                                                                 |  |
|                                                     | K                     |                               | 0.6030   | GG30               | ASTM 40B                |                  | 0.002 - 0.004                                                                                                                                                                                                                   |  |
|                                                     |                       | Gusseisen                     | 0.7040   | GGG40              | ASTM 60-40-18           | 60               |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               | 0.7060   | GGG60              | ASTM 80-60-03           |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Aluminium                     | 3.2315   | AlMgSi1            | ASTM 6351               |                  |                                                                                                                                                                                                                                 |  |
| $d_1$                                               | N                     | Knetlegierungen               | 3.4365   | AlZnMgCu1.5        | ASTM 7075               | 60               |                                                                                                                                                                                                                                 |  |
| N 2                                                 | IA                    | Aluminium                     | 3.2163   | GD-AlSi9Cu3        | ASTM A380               |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Druckgusslegierungen          | 3.2381   | GD-AlSi10Mg        | UNS A03590              | 60               | 0.005 – 0.007                                                                                                                                                                                                                   |  |
|                                                     |                       |                               | 2.004    | Cu-OF / CW008A     | UNS C10100              |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Kupfer                        | 2.0065   | Cu-ETP / CW004A    | UNS C11000              | 60               | 0.005 – 0.007                                                                                                                                                                                                                   |  |
|                                                     |                       |                               | 2.0321   | CuZn37 CW508L      | UNS C27400              |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Messing bleifrei              | 2.036    | CuZn40 CW509L      | UNS C28000              | 60               | 0.005 – 0.007                                                                                                                                                                                                                   |  |
| $a_p$                                               |                       | Messing, Bronze               | 2.0401   | CuZn39Pb3 / CW614N |                         |                  |                                                                                                                                                                                                                                 |  |
| <b>*</b>                                            |                       | Rm < 400 N/mm <sup>2</sup>    | 2.102    | CuSn6              | UNS C51900              | 60               | 0.005 – 0.007                                                                                                                                                                                                                   |  |
|                                                     |                       | Bronze                        | 2.0966   | CuAl10Ni5Fe4       | UNS C63000              |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Rm < 600 N/mm <sup>2</sup>    | 2.096    | CuAl9Mn2           | UNS C63200              | 60               | 0.005 – 0.007                                                                                                                                                                                                                   |  |
|                                                     |                       |                               | 2.4856   |                    | Inconel 625             |                  |                                                                                                                                                                                                                                 |  |
|                                                     | C                     | I Canala a a Sanalia a        | 2.4668   |                    | Inconel 718             |                  |                                                                                                                                                                                                                                 |  |
|                                                     | $S_1$                 | Hitzebeständige<br>Stähle     | 2.4617   | NiMo28             | Hastelloy B-2           | 60               | 0.002 - 0.003                                                                                                                                                                                                                   |  |
|                                                     |                       |                               | 2.4665   | NiCr22Fe18Mo       | Hastelloy X             |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       |                               | 3.7035   | Gr.2               | ASTM B348 / F67         |                  |                                                                                                                                                                                                                                 |  |
|                                                     | C                     | Titan rein                    | 3.7065   | Gr.4               | ASTM B348 / F68         | 60               | 0.003 – 0.005                                                                                                                                                                                                                   |  |
|                                                     | $S_2$                 |                               | 3.7165   | TiAl6V4            | ASTM B348 / F136        |                  |                                                                                                                                                                                                                                 |  |
|                                                     |                       | Titan Legierungen             | 9.9367   | TiAl6Nb7           | ASTM F1295              | 60               | 0.003 – 0.005                                                                                                                                                                                                                   |  |
|                                                     | C                     |                               | 2.4964   | CoCr20W15Ni        | Haynes 25               |                  |                                                                                                                                                                                                                                 |  |
|                                                     | <b>S</b> <sub>3</sub> | CrCo-Legierungen              |          | CrCoMo28           | ASTM F1537              | 60               | 0.002 – 0.003                                                                                                                                                                                                                   |  |
|                                                     | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC   | 1.2510   | 100MnCrMoW4        | AISI O1                 | 60               | 0.003 – 0.005                                                                                                                                                                                                                   |  |
|                                                     | $H_2$                 | Stähle gehärtet               | 1.2379   | X153CrMoV12        | AISI D2                 |                  |                                                                                                                                                                                                                                 |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG





| Ød1                   |                | Ød1 Ød1 Ød1 Ød1 Ød    |                |                       |                | Ød1 Ød1 Ød1 Ød1       |                | Ød1                   |                |                       |                |
|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|
| 0.5                   | -0.8 mm        | 1.0                   | –1.2 mm        | 1.5                   | -1.8 mm        | 2.0                   | 1–2.5 mm       | 3.0 mm                |                | 4.0-6.0 mm            |                |
| <b>V</b> <sub>c</sub> | f <sub>z</sub> |
| 100                   | 0.008 - 0.012  | 140                   | 0.013 – 0.015  | 180                   | 0.022 - 0.024  | 200                   | 0.030 – 0.032  | 220                   | 0.044          | 260                   | 0.048          |
| 100                   | 0.007 – 0.010  | 140                   | 0.012 - 0.014  | 180                   | 0.020 - 0.022  | 200                   | 0.028 - 0.030  | 220                   | 0.042          | 260                   | 0.046          |
| 100                   | 0.006 – 0.009  | 140                   | 0.009 – 0.011  | 180                   | 0.018 – 0.020  | 200                   | 0.026 - 0.028  | 220                   | 0.038          | 260                   | 0.040          |
| 100                   | 0.008 - 0.012  | 140                   | 0.014 - 0.016  | 180                   | 0.022 - 0.024  | 200                   | 0.030 - 0.032  | 220                   | 0.042          | 260                   | 0.046          |
| 100                   | 0.007 - 0.010  | 140                   | 0.013 - 0.015  | 180                   | 0.020 - 0.022  | 200                   | 0.028 - 0.030  | 220                   | 0.040          | 260                   | 0.044          |
| 100                   | 0.007 - 0.010  | 140                   | 0.013 - 0.015  | 180                   | 0.020 - 0.022  | 200                   | 0.028 - 0.030  | 220                   | 0.040          | 260                   | 0.044          |
| 100                   | 0.006 – 0.009  | 140                   | 0.010 – 0.012  | 180                   | 0.016 – 0.018  | 200                   | 0.026 - 0.028  | 220                   | 0.038          | 260                   | 0.042          |
| 100                   | 0.005 – 0.008  | 120                   | 0.010 – 0.020  | 140                   | 0.022 – 0.025  | 160                   | 0.026 – 0.035  | 180                   | 0.038 – 0.045  | 200                   | 0.048 – 0.052  |
| 100                   | 0.010 - 0.014  | 140                   | 0.015 - 0.017  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.050          | 260                   | 0.055          |
| 100                   | 0.010 - 0.014  | 140                   | 0.015 – 0.017  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.048          | 260                   | 0.053          |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.050          | 260                   | 0.055          |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.050          | 260                   | 0.055          |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.050          | 260                   | 0.055          |
| 100                   | 0.010 - 0.014  | 140                   | 0.016 - 0.018  | 180                   | 0.024 - 0.026  | 200                   | 0.032 - 0.034  | 220                   | 0.050          | 260                   | 0.055          |
| 100                   | 0.004 – 0.006  | 120                   | 0.007 - 0.008  | 130                   | 0.009 – 0.010  | 140                   | 0.010 – 0.012  | 150                   | 0.015          | 170                   | 0.020          |
| 100                   | 0.006 - 0.009  | 120                   | 0.014 - 0.016  | 130                   | 0.018 - 0.020  | 140                   | 0.026 - 0.028  | 150                   | 0.040          | 170                   | 0.042          |
| 100                   | 0.006 - 0.009  | 120                   | 0.014 - 0.016  | 130                   | 0.018 - 0.020  | 140                   | 0.026 - 0.028  | 150                   | 0.040          | 170                   | 0.042          |
| 100                   | 0.004 - 0.006  | 140                   | 0.007 - 0.008  | 160                   | 0.009 - 0.010  | 180                   | 0.010 - 0.012  | 200                   | 0.015          | 220                   | 0.020          |
| 80                    | 0.006 - 0.007  | 100                   | 0.008 - 0.010  | 140                   | 0.012 - 0.016  | 180                   | 0.018 - 0.024  | 200                   | 0.030          | 240                   | 0.035          |
|                       |                |                       |                |                       |                |                       |                |                       |                |                       |                |



# CrazyMill Cool Zylindrisch / Torisch - Typ B - 3 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                              | Werkstoff-            |                                                     |        |                        |                         | Ød1              |                  |  |  |
|----------------------------------------------|-----------------------|-----------------------------------------------------|--------|------------------------|-------------------------|------------------|------------------|--|--|
|                                              | gruppe                | Werkstoff                                           | Wr.Nr. | DIN                    | AISI/ASTM/UNS           |                  | 3-0.4 mm         |  |  |
|                                              |                       |                                                     |        |                        |                         | V <sub>c</sub>   | f <sub>z</sub>   |  |  |
|                                              |                       |                                                     | 1.0301 | C10                    | AISI 1010               |                  |                  |  |  |
| Jmfangfräsen                                 | P                     | Stähle unlegiert                                    | 1.0401 | C15                    | AISI 1015               |                  |                  |  |  |
| J                                            | "                     | Rm < 800 N/mm <sup>2</sup>                          | 1.1191 | C45E/CK45              | AISI 1045               | 60               | 0.005 – 0.007    |  |  |
|                                              |                       |                                                     | 1.0044 | S275JR                 | AISI 1020               |                  |                  |  |  |
|                                              |                       |                                                     | 1.0715 | 11SMn30                | AISI 1215               |                  |                  |  |  |
|                                              |                       |                                                     | 1.5752 | 15NiCr13               | ASTM 3415 / AISI 3310   |                  |                  |  |  |
|                                              |                       | Ctäble piedrialegiert                               | 1.7131 | 16MnCr5                | AISI 5115               |                  |                  |  |  |
|                                              |                       | Stähle niedriglegiert<br>Rm > 900 N/mm <sup>2</sup> | 1.3505 | 100Cr6                 | AISI 52100              | 60               | 0.004 - 0.006    |  |  |
| 4 1                                          |                       | 1011 > 300 1011111                                  | 1.7225 | 42CrMo4                | AISI 4140               |                  |                  |  |  |
| $\mathbf{a}_{p} = 1 \times \mathbf{d}_{1}$   |                       |                                                     | 1.2842 | 90MnCrV8               | AISI O2                 |                  |                  |  |  |
| $a_0 = 0.5 \times d_1$                       |                       |                                                     | 1.2379 | X153CrMoV12            | AISI D2                 |                  |                  |  |  |
| für Gruppe S <sub>1</sub> und S <sub>3</sub> |                       | Werkzeugstähle                                      | 1.2436 | X210CrW12              | AISI D4/D6              |                  | 0.004 0.005      |  |  |
| $a_e = 0.3 \times d_1$                       |                       | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup>          | 1.3343 | HS6-5-2C               | AISI M2 / UNS T11302    | 60               | 0.004 - 0.006    |  |  |
| 1 a <sub>e</sub> = 0.3 X u <sub>1</sub>      |                       | 1111 < 1200 14/11111                                | 1.3355 | HS18-0-1               | AISI T1 / UNS T12001    |                  |                  |  |  |
|                                              |                       | Rostfreie Stähle-                                   | 1.4016 | X6Cr17                 | AISI 430 / UNS S43000   |                  |                  |  |  |
|                                              | R //                  | ferritisch                                          | 1.4105 | X6CrMoS17              | AISI 430F               | 60               | 0.005 - 0.007    |  |  |
|                                              | M                     | Rostfreie Stähle-                                   | 1.4034 | X46Cr13                | AISI 420C               |                  |                  |  |  |
| ochoidales                                   |                       | martensitisch                                       | 1.4112 | X90CrMoV18             | AISI 440B               | 60               | 0.004 - 0.006    |  |  |
| lutenfräsen                                  |                       |                                                     | 1.4542 | X5CrNiCuNb 16-4        | AISI 630 / ASTM 17-4 PH |                  |                  |  |  |
|                                              |                       | Rostfreie Stähle-<br>martensitisch – PH             |        | X5CrNiCuNb 15-5        |                         | 60               | 0.004 - 0.006    |  |  |
|                                              |                       | martensitisch – FT                                  | 1.4545 |                        | ASTM 15-5 PH            |                  |                  |  |  |
| 441                                          |                       |                                                     | 1.4301 | X5CrNi 18-10           | AISI 304                | 60 0.004 – 0.006 |                  |  |  |
|                                              |                       | Rostfreie Stähle-<br>austenitisch                   | 1.4435 | X2CrNiMo 18-14-3       | AISI 316L               |                  |                  |  |  |
| /                                            |                       | austenitisch                                        | 1.4441 | X2CrNiMo 18-15-3       | AISI 316LM              |                  | 60 0.004 – 0.006 |  |  |
|                                              |                       |                                                     | 1.4539 | X1NiCrMoCu 25-20-5     | AISI 904L               |                  |                  |  |  |
|                                              |                       |                                                     | 0.6020 | GG20                   | ASTM 30                 |                  |                  |  |  |
| $a_p = 1 \times d_1$                         | K                     | Gusseisen                                           | 0.6030 | GG30                   | ASTM 40B                | 60               | 0.003 – 0.005    |  |  |
| ı a <sub>p</sub> = 0.5 x d <sub>1</sub>      |                       | Gusselsen                                           | 0.7040 | GGG40                  | ASTM 60-40-18           | 60               | 0.003 - 0.005    |  |  |
| für Gruppe S <sub>1</sub> und S <sub>3</sub> |                       |                                                     | 0.7060 | GGG60                  | ASTM 80-60-03           |                  |                  |  |  |
|                                              |                       | Aluminium<br>Knetlegierungen                        | 3.2315 | AlMgSi1                | ASTM 6351               |                  |                  |  |  |
| $a_e = 0.3 \times d_1$                       | N                     |                                                     | 3.4365 | AlZnMgCu1.5            | ASTM 7075               | 60               | 0.006 – 0.008    |  |  |
|                                              | I V                   | Aluminium                                           | 3.2163 | GD-AlSi9Cu3            | ASTM A380               |                  |                  |  |  |
|                                              |                       | Druckgusslegierungen                                |        | GD-AlSi10Mg            | UNS A03590              | 60               | 0.006 – 0.008    |  |  |
|                                              |                       |                                                     | 2.004  | Cu-OF / CW008A         | UNS C10100              |                  |                  |  |  |
|                                              |                       | Kupfer                                              | 2.0065 | Cu-ETP / CW004A        | UNS C11000              | 60               | 0.006 - 0.008    |  |  |
|                                              |                       |                                                     | 2.0321 | CuZn37 CW508L          | UNS C27400              |                  |                  |  |  |
| Ø Ø                                          |                       | Messing bleifrei                                    | 2.0321 | CuZn40 CW509L          | UNS C28000              | 60               | 0.006 - 0.008    |  |  |
| M                                            |                       | Massing Duran                                       | 2.030  | CuZn39Pb3 / CW614N     |                         |                  |                  |  |  |
|                                              |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup>       | 2.0401 | CuSn6                  | UNS C51900              | 60               | 0.006 - 0.008    |  |  |
| اسا                                          |                       |                                                     |        | CuSilo<br>CuAl10Ni5Fe4 | UNS C63000              |                  |                  |  |  |
|                                              |                       | Bronze<br>Rm < 600 N/mm <sup>2</sup>                | 2.0966 |                        |                         | 60               | 0.006 - 0.008    |  |  |
|                                              |                       | MIT < 000 IWITHT                                    |        | CuAl9Mn2               | UNS C63200              |                  |                  |  |  |
|                                              |                       |                                                     | 2.4856 |                        | Inconel 625             |                  |                  |  |  |
| //                                           | $S_1$                 | Hitzebeständige                                     | 2.4668 |                        | Inconel 718             | 60               | 0.003 - 0.004    |  |  |
| <b>//</b>                                    | 7                     | Stähle                                              | 2.4617 | NiMo28                 | Hastelloy B-2           | 30               |                  |  |  |
|                                              |                       |                                                     | 2.4665 | NiCr22Fe18Mo           | Hastelloy X             |                  |                  |  |  |
|                                              |                       | Titan rein                                          | 3.7035 | Gr.2                   | ASTM B348 / F67         | 60               | 0.004 - 0.006    |  |  |
| <del>  U1  </del>                            | S <sub>2</sub>        |                                                     | 3.7065 | Gr.4                   | ASTM B348 / F68         |                  | 3.33. 0.000      |  |  |
|                                              |                       | Titan Legierungen                                   | 3.7165 | TiAl6V4                | ASTM B348 / F136        | 60               | 0.004 - 0.006    |  |  |
|                                              |                       | Thair Legierungen                                   | 9.9367 | TiAl6Nb7               | ASTM F1295              |                  | 0.004 - 0.000    |  |  |
|                                              | <b>S</b>              | CrCo Logicano                                       | 2.4964 | CoCr20W15Ni            | Haynes 25               | 60               | 0.003 - 0.004    |  |  |
| <u> </u>                                     | <b>S</b> <sub>3</sub> | CrCo-Legierungen                                    |        | CrCoMo28               | ASTM F1537              | 60               | 0.003 - 0.004    |  |  |
| $a_p \left  \left  \right  \right  \right $  | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                         | 1.2510 | 100MnCrMoW4            | AISI O1                 | 60               | 0.004 - 0.006    |  |  |
|                                              | " "1                  | Stähle gehärtet                                     |        |                        |                         |                  |                  |  |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|     | Ød1<br>-0.8 mm                      |     |                                     |     | <b>Ød1 Ød1</b><br>5–1.8mm 2.0–2.5mm |     |                                     |     | <b>Ød1</b><br>3.0 mm | <b>Ød1</b><br>4.0-6.0 mm |               |  |
|-----|-------------------------------------|-----|-------------------------------------|-----|-------------------------------------|-----|-------------------------------------|-----|----------------------|--------------------------|---------------|--|
|     | -0.8111111<br><b>f</b> <sub>z</sub> |     | -1.2111111<br><b>f</b> <sub>z</sub> |     | -1.0111111<br><b>f</b> <sub>z</sub> |     | -2.5111111<br><b>f</b> <sub>z</sub> |     | f <sub>z</sub>       | <b>V</b> <sub>c</sub>    |               |  |
|     | -                                   |     | -                                   |     | _                                   |     | -                                   |     |                      |                          | _             |  |
| 100 | 0.010 - 0.014                       | 140 | 0.015 – 0.017                       | 200 | 0.024 – 0.026                       | 220 | 0.034 – 0.036                       | 240 | 0.046                | 280                      | 0.050         |  |
| 100 | 0.009 – 0.012                       | 140 | 0.014 - 0.016                       | 200 | 0.022 - 0.024                       | 220 | 0.032 - 0.034                       | 240 | 0.044                | 280                      | 0.048         |  |
| 100 | 0.008 - 0.011                       | 140 | 0.011 – 0.013                       | 200 | 0.020 – 0.022                       | 220 | 0.030 – 0.032                       | 240 | 0.040                | 280                      | 0.042         |  |
| 100 | 0.010 - 0.014                       | 140 | 0.016 - 0.018                       | 200 | 0.024 - 0.026                       | 220 | 0.034 - 0.036                       | 240 | 0.044                | 280                      | 0.048         |  |
| 100 | 0.009 – 0.012                       | 140 | 0.015 – 0.017                       | 200 | 0.022 - 0.024                       | 220 | 0.032 - 0.034                       | 240 | 0.044                | 280                      | 0.046         |  |
| 100 | 0.009 - 0.012                       | 140 | 0.015 - 0.017                       | 200 | 0.022 - 0.024                       | 220 | 0.032 - 0.034                       | 240 | 0.044                | 280                      | 0.046         |  |
| 100 | 0.008 - 0.011                       | 140 | 0.012 – 0.014                       | 200 | 0.016 – 0.018                       | 220 | 0.030 - 0.032                       | 240 | 0.040                | 280                      | 0.044         |  |
| 100 | 0.006 - 0.009                       | 120 | 0.011 – 0.022                       | 140 | 0.024 – 0.026                       | 160 | 0.028 - 0.036                       | 180 | 0.040 – 0.047        | 200                      | 0.050 - 0.054 |  |
| 100 | 0.012 - 0.016                       | 140 | 0.018 - 0.020                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.012 - 0.016                       | 140 | 0.018 - 0.020                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.014 - 0.018                       | 140 | 0.020 - 0.022                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.014 - 0.018                       | 140 | 0.020 - 0.022                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.014 - 0.018                       | 140 | 0.020 - 0.022                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.012 - 0.016                       | 140 | 0.018 - 0.020                       | 200 | 0.026 - 0.028                       | 220 | 0.036 - 0.040                       | 240 | 0.058                | 280                      | 0.060         |  |
| 100 | 0.004 - 0.006                       | 120 | 0.007 - 0.008                       | 130 | 0.009 – 0.010                       | 140 | 0.010 – 0.012                       | 150 | 0.015                | 170                      | 0.020         |  |
| 100 | 0.008 - 0.011                       | 120 | 0.016 - 0.018                       | 130 | 0.020 - 0.022                       | 140 | 0.028 - 0.030                       | 150 | 0.040                | 170                      | 0.044         |  |
| 100 | 0.008 - 0.011                       | 120 | 0.016 - 0.018                       | 130 | 0.020 - 0.022                       | 140 | 0.028 - 0.030                       | 150 | 0.040                | 170                      | 0.044         |  |
| 100 | 0.004 - 0.006                       | 140 | 0.007 - 0.008                       | 180 | 0.009 – 0.010                       | 200 | 0.010 - 0.012                       | 220 | 0.015                | 240                      | 0.020         |  |
| 80  | 0.007 - 0.009                       | 100 | 0.010 - 0.012                       | 140 | 0.014 - 0.018                       | 180 | 0.020 - 0.026                       | 200 | 0.033                | 240                      | 0.040         |  |
|     |                                     |     |                                     |     |                                     |     |                                     |     |                      |                          |               |  |



# CrazyMill Cool Zylindrisch - Typ C - 5 x d

# FRÄSEN MIT INTEGRIERTER KÜHLUNG

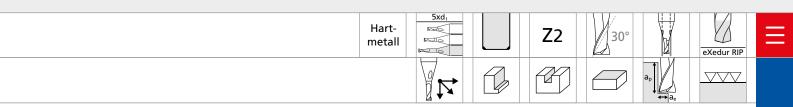


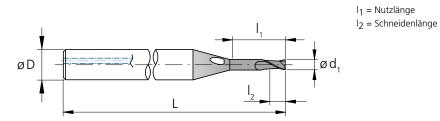
Fräser CrazyMill Cool Typ C, scharfkantig mit kleiner, definierter Schutzphase von 45°, für eine max. Bearbeitungstiefe von 5 x d, mit einer Schneidenlänge von 1.5 x d und Halsfreischliff:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


## Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Zylindrisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| ■ ab Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01<br>[mm] | <b>l</b> <sub>1</sub> [mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | <b>45°</b> [mm] |
|------------|--------------------|-------------------------------------------|----------------------------|------------------------------|--------------------------|-----------|-----------------|
| •          | 2.CMC30.C1Z2.030.1 | 0.30                                      | 1.5                        | 0.45                         | 3                        | 38        | 0.02            |
| •          | 2.CMC30.C1Z2.040.1 | 0.40                                      | 2.0                        | 0.60                         | 3                        | 38        | 0.02            |
| •          | 2.CMC30.C1Z2.050.1 | 0.50                                      | 2.5                        | 0.75                         | 3                        | 38        | 0.02            |
| •          | 2.CMC30.C1Z2.060.1 | 0.60                                      | 3.0                        | 0.90                         | 3                        | 38        | 0.02            |
| •          | 2.CMC30.C1Z2.080.1 | 0.80                                      | 4.0                        | 1.20                         | 3                        | 38        | 0.02            |
| •          | 2.CMC30.C1Z2.100.1 | 1.00                                      | 5.0                        | 1.50                         | 4                        | 40        | 0.02            |
| •          | 2.CMC30.C1Z2.120.1 | 1.20                                      | 6.0                        | 1.80                         | 4                        | 40        | 0.03            |
| •          | 2.CMC30.C1Z2.150.1 | 1.50                                      | 7.5                        | 2.25                         | 4                        | 40        | 0.03            |
| •          | 2.CMC30.C1Z2.180.1 | 1.80                                      | 9.0                        | 2.70                         | 4                        | 40        | 0.03            |
| -          | 2.CMC30.C1Z2.200.1 | 2.00                                      | 10.0                       | 3.00                         | 4                        | 44        | 0.03            |
| -          | 2.CMC30.C1Z2.250.1 | 2.50                                      | 12.5                       | 3.75                         | 6                        | 50        | 0.04            |
| •          | 2.CMC30.C1Z2.300.1 | 3.00                                      | 15.0                       | 4.50                         | 6                        | 55        | 0.04            |
| •          | 2.CMC30.C1Z2.400.1 | 4.00                                      | 20.0                       | 6.00                         | 6                        | 60        | 0.04            |
| •          | 2.CMC30.C1Z2.600.1 | 6.00                                      | 30.0                       | 9.00                         | 10                       | 70        | 0.04            |



## CrazyMill Cool Torisch - Typ C - 5 x d

### FRÄSEN MIT INTEGRIERTER KÜHLUNG

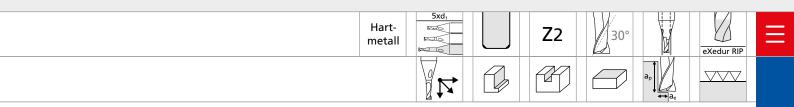


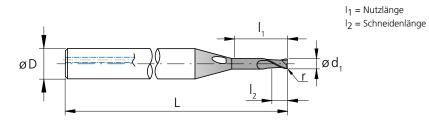
CrazyMill Cool Typ C mit Eckenradius für eine max. Bearbeitungstiefe von 5 x d und mit einer Schneidenlänge von 1.5 x d:

CrazyMill Cool setzt neue Massstäbe beim Fräsen von Nuten, Taschen und Wandungen in Bezug auf Schnittgeschwindigkeiten, Zustellung, Performance, Standzeit und Oberflächenqualität. Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


### Hinweis

Sie haben nicht die passende Variante von CrazyMill Cool Torisch (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







| ab Lager | Artikelnummer      | <b>d</b> ₁<br>-/+ 0.01 | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    | r    |
|----------|--------------------|------------------------|----------------|----------------|-----------|------|------|
| ■ ap     |                    | [mm]                   | [mm]           | [mm]           | [mm]      | [mm] | [mm] |
| •        | 2.CMC30.C2Z2.030.1 | 0.30                   | 1.5            | 0.45           | 3         | 38   | 0.05 |
| •        | 2.CMC30.C2Z2.040.1 | 0.40                   | 2.0            | 0.60           | 3         | 38   | 0.05 |
| •        | 2.CMC30.C2Z2.050.1 | 0.50                   | 2.5            | 0.75           | 3         | 38   | 0.05 |
| •        | 2.CMC30.C3Z2.050.1 | 0.50                   | 2.5            | 0.75           | 3         | 38   | 0.10 |
| •        | 2.CMC30.C2Z2.060.1 | 0.60                   | 3.0            | 0.90           | 3         | 38   | 0.05 |
| •        | 2.CMC30.C3Z2.060.1 | 0.60                   | 3.0            | 0.90           | 3         | 38   | 0.10 |
| •        | 2.CMC30.C2Z2.080.1 | 0.80                   | 4.0            | 1.20           | 3         | 38   | 0.05 |
| •        | 2.CMC30.C3Z2.080.1 | 0.80                   | 4.0            | 1.20           | 3         | 38   | 0.10 |
| •        | 2.CMC30.C2Z2.100.1 | 1.00                   | 5.0            | 1.50           | 4         | 40   | 0.10 |
| •        | 2.CMC30.C3Z2.100.1 | 1.00                   | 5.0            | 1.50           | 4         | 40   | 0.20 |
| •        | 2.CMC30.C2Z2.120.1 | 1.20                   | 6.0            | 1.80           | 4         | 40   | 0.10 |
| •        | 2.CMC30.C3Z2.120.1 | 1.20                   | 6.0            | 1.80           | 4         | 40   | 0.20 |
| •        | 2.CMC30.C2Z2.150.1 | 1.50                   | 7.5            | 2.25           | 4         | 40   | 0.10 |
| •        | 2.CMC30.C3Z2.150.1 | 1.50                   | 7.5            | 2.25           | 4         | 40   | 0.30 |
| •        | 2.CMC30.C2Z2.180.1 | 1.80                   | 9.0            | 2.70           | 4         | 40   | 0.10 |
| •        | 2.CMC30.C3Z2.180.1 | 1.80                   | 9.0            | 2.70           | 4         | 40   | 0.30 |
| -        | 2.CMC30.C2Z2.200.1 | 2.00                   | 10.0           | 3.00           | 4         | 44   | 0.10 |
| •        | 2.CMC30.C3Z2.200.1 | 2.00                   | 10.0           | 3.00           | 4         | 44   | 0.20 |
| •        | 2.CMC30.C4Z2.200.1 | 2.00                   | 10.0           | 3.00           | 4         | 44   | 0.50 |
| •        | 2.CMC30.C2Z2.250.1 | 2.50                   | 12.5           | 3.75           | 6         | 50   | 0.20 |
| •        | 2.CMC30.C3Z2.250.1 | 2.50                   | 12.5           | 3.75           | 6         | 50   | 0.50 |
| •        | 2.CMC30.C2Z2.300.1 | 3.00                   | 15.0           | 4.50           | 6         | 55   | 0.20 |
| •        | 2.CMC30.C3Z2.300.1 | 3.00                   | 15.0           | 4.50           | 6         | 55   | 0.50 |
| •        | 2.CMC30.C2Z2.400.1 | 4.00                   | 20.0           | 6.00           | 6         | 60   | 0.20 |
| •        | 2.CMC30.C3Z2.400.1 | 4.00                   | 20.0           | 6.00           | 6         | 60   | 0.50 |
| •        | 2.CMC30.C2Z2.600.1 | 6.00                   | 30.0           | 9.00           | 10        | 70   | 0.50 |
| •        | 2.CMC30.C3Z2.600.1 | 6.00                   | 30.0           | 9.00           | 10        | 70   | 1.00 |



# CrazyMill Cool Zylindrisch / Torisch - Typ C - 5 x d

| 1.0301   C10   AISI 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3-0 | ).4 mm<br><b>f</b> <sub>z</sub> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|--|
| 1.0301   C10   AISI 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c     | I Z                             |  |
| 1.0401   C15   AISI 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50    | 0.004 – 0.006                   |  |
| Nutfräsen Rm < 800 N/mm <sup>2</sup> 1.1191 C43L/CR43 AISI 1043 1.0044 S275JR AISI 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00    | 0.004 - 0.006                   |  |
| 1.0044 5275JK AISI 1020<br>1.0715 11SMn30 AISI 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                 |  |
| 1.5752 15NiCr13 ASTM 3415 / AISI 3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                 |  |
| 1.5732 ISMCF15 ASTM 34137 AISI 3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                 |  |
| Stähle niedriglegiert 1 2505 1000-6 AISLE2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50    | 0.003 – 0.005                   |  |
| Rm > 900 N/mm <sup>2</sup> 1.3303 100Ct6 Al31 32 100 1.7225 42CrMo4 Al5I 4140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,0    | 0.003 - 0.003                   |  |
| 1.2842 90MnCrV8 AISI O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
| ■ a <sub>p</sub> =0.5 x d <sub>1</sub>   1.2379   X153CrMoV12   AISI D2   Werkzeugstähle   1.2436   X210CrW12   AISI D4/D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                 |  |
| hochlegiert 1 2242 Lise F 26 AICLAM (LINE T11202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60    | 0.003 - 0.005                   |  |
| Rm < 1200 N/mm <sup>2</sup> 1.3343 H56-5-2C AISI M2 / UNS T 11302 1.3355 HS18-0-1 AISI T1 / UNS T 12001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
| Rostfreie Stähle-<br>ferritisch 1.4016 X6Cr17 AISI 430 / UNS S43000 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50    | 0.004 - 0.006                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
| ROSTIFEIE STANIE- 1.4034 A40C113 A131420C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60    | 0.003 - 0.005                   |  |
| H Assettant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                 |  |
| Mostricle startie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60    | 0.003 - 0.005                   |  |
| This is Machine and its Machin |       |                                 |  |
| 1.4301 X5CrNi 18-10 AISI 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                 |  |
| Rostfreie Stähle-<br>austenitisch 1 4441   X2CrNiMo 18-14-3   AISI 316L   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50    | 0.003 - 0.005                   |  |
| 1.1111 AZCHNINO 18 18 9 AISI STOLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                 |  |
| 1.4539 X1NiCrMoCu 25-20-5 AISI 904L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                 |  |
| 0.6020 GG20 ASTM 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                 |  |
| Gusseisen 0.6030 GG30 ASTM 40B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50    | 0.002 - 0.004                   |  |
| d <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -     |                                 |  |
| 0.7060 GGG60 ASTM 80-60-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                 |  |
| Aluminium 3.2315 AlMgSi1 ASTM 6351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60    | 0.005 – 0.007                   |  |
| Knetlegierungen 3.4365 AlZnMgCu1.5 ASIM 7075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,0    | 0.003 - 0.007                   |  |
| Aluminium 3.2103 GD-Al319Cu3 A31W A360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50    | 0.005 - 0.007                   |  |
| Druckgusslegierungen 3.2381 GD-AlSi10Mg UNS A03590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                 |  |
| 2.004 Cu-OF/CW008A UNS C10100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50    | 0.005 – 0.007                   |  |
| 2.0065 Cu-ETP/CW004A UNS C11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
| Messing bleifrei 2.0321 CuZn37 CW508L UNS C27400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50    | 0.005 - 0.007                   |  |
| 2.036 CuZn40 CW509L UNS CZ8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                 |  |
| Messing, Bronze 2.0401 CuZn39Pb3 / CW614N UNS C38500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60    | 0.005 – 0.007                   |  |
| Rm < 400 N/mm <sup>2</sup> 2.102 CuSn6 UNS C51900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                 |  |
| Bronze 2.0966 CuAl10Ni5Fe4 UNS C63000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60    | 0.005 - 0.007                   |  |
| Rm < 600 N/mm <sup>2</sup> 2.096 CuAl9Mn2 UNS C63200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                 |  |
| 2.4856 Inconel 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                 |  |
| Stähle 2.4668 Inconel 718 2.4617 NiMo28 Hastelloy B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60    | 0.002 - 0.003                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,0    | 0.002 - 0.003                   |  |
| 2.4665 NiCr22Fe18Mo Hastelloy X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                 |  |
| 3.7035 Gr.2 ASTM B348 / F67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60    | 0.003 – 0.005                   |  |
| 3.7065 Gr.4 ASTM B348 / F68 3.7165 TiAl6V4 ASTM B348 / F136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,0    | 0.003 0.003                     |  |
| Titan Legierungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60    | 0.003 – 0.005                   |  |
| 9.9367 TIAI6ND7 ASTM F1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -     | 0.003 - 0.005                   |  |
| CrCo-Legierungen 2.4964 CoCr20W15Ni Haynes 25 CrCoMo28 ASTM F1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60    | 0.002 - 0.003                   |  |
| CrCoMo28 ASTM F1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | 5.505                           |  |
| Stähle gehärtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60    | 0.003 – 0.005                   |  |
| Stähle gehärtet ≥ 55 HRC  1.2379  X153CrMoV12  AISI D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                 |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG





|                       | <b>Ød1</b><br>-0.8 mm | 1.0            | <b>Ød1</b><br>0–1.2 mm | 1 5            | <b>Ød1</b><br>5–1.8 mm |                |                |                | <b>Ød1</b><br>3.0 mm |                | <b>Ød1</b><br>-6.0 mm |
|-----------------------|-----------------------|----------------|------------------------|----------------|------------------------|----------------|----------------|----------------|----------------------|----------------|-----------------------|
| <b>V</b> <sub>c</sub> | f <sub>z</sub>        | V <sub>c</sub> | f <sub>z</sub>         | V <sub>c</sub> | f <sub>z</sub>         | V <sub>c</sub> | f <sub>z</sub> | V <sub>c</sub> |                      | V <sub>c</sub> | f <sub>z</sub>        |
| 100                   | 0.008 – 0.012         | 140            | 0.013 – 0.015          | 180            | 0.022 – 0.024          | 200            | 0.030 – 0.032  | 220            | 0.034                | 260            | 0.048                 |
| 100                   | 0.007 - 0.010         | 140            | 0.012 – 0.014          | 180            | 0.020 – 0.022          | 200            | 0.028 - 0.030  | 220            | 0.032                | 260            | 0.046                 |
| 100                   | 0.006 – 0.009         | 140            | 0.009 – 0.011          | 180            | 0.018 – 0.020          | 200            | 0.026 – 0.028  | 220            | 0.028                | 260            | 0.042                 |
| 100                   | 0.008 - 0.012         | 140            | 0.014 - 0.016          | 180            | 0.022 - 0.024          | 200            | 0.030 - 0.032  | 220            | 0.034                | 260            | 0.046                 |
| 100                   | 0.007 - 0.010         | 140            | 0.013 - 0.015          | 180            | 0.020 - 0.022          | 200            | 0.028 - 0.030  | 220            | 0.032                | 260            | 0.044                 |
| 100                   | 0.007 - 0.010         | 140            | 0.013 - 0.015          | 180            | 0.020 - 0.022          | 200            | 0.028 - 0.030  | 220            | 0.032                | 260            | 0.044                 |
| 100                   | 0.006 – 0.009         | 140            | 0.010 - 0.012          | 180            | 0.016 – 0.018          | 200            | 0.026 – 0.028  | 220            | 0.030                | 260            | 0.042                 |
| 100                   | 0.005 - 0.008         | 120            | 0.010 - 0.020          | 140            | 0.022 - 0.025          | 160            | 0.026 – 0.035  | 180            | 0.040                | 200            | 0.050                 |
| 100                   | 0.010 - 0.014         | 140            | 0.015 – 0.017          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.052                | 260            | 0.050                 |
| 100                   | 0.010 - 0.014         | 140            | 0.015 - 0.017          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.050                | 260            | 0.050                 |
| 100                   | 0.012 - 0.016         | 140            | 0.018 - 0.020          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.052                | 260            | 0.050                 |
| 100                   | 0.012 - 0.016         | 140            | 0.018 - 0.020          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.052                | 260            | 0.050                 |
| 100                   | 0.012 - 0.016         | 140            | 0.018 - 0.020          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.052                | 260            | 0.050                 |
| 100                   | 0.010 - 0.014         | 140            | 0.016 - 0.018          | 180            | 0.024 - 0.026          | 200            | 0.032 - 0.034  | 220            | 0.052                | 260            | 0.050                 |
| 100                   | 0.004 – 0.006         | 120            | 0.007 - 0.008          | 130            | 0.009 – 0.010          | 140            | 0.010 – 0.012  | 150            | 0.015                | 170            | 0.020                 |
| 100                   | 0.006 - 0.009         | 120            | 0.014 - 0.016          | 130            | 0.018 - 0.020          | 140            | 0.026 - 0.028  | 150            | 0.030                | 170            | 0.040                 |
| 100                   | 0.006 - 0.009         | 120            | 0.014 - 0.016          | 130            | 0.018 - 0.020          | 140            | 0.026 - 0.028  | 150            | 0.030                | 170            | 0.040                 |
| 100                   | 0.004 - 0.006         | 140            | 0.007 - 0.008          | 160            | 0.009 - 0.010          | 180            | 0.010 - 0.012  | 200            | 0.015                | 220            | 0.020                 |
| 80                    | 0.006 - 0.007         | 100            | 0.008 - 0.010          | 140            | 0.012 - 0.016          | 180            | 0.018 - 0.024  | 200            | 0.028                | 240            | 0.030                 |
|                       |                       |                |                        |                |                        |                |                |                |                      |                |                       |



# CrazyMill Cool Zylindrisch / Torisch - Typ C - 5 x d

|                | Verkstoff-                  | Werkstoff                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           |                       | <b>Ød1</b><br>-0.4mm |  |        |       |                |            |    |               |
|----------------|-----------------------------|-----------------------------|--------|--------------------|-------------------------|-----------------------|----------------------|--|--------|-------|----------------|------------|----|---------------|
| gı             | ruppe                       | Weikston                    | •••••• | Diii               | AISI/ASTIVI/ONS         | <b>V</b> <sub>c</sub> | f <sub>z</sub>       |  |        |       |                |            |    |               |
|                |                             |                             | 1 0201 | C10                | AICI 1010               | ₩ c                   | ¹z                   |  |        |       |                |            |    |               |
|                |                             |                             | 1.0301 | C10                | AISI 1010               |                       |                      |  |        |       |                |            |    |               |
| räsen          | P                           | Stähle unlegiert            | 1.0401 | C15                | AISI 1015               |                       |                      |  |        |       |                |            |    |               |
|                | '                           | Rm < 800 N/mm <sup>2</sup>  | 1.1191 | C45E/CK45          | AISI 1045               | 60                    | 0.005 - 0.007        |  |        |       |                |            |    |               |
| <b>a</b>       |                             |                             | 1.0044 | S275JR             | AISI 1020               |                       |                      |  |        |       |                |            |    |               |
|                |                             |                             | 1.0715 | 11SMn30            | AISI 1215               |                       |                      |  |        |       |                |            |    |               |
| <b>カ</b> ー ー   |                             |                             | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                       |                      |  |        |       |                |            |    |               |
| //             |                             | Stähle niedriglegiert       | 1.7131 | 16MnCr5            | AISI 5115               |                       |                      |  |        |       |                |            |    |               |
|                |                             | Rm > 900 N/mm <sup>2</sup>  | 1.3505 | 100Cr6             | AISI 52100              | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
|                |                             |                             | 1.7225 | 42CrMo4            | AISI 4140               |                       |                      |  |        |       |                |            |    |               |
| d <sub>1</sub> |                             |                             | 1.2842 | 90MnCrV8           | AISI O2                 |                       |                      |  |        |       |                |            |    |               |
|                |                             | Werkzeugstähle              | 1.2379 | X153CrMoV12        | AISI D2                 |                       |                      |  |        |       |                |            |    |               |
|                |                             | hochlegiert                 | 1.2436 | X210CrW12          | AISI D4/D6              | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
|                |                             | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 00                    |                      |  |        |       |                |            |    |               |
|                |                             |                             | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                       |                      |  |        |       |                |            |    |               |
| ,              |                             | Rostfreie Stähle-           | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                       |                      |  |        |       |                |            |    |               |
|                | М                           | ferritisch                  | 1.4105 | X6CrMoS17          | AISI 430F               | 60                    | 0.005 – 0.007        |  |        |       |                |            |    |               |
| ı              | M                           | Rostfreie Stähle-           | 1.4034 | X46Cr13            | AISI 420C               |                       |                      |  |        |       |                |            |    |               |
|                |                             | martensitisch               | 1.4112 | X90CrMoV18         | AISI 440B               | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
| /              |                             | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                       |                      |  |        |       |                |            |    |               |
|                |                             | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
| J              |                             |                             | 1.4301 | X5CrNi 18-10       | AISI 304                |                       |                      |  |        |       |                |            |    |               |
| <b>'</b>       |                             | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                       |                      |  |        |       |                |            |    |               |
|                |                             | austenitisch                | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
|                |                             |                             | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                       |                      |  |        |       |                |            |    |               |
|                |                             |                             |        |                    |                         |                       |                      |  |        |       |                |            |    |               |
|                | <b>.</b>                    |                             | 0.6020 | GG20               | ASTM 400                |                       |                      |  |        |       |                |            |    |               |
| 11             | K                           | Gusseisen                   | 0.6030 | GG30               | ASTM 40B                | 60                    | 0.003 - 0.005        |  |        |       |                |            |    |               |
| -              |                             |                             | 0.7040 | GGG40              | ASTM 60-40-18           |                       |                      |  |        |       |                |            |    |               |
|                |                             |                             | 0.7060 | GGG60              | ASTM 80-60-03           |                       |                      |  |        |       |                |            |    |               |
|                | N                           | Aluminium                   | 3.2315 | AlMgSi1            | ASTM 6351               | 60                    | 0.006 - 0.008        |  |        |       |                |            |    |               |
|                |                             | Knetlegierungen             | 3.4365 | AlZnMgCu1.5        | ASTM 7075               |                       | 0.000                |  |        |       |                |            |    |               |
| "              |                             | Aluminium                   | 3.2163 | GD-AlSi9Cu3        | ASTM A380               | 60                    | 0.006 - 0.008        |  |        |       |                |            |    |               |
|                |                             | Druckgusslegierunger        |        | GD-AlSi10Mg        | UNS A03590              |                       |                      |  |        |       |                |            |    |               |
|                |                             |                             |        |                    |                         |                       |                      |  | Kupfer | 2.004 | Cu-OF / CW008A | UNS C10100 | 60 | 0.006 - 0.008 |
| _              |                             | apici                       | 2.0065 | Cu-ETP / CW004A    | UNS C11000              |                       | 0.000                |  |        |       |                |            |    |               |
|                |                             | Messing bleifrei            | 2.0321 | CuZn37 CW508L      | UNS C27400              | 60                    | 0.006 - 0.008        |  |        |       |                |            |    |               |
|                |                             | Tricosing Dienien           | 2.036  | CuZn40 CW509L      | UNS C28000              |                       | 0.000 - 0.000        |  |        |       |                |            |    |               |
|                |                             | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N | UNS C38500              | 60                    | 0.006 - 0.008        |  |        |       |                |            |    |               |
|                |                             | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6              | UNS C51900              |                       | 0.000 - 0.000        |  |        |       |                |            |    |               |
|                |                             | Bronze                      | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 60                    | 0.006 - 0.008        |  |        |       |                |            |    |               |
|                |                             | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2           | UNS C63200              |                       | 0.000 - 0.000        |  |        |       |                |            |    |               |
|                |                             |                             | 2.4856 |                    | Inconel 625             |                       |                      |  |        |       |                |            |    |               |
|                |                             | Hitzebeständige             | 2.4668 |                    | Inconel 718             |                       |                      |  |        |       |                |            |    |               |
|                | <b>S</b> <sub>1</sub>       | Stähle                      | 2.4617 | NiMo28             | Hastelloy B-2           | 60                    | 0.003 - 0.004        |  |        |       |                |            |    |               |
|                |                             |                             | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                       |                      |  |        |       |                |            |    |               |
| _              |                             |                             | 3.7035 | Gr.2               | ASTM B348 / F67         |                       |                      |  |        |       |                |            |    |               |
|                |                             | Titan rein                  | 3.7065 | Gr.4               | ASTM B348 / F68         | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
|                | <b>S</b> <sub>2</sub>       |                             | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                       |                      |  |        |       |                |            |    |               |
|                |                             | Titan Legierungen           | 9.9367 | TiAl6Nb7           | ASTM F1295              | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
|                |                             |                             | 2.4964 | CoCr20W15Ni        | Haynes 25               |                       |                      |  |        |       |                |            |    |               |
|                | <b>S</b> <sub>3</sub>       | CrCo-Legierungen            | 2.7704 | CrCoMo28           | ASTM F1537              | 60                    | 0.003 - 0.004        |  |        |       |                |            |    |               |
|                |                             |                             |        | 2.20020            |                         |                       |                      |  |        |       |                |            |    |               |
|                | $H_{\scriptscriptstyle{1}}$ | Stähle gehärtet<br>< 55 HRC | 1.2510 | 100MnCrMoW4        | AISI O1                 | 60                    | 0.004 - 0.006        |  |        |       |                |            |    |               |
| "              | "1                          |                             |        |                    |                         |                       |                      |  |        |       |                |            |    |               |
| 1              |                             | Stähle gehärtet             |        |                    |                         |                       |                      |  |        |       |                |            |    |               |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen





| Ød1                   |                | Ød1                   |                |                       | Ød1 Ød1        |                       | Ød1            |                | Ød1            | Ød1            |                |   |
|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|---|
| 0.5                   | -0.8 mm        |                       | -1.2 mm        | 1.5                   | -1.8 mm        | 2.0                   | -2.5 mm        | 3              | .0 mm          | 4.0-           | -6.0 mm        |   |
| <b>V</b> <sub>c</sub> | f <sub>z</sub> | V <sub>c</sub> | f <sub>z</sub> | V <sub>c</sub> | f <sub>z</sub> |   |
| 100                   | 0.010 - 0.014  | 140                   | 0.015 - 0.017  | 200                   | 0.024 - 0.026  | 220                   | 0.034 - 0.036  | 240            | 0.040          | 280            | 0.050          |   |
| 100                   | 0.009 – 0.012  | 140                   | 0.014 – 0.016  | 200                   | 0.022 - 0.024  | 220                   | 0.032 - 0.034  | 240            | 0.038          | 280            | 0.048          |   |
| 100                   | 0.008 - 0.011  | 140                   | 0.011 - 0.013  | 200                   | 0.020 - 0.022  | 220                   | 0.030 - 0.032  | 240            | 0.035          | 280            | 0.044          |   |
| 100                   | 0.010 - 0.014  | 140                   | 0.016 - 0.018  | 200                   | 0.024 - 0.026  | 220                   | 0.034 - 0.036  | 240            | 0.040          | 280            | 0.048          |   |
| 100                   | 0.009 - 0.012  | 140                   | 0.015 - 0.017  | 200                   | 0.022 - 0.024  | 220                   | 0.032 - 0.034  | 240            | 0.036          | 280            | 0.046          |   |
| 100                   | 0.009 – 0.012  | 140                   | 0.015 – 0.017  | 200                   | 0.022 - 0.024  | 220                   | 0.032 - 0.034  | 240            | 0.036          | 280            | 0.046          |   |
| 100                   | 0.008 – 0.011  | 140                   | 0.012 - 0.014  | 200                   | 0.016 – 0.018  | 220                   | 0.030 - 0.032  | 240            | 0.034          | 280            | 0.044          |   |
| 100                   | 0.006 - 0.009  | 120                   | 0.011 - 0.022  | 140                   | 0.024 – 0.026  | 160                   | 0.028 - 0.036  | 180            | 0.042          | 200            | 0.052          |   |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.014 - 0.018  | 140                   | 0.020 - 0.022  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.014 - 0.018  | 140                   | 0.020 - 0.022  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.014 - 0.018  | 140                   | 0.020 - 0.022  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.012 - 0.016  | 140                   | 0.018 - 0.020  | 200                   | 0.026 - 0.028  | 220                   | 0.036 - 0.040  | 240            | 0.058          | 280            | 0.055          |   |
| 100                   | 0.004 - 0.006  | 120                   | 0.007 - 0.008  | 130                   | 0.009 – 0.010  | 140                   | 0.010 – 0.012  | 150            | 0.015          | 170            | 0.020          |   |
| 100                   | 0.008 - 0.011  | 120                   | 0.016 - 0.018  | 130                   | 0.020 - 0.022  | 140                   | 0.028 - 0.030  | 150            | 0.034          | 170            | 0.042          |   |
| 100                   | 0.008 - 0.011  | 120                   | 0.016 - 0.018  | 130                   | 0.020 - 0.022  | 140                   | 0.028 - 0.030  | 150            | 0.034          | 170            | 0.042          |   |
| 100                   | 0.004 - 0.006  | 140                   | 0.007 - 0.008  | 180                   | 0.009 – 0.010  | 200                   | 0.010 - 0.012  | 220            | 0.015          | 240            | 0.020          |   |
| 80                    | 0.007 - 0.009  | 100                   | 0.010 - 0.012  | 140                   | 0.014 - 0.018  | 180                   | 0.020 - 0.026  | 200            | 0.030          | 240            | 0.032          |   |
|                       |                |                       |                |                       |                |                       |                |                |                |                |                |   |
|                       |                |                       |                |                       |                |                       |                |                |                |                |                | - |



### PRÄZISES UND EFFIZIENTES FRÄSEN

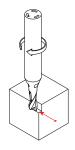
### Kühlschmierstoff, Filter und Druck

**Kühlschmierstoff:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

**Filter:** Die grossen Kühlkanäle erlauben einen Standardfilter mit einer Filterqualität von ≤ 0.05 mm.

**Kühlmitteldruck:** Es werden mindestens 15 bar Kühlmitteldruck benötigt, um prozesssicher zu fräsen. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.

| Drehzahl        | [U/min] | ≤ 10'000 | > 10'000 |  |
|-----------------|---------|----------|----------|--|
| Minimaler Druck | [bar]   | 15       | 30       |  |

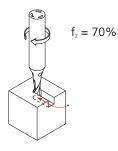

### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

07

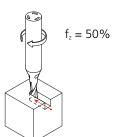
### **FRÄSPROZESS**

### Fräsen im Gleich- oder Gegenlauf



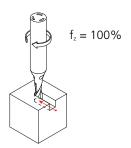

Beim Fräsen von z.B. Taschen oder Wandungen empfiehlt Mikron Tool das Fräsen im Gleichlauf, da beim Gegenlauffräsen die Spandicke zu Beginn bei Null liegt und bis zum Austritt zunimmt. Hohe Schnittkräfte drücken in diesem Falle den Fräser und das Werkstück voneinander weg. Somit nimmt die Oberflächengüte ab.

#### Eintritt beim Fräsen in das Material

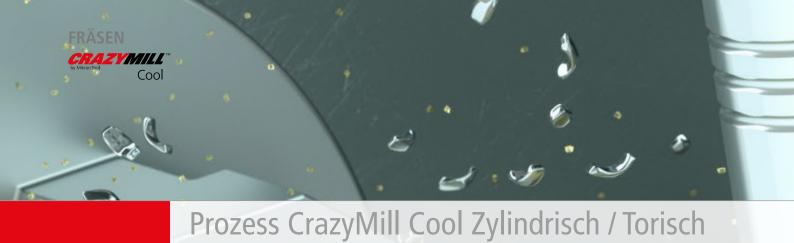

Beim Fräsen mit direktem Eintreten in das Material werden Späne mit hoher Dicke erzeugt und der Fräser wird unsymmetrisch belastet, bis er mit seinem kompletten Durchmesser im Material arbeitet. Diese Belastungen können die Standzeit der Schneiden beeinflussen, speziell bei harten und zähen Werkstoffen wie hitzebeständige Stähle oder Titan. Deshalb empfehlen wir neben dem direkten Eintreten mit vollem Vorschub noch zwei weitere, schonendere Eintrittsarten:

### 1. Indirekter Eintritt




Indirektes Fräsen (auch rollender Eintritt genannt) in das Material (Eintreten in das Material im Uhrzeigersinn in einem Radius) und 30% reduzierten Vorschub bei harten und zähen Werkstoffen wie hitzebeständige Stähle oder Titan.

### 2. Reduzierter Vorschub

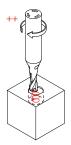



Direktes Fräsen in das Material mit einem um ca. 50% reduzierten Vorschub bei harten und zähen Werkstoffen wie hitzebeständige Stähle oder Titan.

### 3. Direktes Fräsen

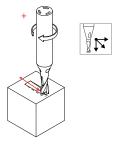


Ohne Reduzieren des Vorschubes bei allgemeinen Stählen (Werkstoffgruppe P), Aluminium etc. (Werkstoffgruppe N).




### **FRÄSPROZESS**

### Eintauchen


Die beste und schonendste Methode um einzutauchen bietet die Spiralinterpolation. Mit Fräswerkzeugen, wie CrazyMill Cool (Fräser schneidet über Mitte) kann auch die Methode Eintauchen mittels linearer Rampe angewandt werden.

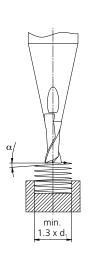
### 1. Spiralinterpolation



Zu beachten ist, dass der zu erzeugende Durchmesser min. 1.3 x  $d_1$  sein muss. Der minimale und maximale Eintauchwinkel  $\alpha$ , sowie die Vorschubkorrektur  $v_f$  ist materialabhängig einzuhalten (siehe Tabelle).

### 2. Lineare Rampe




Für das Eintauchen ist ein Fräser erforderlich, der axial eintauchen kann (Fräser muss über Mitte schneiden). Der minimale und maximale Eintauchwinkel  $\alpha$ , sowie die Vorschubkorrektur  $v_f$  ist materialabhängig einzuhalten. (siehe Tabelle).

### **Empfohlene Eintauchwinkel**

|                | Werkstoffe                          | Eintauch | winkel α |
|----------------|-------------------------------------|----------|----------|
|                |                                     | min      | max      |
| Р              | Unlegierte und legierte Stähle      | 5°       | 15°      |
| M              | Rosfreie Stähle                     | 5°       | 10°      |
| K              | Gusseisen                           | 5°       | 15°      |
| N              | Aluminium und Eisenfreilegiertungen | 10°      | 30°      |
| S <sub>1</sub> | Hitzebeständige Stähle              | 2°       | 8°       |
| S <sub>2</sub> | Titan und Titan Legierungen         | 2°       | 8°       |
| S₃             | CrCo-Legierungen                    | 2°       | 8°       |
| H <sub>1</sub> | Stähle gehärtet < 55 HRC            | 5°       | 10°      |

### Empfohlene Vorschubkorrektur v<sub>f</sub>

| Eintauchwinkel $lpha$ - Vorschubkorrektur $v_{ m f}$ |                  |     |     |     |  |  |  |  |  |
|------------------------------------------------------|------------------|-----|-----|-----|--|--|--|--|--|
| α                                                    | α 5° 10° 20° 30° |     |     |     |  |  |  |  |  |
| V <sub>f</sub>                                       | 80%              | 70% | 60% | 50% |  |  |  |  |  |





#### Konventionelles Nutenfräsen

Schnittwerte: Siehe Schnittdatentabelle Konventionelles Nutenfräsen!

#### Vorteile

- Konventionelle 3-Achs CNC-Maschinen können verwendet werden
- Hohes Zeitspanvolumen, wenn die Bedingungen stabil sind (stabile Werkzeug- und Werkstückspannung)
- Einfache Programmierung

#### Nachteile

- Empfindlich auf Vibrationen (mehrere Frässchritte können erforderlich sein)
- Eingeschränkte Präzision beim Nutenfräsen (z.B. Rechtwinkligkeit oder Oberfläche), teilweise muss in mehreren Frässchritten a, gearbeitet werden
- Erzeugt hohe Radialkräfte

#### **Trochoidales Nutenfräsen**

Schnittwerte siehe Schnittdatentabelle Umfangfräsen / Trochoidales Nutenfräsen!

### Zusätzliche Parameterempfehlung



- Fräserdurchmesser d₁ im Vgl. zur Nut: d₁ = max. 70% der Nutenbreite
- Schnittbreite a<sub>e</sub> = max. 10% Fräserdurchmesser d<sub>1</sub>
- Schnitttiefe a<sub>n</sub> = Abhängig von Material und Fräsertyp, siehe Schnittdatentabelle
- Schnittgeschwindigkeit = Abhängig von Material und Fräsertyp, siehe Schnittdatentabelle
- Vorschub pro Zahn  $f_z$  = Abhängig von Material und Fräsertyp, siehe Schnittdatentabelle

### Vorteile

- Erzeugt geringere Radialkräfte und weniger Vibrationen
- Höhere Präzision durch geringere Auslenkung des Werkzeuges (da geringe Radialkräfte)
- Bessere Evakuation der Späne
- Geringere Hitzeentwicklung
- Werkzeugschonender speziell bei rost-, säure- und hitzebeständigen Stählen sowie Titanlegierungen und dadurch höhere Standzeiten

### **Nachteile**

- Ein dynamisches Bearbeitungszentrum sowie eine moderne Maschinensteuerung ist erforderlich
- Mehr Programmierungsaufwand
- Höhere Bearbeitungszeit



## **PATENTED**

# CrazyMill Cool Vollradius







Das ist neu: CrazyMill Cool Vollradius ist ein neuartiger Fräser, von Mikron Tool entwickelt für das Schruppen und Schlichten von rostfreien Stählen, Titanlegierungen, CrCo- und Superlegierungen. Mit einer im Schaft integrierten, sehr effizienten Kühlung erreicht er höchste Schnittgeschwindigkeiten und garantiert eine hohe Abtragsrate.

Die Eigenschaften: Die neue Schneidengeometrie ist speziell schwingungs- resp. vibrationsarm und darauf ausgerichtet, sowohl die Geschwindigkeit als auch die Oberflächenqualität zu verbessern. Die verlängerten Schnittlängen ermöglichen eine Bearbeitung sowohl am Radius als auch am zylindrischen Teil und machen den Fräser zu einem vielseitig einsetzbaren Werkzeug.

CrazyMill Cool Vollradius ist eine Kombination aus HSC (High Speed Cutting) und HPC (High Performance Cutting), und wird damit zu einem HSPC-Fräser (High Speed Performance Cutting).



## **PATENTED**

## Höchste Leistung und Oberflächenqualität

### VOLLRADIUSFRÄSER ZUM SCHRUPPEN UND SCHLICHTEN MIT INTEGRIERTER KÜHLUNG

Mit CrazyMill Cool Vollradius erweitert Mikron Tool die Palette von Fräsern für schwer zerspanbare Materialien. Drei Versionen von Vollradiusfräsern mit zwei Zähnen und integrierter Kühlung im Schaft sind verfügbar im Durchmesserbereich von 0.3 mm bis 8.0 mm und einer maximalen Frästiefe bis 5 x d. Die Schneidenlänge beträgt immer 2 x d.

- CrazyMill Cool Vollradius, Typ A Frästiefe 2 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Vollradius, Typ B Frästiefe 3 x d, Kühlung im Schaft, Z = 2
- CrazyMill Cool Vollradius, Typ C Frästiefe 5 x d, Kühlung im Schaft, Z = 2







## Vorteile und Anwendungen

### DER SCHRUPP- UND SCHLICHTFRÄSER MIT INNENKÜHLUNG, AB 0.3 MM

KÜRZERE BEARBEITUNGSZEIT | Bis zu 2 Mal schneller


ERHÖHTE STANDZEIT | Durch effiziente Kühlung

HOHE PROZESSSICHERHEIT | Dank integrierter Kühlung

HOHE OBERFLÄCHENQUALITÄT | Durch Antivibrationsgeometrie

TIEFE PRODUKTIONSKOSTEN | Schruppen und Schlichten mit

dem selben werkzeug



### TEIL

Knochenplatte

### WERKSTOFF

TiAl6V4 / 3.7165 / B348

### **BEARBEITUNG**

- Schruppen und Vorschlichten
- d = 6 mm

### WERKZEUG

Mikron Tool - CrazyMill Cool Vollradius - Typ C

| DATEN         | MIKRON TOOL                                                                                                                                                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Werkzeugtyp   | CrazyMill Cool Vollradius - Hartmetall - Beschichtet - Integrierte Kühlung                                                                                                                                                                          |
| Artikelnummer | 2.CMC30.C5Z2.600.1                                                                                                                                                                                                                                  |
| Schnittdaten  | Schruppen $v_c = 170 \text{ m/min}$ $f_z = 0.050 \text{ mm}$ $a_{p,max} = 1 \text{ x d}$ $a_e = 1 \text{ mm}$ $Z = 2$ $Vorschlichten$ $v_c = 170 \text{ m/min}$ $f_z = 0.050 \text{ mm}$ $a_{p,max} = 0.5 \text{ x d}$ $a_e = 1 \text{ mm}$ $Z = 2$ |





















| MATERIALGRUPPE                              | BEISPIELE |                |                   |  |  |  |  |  |
|---------------------------------------------|-----------|----------------|-------------------|--|--|--|--|--|
|                                             | Wr. Nr.   | DIN            | AISI / ASTM / UNS |  |  |  |  |  |
| Gruppe P<br>Unlegierte u.                   | 1.0401    | C15            | 1015              |  |  |  |  |  |
| legierte Stähle                             | 1.3505    | 100Cr6         | 52100             |  |  |  |  |  |
|                                             | 1.2436    | X210CrW12      | D4 / D6           |  |  |  |  |  |
| <b>Gruppe M</b><br>Rostfreie Stähle         | 1.4105    | X6CrMoS17      | 430F              |  |  |  |  |  |
|                                             | 1.4112    | X90CrMoV18     | 440B              |  |  |  |  |  |
|                                             | 1.4301    | X5CrNi 18-10   | 304               |  |  |  |  |  |
| <b>Gruppe K</b><br>Gusseisen                | 0.7040    | GGG40          | 60-40-18          |  |  |  |  |  |
| <b>Gruppe N</b><br>Nichteisenmetalle        | 3.2315    | AlMgSi1        | 6351              |  |  |  |  |  |
|                                             | 3.2163    | GD-AlSi9Cu3    | A380              |  |  |  |  |  |
|                                             | 2.004     | Cu-OF / CW008A | C10100            |  |  |  |  |  |
|                                             | 2.0321    | CuZn37 CW508L  | C27400            |  |  |  |  |  |
|                                             | 2.102     | CuSn6          | C51900            |  |  |  |  |  |
|                                             | 2.096     | CuAl9Mn2       | C63200            |  |  |  |  |  |
| <b>Gruppe S1</b> Hitzebeständige Stähle     | 2.4856    |                | INCONEL 625       |  |  |  |  |  |
|                                             | 2.4665    | NiCr22Fe18Mo   | HASTELLOY X       |  |  |  |  |  |
| Gruppe S2<br>Titan rein u.                  | 3.7035    | Gr.2           | B348 / F67        |  |  |  |  |  |
| Titan Legierungen                           | 3.7165    | TiAl6V4        | B348 / F136       |  |  |  |  |  |
| <b>Gruppe S3</b><br>CrCo-Legierungen        | 2.4964    | CoCr20W15Ni    | HAYNES 25         |  |  |  |  |  |
| <b>Gruppe H1</b><br>Stähle gehärtet <55 HRC | 1.2510    | 100MnCrMoW4    | 01                |  |  |  |  |  |



## CrazyMill Cool Vollradius - Typ A - 2 x d

### FRÄSEN MIT INTEGRIERTER KÜHLUNG



Fräser CrazyMill Cool Vollradius Typ A, für eine max. Bearbeitungstiefe von 2 x d und mit einer Schneidenlänge von 2 x d:

CrazyMill Cool Vollradius setzt neue Massstäbe beim Kopierfräsen und Wandungsfräsen. Seine Stärken sind die hohen Schnittgeschwindigkeiten und -tiefen, Abtragsraten, Standzeiten und die erreichbare Oberflächenqualität.

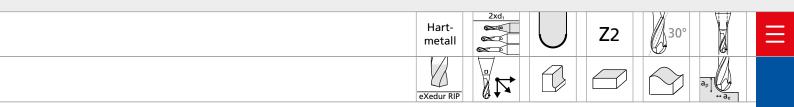
Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

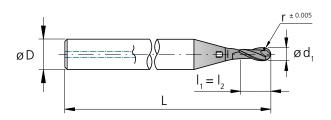
Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck

Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.

### **Hinweis**


Sie haben nicht die passende Variante von CrazyMill Cool Vollradius (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!


Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.



I<sub>1</sub> = Nutzlänge

l<sub>2</sub> = Schneidenlänge





| Lager | Artikelnummer      | <b>d</b> <sub>1</sub> | r    | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    | Z       |
|-------|--------------------|-----------------------|------|----------------|----------------|-----------|------|---------|
| qe =  |                    | [mm]                  | [mm] | [mm]           | [mm]           | [mm]      | [mm] | [Zähne] |
| •     | 2.CMC30.A5Z2.030.1 | 0.3                   | 0.15 | 0.6            | 0.6            | 3         | 38   | 2       |
| -     | 2.CMC30.A5Z2.040.1 | 0.4                   | 0.20 | 0.8            | 0.8            | 3         | 38   | 2       |
| •     | 2.CMC30.A5Z2.050.1 | 0.5                   | 0.25 | 1.0            | 1.0            | 3         | 38   | 2       |
| -     | 2.CMC30.A5Z2.060.1 | 0.6                   | 0.30 | 1.2            | 1.2            | 3         | 38   | 2       |
| •     | 2.CMC30.A5Z2.080.1 | 0.8                   | 0.40 | 1.6            | 1.6            | 3         | 38   | 2       |
|       | 2.CMC30.A5Z2.100.1 | 1.0                   | 0.50 | 2.0            | 2.0            | 4         | 40   | 2       |
| •     | 2.CMC30.A5Z2.120.1 | 1.2                   | 0.60 | 2.4            | 2.4            | 4         | 40   | 2       |
| -     | 2.CMC30.A5Z2.150.1 | 1.5                   | 0.75 | 3.0            | 3.0            | 4         | 40   | 2       |
| •     | 2.CMC30.A5Z2.180.1 | 1.8                   | 0.90 | 3.6            | 3.6            | 4         | 40   | 2       |
| •     | 2.CMC30.A5Z2.200.1 | 2.0                   | 1.00 | 4.0            | 4.0            | 4         | 40   | 2       |
| •     | 2.CMC30.A5Z2.250.1 | 2.5                   | 1.25 | 5.0            | 5.0            | 6         | 45   | 2       |
| -     | 2.CMC30.A5Z2.300.1 | 3.0                   | 1.50 | 6.0            | 6.0            | 6         | 50   | 2       |
| •     | 2.CMC30.A5Z2.400.1 | 4.0                   | 2.00 | 8.0            | 8.0            | 6         | 50   | 2       |
|       | 2.CMC30.A5Z2.600.1 | 6.0                   | 3.00 | 12.0           | 12.0           | 10        | 60   | 2       |
|       | 2.CMC30.A5Z2.800.1 | 8.0                   | 4.00 | 16.0           | 16.0           | 12        | 70   | 2       |



# CrazyMill Cool Vollradius - Typ A - Schruppen

|                                        | Werkstoff-<br>gruppe  | Werkstoff                               | Wr.Nr. | DIN                | AISI/ASTM/UNS           |                       | <b>Ød1</b><br>-0.4 mm |  |
|----------------------------------------|-----------------------|-----------------------------------------|--------|--------------------|-------------------------|-----------------------|-----------------------|--|
|                                        | gruppe                |                                         |        |                    |                         | <b>V</b> <sub>c</sub> | f <sub>z</sub>        |  |
|                                        |                       |                                         | 1.0301 | C10                | AISI 1010               |                       | 2                     |  |
|                                        | Р                     |                                         | 1.0401 | C15                | AISI 1015               |                       |                       |  |
| Schruppen                              |                       | Stähle unlegiert                        | 1.1191 | C45E/CK45          | AISI 1045               | 60                    | 0.005-0.007           |  |
|                                        |                       | Rm < 800 N/mm <sup>2</sup>              | 1.0044 | S275JR             | AISI 1020               |                       |                       |  |
| <i>Y</i> //                            |                       |                                         | 1.0715 | 11SMn30            | AISI 1215               |                       |                       |  |
|                                        |                       |                                         | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                       |                       |  |
| a <sub>p</sub>                         |                       |                                         | 1.7131 | 16MnCr5            | AISI 5115               |                       |                       |  |
| v ↔ a <sub>e</sub>                     |                       | Stähle niedriglegiert<br>Rm > 900 N/mm² | 1.3505 | 100Cr6             | AISI 52100              | 60                    | 0.004-0.006           |  |
|                                        |                       | KIII > 900 IV/IIIII12                   | 1.7225 | 42CrMo4            | AISI 4140               |                       |                       |  |
| $\blacksquare a_p = 0.5 \times d_1$    |                       |                                         | 1.2842 | 90MnCrV8           | AISI O2                 |                       |                       |  |
| (Ød₁≤0.5 mm)                           |                       |                                         | 1.2379 | X153CrMoV12        | AISI D2                 |                       |                       |  |
| $\blacksquare a_p = 1 \times d_1$      |                       | Werkzeugstähle                          | 1.2436 | X210CrW12          | AISI D4/D6              |                       | 0.004.0.005           |  |
| $(Ød_1 > 0.5 \text{ mm})$              |                       | hochlegiert<br>Rm < 1200 N/mm²          | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 60                    | 0.004-0.006           |  |
| $\blacksquare a_e = 0.3 \times d_1$    |                       | 1411 < 1200 14/11111                    | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                       |                       |  |
| Bearbeitungswinkel = 0°                |                       | Rostfreie Stähle-                       | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                       |                       |  |
| —————————————————————————————————————— | R/I                   | ferritisch                              | 1.4105 | X6CrMoS17          | AISI 430F               | 60                    | 0.005-0.007           |  |
|                                        | M                     | Rostfreie Stähle-                       | 1.4034 | X46Cr13            | AISI 420C               |                       |                       |  |
|                                        |                       | martensitisch                           | 1.4112 | X90CrMoV18         | AISI 440B               | 60                    | 0.004-0.006           |  |
| \***/                                  |                       | Rostfreie Stähle-                       | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                       |                       |  |
|                                        |                       | martensitisch – PH                      | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            | 60                    | 0.004-0.006           |  |
| <b>\_</b>                              |                       |                                         | 1.4301 | X5CrNi 18-10       | AISI 304                |                       |                       |  |
|                                        |                       | Rostfreie Stähle-                       | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                       |                       |  |
|                                        |                       | austenitisch                            | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              | 60                    | 0.004-0.006           |  |
| ĮΨ                                     |                       |                                         | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                       |                       |  |
|                                        |                       |                                         | 0.6020 | GG20               | ASTM 30                 |                       |                       |  |
|                                        | 1/                    |                                         | 0.6030 | GG30               | ASTM 40B                |                       |                       |  |
|                                        | K                     | Gusseisen                               | 0.7040 | GGG40              | ASTM 60-40-18           | 60                    | 0.003-0.005           |  |
| <i>\/</i> //                           |                       |                                         | 0.7060 | GGG60              | ASTM 80-60-03           |                       |                       |  |
| <i>  </i>                              |                       | Alicentisticas                          | 3.2315 | AlMgSi1            | ASTM 6351               |                       |                       |  |
| <b>                   </b>             | IN I                  | Aluminium<br>Knetlegierungen            | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 60                    | 0.006-0.008           |  |
| d.                                     | N                     | Aluminium                               | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                       |                       |  |
| H                                      |                       | Druckgusslegierungen                    | 3.2381 | GD-AlSi10Mg        | UNS A03590              | 60                    | 0.006-0.008           |  |
|                                        |                       |                                         | 2.004  | Cu-OF / CW008A     | UNS C10100              |                       |                       |  |
|                                        |                       | Kupfer                                  | 2.0065 | Cu-ETP / CW004A    | UNS C11000              | 60                    | 0.006-0.008           |  |
|                                        |                       |                                         | 2.0321 | CuZn37 CW508L      | UNS C27400              |                       |                       |  |
|                                        |                       | Messing bleifrei                        | 2.036  | CuZn40 CW509L      | UNS C28000              | 60                    | 0.006-0.008           |  |
|                                        |                       | Messing, Bronze                         | 2.0401 | CuZn39Pb3 / CW614N |                         |                       |                       |  |
|                                        |                       | Rm < 400 N/mm <sup>2</sup>              | 2.102  | CuSn6              | UNS C51900              | 60                    | 0.006-0.008           |  |
|                                        |                       | Bronze                                  | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              |                       |                       |  |
|                                        |                       | Rm < 600 N/mm <sup>2</sup>              | 2.096  | CuAl9Mn2           | UNS C63200              | 60                    | 0.006-0.008           |  |
|                                        |                       |                                         | 2.4856 |                    | Inconel 625             |                       |                       |  |
|                                        | C                     | Hitzebeständige                         | 2.4668 |                    | Inconel 718             |                       |                       |  |
|                                        | $S_1$                 | Stähle                                  | 2.4617 | NiMo28             | Hastelloy B-2           | 60                    | 0.003-0.004           |  |
|                                        |                       |                                         | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                       |                       |  |
|                                        |                       |                                         | 3.7035 | Gr.2               | ASTM B348 / F67         |                       |                       |  |
|                                        | C                     | Titan rein                              | 3.7065 | Gr.4               | ASTM B348 / F68         | 60                    | 0.004-0.006           |  |
|                                        | S <sub>2</sub>        | T'                                      | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                       | 0.004                 |  |
|                                        |                       | Titan Legierungen                       | 9.9367 | TiAl6Nb7           | ASTM F1295              | 60                    | 0.004-0.006           |  |
|                                        | C                     | C-C- Ii-                                | 2.4964 | CoCr20W15Ni        | Haynes 25               |                       | 0.002.0001            |  |
|                                        | <b>S</b> <sub>3</sub> | CrCo-Legierungen                        |        | CrCoMo28           | ASTM F1537              | 60                    | 0.003-0.004           |  |
|                                        | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC             | 1.2510 | 100MnCrMoW4        | AISI O1                 | 60                    | 0.004-0.006           |  |
|                                        | $H_2$                 | Stähle gehärtet<br>≥ 55 HRC             | 1.2379 | X153CrMoV12        | AISI D2                 |                       |                       |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

ANWENDUNGSEMPFEHLUNG





| 0   | Ød1                               | 1   | Ød1                               | 1   | Ød1                              | 2   | Ød1                               |                | Ød1                          | 4   | Ød1                               |                | Ød1                          |
|-----|-----------------------------------|-----|-----------------------------------|-----|----------------------------------|-----|-----------------------------------|----------------|------------------------------|-----|-----------------------------------|----------------|------------------------------|
|     | 5-0.8 mm<br><b>f</b> <sub>z</sub> |     | 0-1.2 mm<br><b>f</b> <sub>z</sub> |     | 5–1.8mm<br><b>f</b> <sub>z</sub> |     | 0–2.5 mm<br><b>f</b> <sub>z</sub> | V <sub>c</sub> | 3.0 mm <b>f</b> <sub>z</sub> |     | 0-6.0 mm<br><b>f</b> <sub>z</sub> | V <sub>c</sub> | 8.0 mm <b>f</b> <sub>z</sub> |
| 100 | 0.010-0.014                       | 140 | 0.015-0.017                       | 200 | 0.024-0.026                      | 220 | 0.034-0.036                       | 240            | 0.048                        | 280 | 0.050                             | 280            | 0.050                        |
| 100 | 0.009-0.012                       | 140 | 0.014-0.016                       | 200 | 0.022-0.024                      | 220 | 0.032-0.034                       | 240            | 0.046                        | 280 | 0.048                             | 280            | 0.048                        |
| 100 | 0.008-0.011                       | 140 | 0.011-0.013                       | 200 | 0.020-0.022                      | 220 | 0.030-0.032                       | 240            | 0.042                        | 280 | 0.044                             | 280            | 0.044                        |
| 100 | 0.010-0.014                       | 140 | 0.016-0.018                       | 200 | 0.024-0.026                      | 220 | 0.034-0.036                       | 240            | 0.046                        | 280 | 0.048                             | 280            | 0.048                        |
| 100 | 0.009-0.012                       | 140 | 0.015-0.017                       | 200 | 0.022-0.024                      | 220 | 0.032-0.034                       | 240            | 0.044                        | 280 | 0.046                             | 280            | 0.046                        |
| 100 | 0.009-0.012                       | 140 | 0.015-0.017                       | 200 | 0.022-0.024                      | 220 | 0.032-0.034                       | 240            | 0.044                        | 280 | 0.046                             | 280            | 0.046                        |
| 100 | 0.008-0.011                       | 140 | 0.012-0.014                       | 200 | 0.016-0.018                      | 220 | 0.030-0.032                       | 240            | 0.042                        | 280 | 0.044                             | 280            | 0.044                        |
| 100 | 0.006-0.009                       | 120 | 0.011-0.022                       | 140 | 0.024-0.026                      | 160 | 0.028-0.036                       | 180            | 0.042-0.048                  | 200 | 0.052-0.057                       | 200            | 0.052-0.057                  |
| 100 | 0.012-0.016                       | 140 | 0.018-0.020                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.012-0.016                       | 140 | 0.018-0.020                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.014-0.018                       | 140 | 0.020-0.022                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.014-0.018                       | 140 | 0.020-0.022                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.014-0.018                       | 140 | 0.020-0.022                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.012-0.016                       | 140 | 0.018-0.020                       | 200 | 0.026-0.028                      | 220 | 0.036-0.040                       | 240            | 0.058                        | 280 | 0.060                             | 280            | 0.060                        |
| 100 | 0.004-0.006                       | 120 | 0.007-0.008                       | 130 | 0.009-0.010                      | 140 | 0.010-0.012                       | 150            | 0.015                        | 170 | 0.020                             | 170            | 0.020                        |
| 100 | 0.008-0.011                       | 120 | 0.016-0.018                       | 130 | 0.020-0.022                      | 140 | 0.028-0.030                       | 150            | 0.042                        | 170 | 0.044                             | 170            | 0.044                        |
| 100 | 0.008-0.011                       | 120 | 0.016-0.018                       | 130 | 0.020-0.022                      | 140 | 0.028-0.030                       | 150            | 0.042                        | 170 | 0.044                             | 170            | 0.044                        |
| 100 | 0.004-0.006                       | 140 | 0.007-0.008                       | 180 | 0.009-0.010                      | 200 | 0.010-0.012                       | 220            | 0.015                        | 240 | 0.020                             | 240            | 0.020                        |
| 80  | 0.007-0.009                       | 100 | 0.010-0.012                       | 140 | 0.014-0.018                      | 180 | 0.020-0.026                       | 200            | 0.035                        | 240 | 0.040                             | 240            | 0.040                        |
|     |                                   |     |                                   |     |                                  |     |                                   |                |                              |     |                                   |                |                              |



# CrazyMill Cool Vollradius - Typ A - Vorschlichten

|                                                | Werkstoff-            | Werkstoff                                      | Wr.Nr.           | DIN               | AISI/ASTM/                   |                | <b>Ød</b> <sup>1</sup> |       |     | <b>Ød</b> 0.4 m  |       |    | <b>Ød</b> 0.5 m  |       |                | <b>Ød</b><br>0.6 m |       |
|------------------------------------------------|-----------------------|------------------------------------------------|------------------|-------------------|------------------------------|----------------|------------------------|-------|-----|------------------|-------|----|------------------|-------|----------------|--------------------|-------|
|                                                | gruppe                | WEIKSTOII                                      | VVI.IVI.         | DIN               | UNS                          |                |                        |       | ١   |                  |       | ١  |                  |       | ١              |                    |       |
|                                                |                       |                                                |                  |                   |                              | V <sub>c</sub> | d <sub>eff</sub>       | Iz    | Vc  | d <sub>eff</sub> | Iz    | Vc | d <sub>eff</sub> | Iz    | V <sub>c</sub> | d <sub>eff</sub>   | Iz    |
|                                                |                       |                                                | 1.0301           |                   | AISI 1010                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| Vorschlichten                                  | P                     | Ctäble uplegiert                               | 1.0401           | C15               | AISI 1015                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| \ 7/\                                          |                       | Stähle unlegiert<br>Rm < 800 N/mm <sup>2</sup> | 1.1191           | C45E/CK45         | AISI 1045                    | 55             | 0.29                   | 0.005 | 73  | 0.39             | 0.007 | 92 | 0.48             | 0.010 | 100            | 0.60               | 0.012 |
| · \// \                                        |                       | 1111 4 000 14111111                            | 1.0044           | S275JR            | AISI 1020                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| $a_p \mid \sqrt{\frac{d_{eff}}{d_{eff}}} \mid$ |                       |                                                | 1.0715           | 11SMn30           | AISI 1215                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| + <b>1</b>                                     |                       |                                                | 1.5752           | 15NiCr13          | ASTM 3415                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| —————————————————————————————————————          |                       | Stähle                                         | 1.7131           | 16MnCr5           | AISI 5115                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| 15°                                            |                       | niedriglegiert                                 | 1.3505           | 100Cr6            | AISI 52100                   | 55             | 0.29                   | 0.004 | 73  | 0.39             | 0.006 | 92 | 0.48             | 0.009 | 100            | 0.60               | 0.011 |
| ■ a <sub>n</sub> =0.25 x d₁                    |                       | Rm > 900 N/mm <sup>2</sup>                     | 1.7225           | 42CrMo4           | AISI 4140                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| $(\emptyset d_1 \le 0.5 \text{ mm})$           |                       |                                                | 1.2842           | 90MnCrV8          | AISI O2                      |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| $\mathbf{a}_{n} = 0.5 \times \mathbf{d}_{1}$   |                       | sac I sull                                     | 1.2379           | X153CrMoV12       | AISI D2                      |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| $(Ød_1 > 0.5 \text{ mm})$                      |                       | Werkzeugstähle<br>hochlegiert                  | 1.2436           | X210CrW12         | AISI D4/D6                   | 55             | 0.20                   | 0.004 | 72  | 0.30             | 0 006 | 02 | 0.49             | 0 000 | 100            | 0.60               | 0 000 |
|                                                |                       | Rm<1200 N/mm <sup>2</sup>                      | 1.3343           | HS6-5-2C          | AISI M2                      | ] ]            | 0.23                   | 0.004 | /3  | 0.55             | 0.000 | 32 | 0.40             | 0.008 | 100            | 0.00               | 0.003 |
| $\mathbf{a}_{e} = 0.1 \times \mathbf{d}_{1}$   |                       |                                                | 1.3355           | HS18-0-1          | AISI T1                      |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| Bearbeitungswinkel=15°                         |                       | Rostfreie Stähle-                              | 1.4016           | X6Cr17            | AISI 430                     |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | M                     | ferritisch                                     | 1.4105           | X6CrMoS17         | AISI 430F                    | 55             | 0.29                   | 0.005 | /3  | 0.39             | 0.007 | 92 | 0.48             | 0.010 | 100            | 0.60               | 0.012 |
|                                                | IVI                   | Rostfreie Stähle-                              | 1.4034           | X46Cr13           | AISI 420C                    |                | 0.25                   | 0.00: |     | 0.35             | 0.000 |    | 0.45             | 0.000 | 100            | 0.55               | 0.01- |
|                                                |                       | martensitisch                                  | 1.4112           | X90CrMoV18        | AISI 440B                    | 55             | 0.29                   | 0.004 | /3  | 0.39             | U.UU6 | 92 | 0.48             | 0.009 | 100            | 0.60               | 0.010 |
| \i i/                                          |                       | Rostfreie Stähle-                              | 1.4542           | X5CrNiCuNb 16-4   | AISI 630                     |                | 0.30                   | 0.001 | 77  | 0.30             | 0.000 | 03 | 0.40             | 0.000 | 100            | 0.55               | 0.010 |
| <b>∀ ∀</b>                                     |                       | martensitisch – PH                             | 1.4545           | X5CrNiCuNb 15-5   | ASTM 15-5 PH                 | 55             | 0.29                   | 0.004 | /3  | 0.39             | U.UU6 | 92 | 0.48             | 0.009 | 100            | 0.60               | 0.010 |
|                                                |                       |                                                | 1.4301           | X5CrNi 18-10      | AISI 304                     |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       | Rostfreie Stähle-                              | 1.4435           | X2CrNiMo 18-14-3  | AISI 316L                    |                | 0.00                   |       | 7.0 | 0.00             |       |    | 0.40             |       |                | 0.50               |       |
| <b>6</b>                                       |                       | austenitisch                                   | 1.4441           | X2CrNiMo 18-15-3  | AISI 316LM                   | 55             | 0.29                   | 0.004 | /3  | 0.39             | 0.006 | 92 | 0.48             | 0.008 | 100            | 0.60               | 0.010 |
| 1-1                                            |                       |                                                | 1.4539           | X1NiCrMoCu25-20-5 | AISI 904L                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       |                                                | 0.6020           | GG20              | ASTM 30                      |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | K                     |                                                | 0.6030           | GG30              | ASTM 40B                     |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| 1//1                                           |                       | Gusseisen                                      | 0.7040           | GGG40             | ASTM60-40-18                 | 55             | 0.29                   | 0.003 | 73  | 0.39             | 0.005 | 92 | 0.48             | 0.006 | 100            | 0.60               | 0.008 |
| <i>//</i> /                                    |                       |                                                |                  | GGG60             | ASTM80-60-03                 |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| <b>/</b> /_/\                                  |                       | Aluminium                                      | 3.2315           | AlMqSi1           | ASTM 6351                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | IN I                  | Knetlegierungen                                | 3.4365           | AlZnMgCu1.5       | ASTM 7075                    | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.012 | 100            | 0.60               | 0.014 |
| $\begin{bmatrix} d_1 \end{bmatrix}$            | N                     | Aluminium Druck-                               |                  |                   | ASTM A380                    |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
| <del>       </del>                             |                       | gusslegierungen                                | 3.2381           | GD-AlSi10Mg       | UNS A03590                   | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.012 | 100            | 0.60               | 0.014 |
|                                                |                       | 3                                              | 2.004            | Cu-OF / CW008A    | UNS C10100                   |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       | Kupfer                                         | 2.0065           | Cu-ETP / CW004A   | UNS C11000                   | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.014 | 100            | 0.60               | 0.016 |
|                                                |                       |                                                | 2.0321           | CuZn37 CW508L     | UNS C27400                   |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       | Messing bleifrei                               | 2.0321           | CuZn40 CW509L     | UNS C28000                   | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.014 | 100            | 0.60               | 0.016 |
|                                                |                       | Mossina Pranas                                 | 2.030            | CuZn39Pb3         | UNS C38500                   |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup>  | 2.102            | CuSn6             | UNS C51900                   | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.014 | 100            | 0.60               | 0.016 |
|                                                |                       |                                                | 2.0966           | CuAl10Ni5Fe4      | UNS C63000                   |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       | Bronze<br>Rm < 600 N/mm <sup>2</sup>           |                  | CuAl9Mn2          | UNS C63200                   | 55             | 0.29                   | 0.006 | 73  | 0.39             | 0.008 | 92 | 0.48             | 0.012 | 100            | 0.60               | 0.014 |
|                                                |                       |                                                |                  | CUAISIVIIIZ       |                              | -              |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | 6                     | 115 1 1                                        | 2.4856<br>2.4668 |                   | Inconel 625                  |                |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | S <sub>1</sub>        | Hitzebeständige<br>Stähle                      |                  | NiMo28            | Inconel 718<br>Hastelloy B-2 | 55             | 0.29                   | 0.003 | 73  | 0.39             | 0.004 | 92 | 0.48             | 0.004 | 100            | 0.60               | 0.005 |
|                                                | '                     | Startie                                        |                  | NiCr22Fe18Mo      | -                            | -              |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                |                       |                                                | 3.7035           |                   | Hastelloy X<br>ASTM B348     | -              |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | C                     | Titan rein                                     | 3.7055           |                   | ASTIVI B348<br>ASTM B348     | 55             | 0.29                   | 0.004 | 73  | 0.39             | 0.004 | 92 | 0.48             | 0.008 | 100            | 0.60               | 0.009 |
|                                                | S <sub>2</sub>        |                                                |                  | TiAl6V4           | ASTIVI B348                  | -              |                        |       |     |                  |       |    |                  |       | -              | -                  |       |
|                                                | _                     | Titan Legierungen                              | 9.9367           | TiAl6Nb7          | ASTM F1295                   | 55             | 0.29                   | 0.004 | 73  | 0.39             | 0.004 | 92 | 0.48             | 0.008 | 100            | 0.60               | 0.009 |
|                                                | C                     |                                                | 2.4964           | CoCr20W15Ni       | Haynes 25                    | -              |                        |       |     |                  |       |    |                  |       |                |                    |       |
|                                                | <b>S</b> <sub>3</sub> | CrCo-Legierungen                               | 2.7304           | CrCoMo28          | ASTM F1537                   | 55             | 0.29                   | 0.003 | 73  | 0.39             | 0.003 | 92 | 0.48             | 0.005 | 100            | 0.60               | 0.005 |
|                                                | H₁                    | Stähle gehärtet<br>< 55 HRC                    | 1.2510           | 100MnCrMoW4       | AISI O1                      | 55             | 0.29                   | 0.004 | 73  | 0.39             | 0.006 | 92 | 0.48             | 0.007 | 80             | 0.60               | 0.008 |
|                                                | 1 1                   | Stähle gehärtet                                |                  |                   |                              |                |                        |       |     |                  |       |    |                  |       |                |                    |       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                |              | 11   |      |                | Ød           |                |                | Ød               |       |                | Ød           |                |                | Ød                      |                |                | Ød                      |                |                | Ød           |                |     | Ød           |                |                | Ød           |                |                | Ød.              |                |                | Ød.              |      |
|----------------|--------------|------|------|----------------|--------------|----------------|----------------|------------------|-------|----------------|--------------|----------------|----------------|-------------------------|----------------|----------------|-------------------------|----------------|----------------|--------------|----------------|-----|--------------|----------------|----------------|--------------|----------------|----------------|------------------|----------------|----------------|------------------|------|
|                | ا8.0         |      | Ι,   |                | 1.0 m        | _              | ١,,            | 1.2 m            |       |                | 1.5 m        |                | ١.,            | 1.8 m                   | _              | 1              | 2.0 n                   |                | 1              | 2.5 m        | _              |     | 3.0 m        | _              |                | 4.0 m        | _              | 1 1            | 6.0 m            | _              |                | 8.0 m            | _    |
| V <sub>c</sub> | <b>G</b> eff | f f, | :    | V <sub>c</sub> | <b>G</b> eff | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | Iz    | V <sub>c</sub> | <b>G</b> eff | f <sub>z</sub> | V <sub>c</sub> | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | <b>G</b> eff | f <sub>z</sub> | Vc  | <b>U</b> eff | f <sub>z</sub> | V <sub>c</sub> | <b>U</b> eff | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | I <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | Iz   |
| 100            | 0.80         | 0.0  | 14 1 | 140            | 1.00         | 0.015          | 140            | 1.20             | 0.017 | 200            | 1.50         | 0.024          | 200            | 1.80                    | 0.026          | 220            | 2.00                    | 0.034          | 220            | 2.50         | 0.036          | 240 | 3.00         | 0.048          | 260            | 4.00         | 0.050          | 260            | 6.00             | 0.050          | 260            | 8.00             | 0.05 |
| 100            | 0.80         | 0.0  | 12 1 | 140            | 1.00         | 0.014          | 140            | 1.20             | 0.016 | 200            | 1.50         | 0.022          | 200            | 1.80                    | 0.024          | 220            | 2.00                    | 0.032          | 220            | 2.50         | 0.034          | 240 | 3.00         | 0.046          | 260            | 4.00         | 0.048          | 260            | 6.00             | 0.048          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.0  | 11 1 | 140            | 1.00         | 0.011          | 140            | 1.20             | 0.013 | 200            | 1.50         | 0.020          | 200            | 1.80                    | 0.022          | 220            | 2.00                    | 0.030          | 220            | 2.50         | 0.032          | 240 | 3.00         | 0.042          | 260            | 4.00         | 0.044          | 260            | 6.00             | 0.044          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.0  | 14 1 | 140            | 1.00         | 0.016          | 140            | 1.20             | 0.018 | 200            | 1.50         | 0.024          | 200            | 1.80                    | 0.026          | 220            | 2.00                    | 0.034          | 220            | 2.50         | 0.036          | 240 | 3.00         | 0.046          | 260            | 4.00         | 0.048          | 260            | 6.00             | 0.048          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.0  | 12 1 | 140            | 1.00         | 0.015          | 140            | 1.20             | 0.017 | 200            | 1.50         | 0.022          | 200            | 1.80                    | 0.024          | 220            | 2.00                    | 0.032          | 220            | 2.50         | 0.034          | 240 | 3.00         | 0.044          | 260            | 4.00         | 0.046          | 260            | 6.00             | 0.046          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.0  | 12 1 | 140            | 1.00         | 0.015          | 140            | 1.20             | 0.017 | 200            | 1.50         | 0.022          | 200            | 1.80                    | 0.024          | 220            | 2.00                    | 0.032          | 220            | 2.50         | 0.034          | 240 | 3.00         | 0.044          | 260            | 4.00         | 0.046          | 260            | 6.00             | 0.046          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.0  | 11 1 | 140            | 1.00         | 0.012          | 140            | 1.20             | 0.014 | 200            | 1.50         | 0.016          | 200            | 1.80                    | 0.018          | 220            | 2.00                    | 0.030          | 220            | 2.50         | 0.032          | 240 | 3.00         | 0.042          | 260            | 4.00         | 0.044          | 260            | 6.00             | 0.044          | 260            | 8.00             | 0.04 |
| 100            | 0.80         | 0.00 | 09 1 | 120            | 1.00         | 0.011          | 120            | 1.20             | 0.022 | 140            | 1.50         | 0.024          | 140            | 1.80                    | 0.026          | 160            | 2.00                    | 0.028          | 160            | 2.50         | 0.036          | 180 | 3.00         | 0.044          | 200            | 4.00         | 0.055          | 200            | 6.00             | 0.055          | 200            | 8.00             | 0.05 |
| 100            | 0.80         | 0.0  | 16 1 | 140            | 1.00         | 0.018          | 140            | 1.20             | 0.020 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 16 1 | 140            | 1.00         | 0.018          | 140            | 1.20             | 0.020 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 18 1 | 140            | 1.00         | 0.020          | 140            | 1.20             | 0.022 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 18 1 | 140            | 1.00         | 0.020          | 140            | 1.20             | 0.022 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 18 1 | 140            | 1.00         | 0.020          | 140            | 1.20             | 0.022 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 16 1 | 140            | 1.00         | 0.018          | 140            | 1.20             | 0.020 | 200            | 1.50         | 0.026          | 200            | 1.80                    | 0.028          | 220            | 2.00                    | 0.036          | 220            | 2.50         | 0.040          | 240 | 3.00         | 0.058          | 260            | 4.00         | 0.060          | 260            | 6.00             | 0.060          | 260            | 8.00             | 0.0  |
| 100            | 0.80         | 0.00 | 06 1 | 120            | 1.00         | 0.007          | 120            | 1.20             | 0.008 | 130            | 1.50         | 0.009          | 130            | 1.80                    | 0.010          | 140            | 2.00                    | 0.010          | 140            | 2.50         | 0.012          | 150 | 3.00         | 0.015          | 170            | 4.00         | 0.020          | 170            | 6.00             | 0.020          | 170            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 11 1 | 120            | 1.00         | 0.016          | 120            | 1.20             | 0.018 | 130            | 1.50         | 0.020          | 130            | 1.80                    | 0.022          | 140            | 2.00                    | 0.028          | 140            | 2.50         | 0.030          | 150 | 3.00         | 0.042          | 170            | 4.00         | 0.044          | 170            | 6.00             | 0.044          | 170            | 8.00             | 0.0  |
| 100            | 0.80         | 0.0  | 11 1 | 120            | 1.00         | 0.016          | 120            | 1.20             | 0.018 | 130            | 1.50         | 0.020          | 130            | 1.80                    | 0.022          | 140            | 2.00                    | 0.028          | 140            | 2.50         | 0.030          | 150 | 3.00         | 0.042          | 170            | 4.00         | 0.044          | 170            | 6.00             | 0.044          | 170            | 8.00             | 0.0  |
| 100            | 0.80         | 0.00 | 06 1 | 140            | 1.00         | 0.007          | 140            | 1.20             | 0.008 | 180            | 1.50         | 0.009          | 180            | 1.80                    | 0.010          | 200            | 2.00                    | 0.010          | 200            | 2.50         | 0.012          | 220 | 3.00         | 0.015          | 240            | 4.00         | 0.020          | 240            | 6.00             | 0.020          | 240            | 8.00             | 0.02 |
| 80             | 0.80         | 0.00 | 09 1 | 100            | 1.00         | 0.010          | 100            | 1.20             | 0.012 | 140            | 1.50         | 0.014          | 140            | 1.80                    | 0.018          | 180            | 2.00                    | 0.020          | 180            | 2.50         | 0.026          | 200 | 3.00         | 0.035          | 240            | 4.00         | 0.040          | 240            | 6.00             | 0.040          | 240            | 8.00             | 0.04 |



# CrazyMill Cool Vollradius - Typ A - Schlichten

|                                              | Werkstoff-            | Werkstoff                          | Wr.Nr.           | DIN                     | AISI/ASTM/                 |                | <b>Ød</b> ′      |       |                | <b>Ød</b> ′<br>0.4m |       |                | <b>Ød</b> 0.5 m  |       |                | <b>Ød</b> 0.6 m  |       |
|----------------------------------------------|-----------------------|------------------------------------|------------------|-------------------------|----------------------------|----------------|------------------|-------|----------------|---------------------|-------|----------------|------------------|-------|----------------|------------------|-------|
|                                              | gruppe                | VVEIKSTOII                         | VVI.IVI.         | DIN                     | UNS                        |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       |                                    |                  |                         |                            | V <sub>c</sub> | d <sub>eff</sub> | ľz    | V <sub>c</sub> | d <sub>eff</sub>    | Iz    | V <sub>c</sub> | d <sub>eff</sub> | ľz    | V <sub>c</sub> | d <sub>eff</sub> | Γz    |
|                                              |                       |                                    | 1.0301           | C10                     | AISI 1010                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| Schlichten                                   | P                     | Stähle unlegiert                   | 1.0401           | C15                     | AISI 1015                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| \ 7/\                                        | "                     | Rm < 800 N/mm <sup>2</sup>         | 1.1191           | C45E/CK45               | AISI 1045                  | 45             | 0.24             | 0.006 | 59             | 0.31                | 800.0 | 74             | 0.39             | 0.012 | 89             | 0.47             | 0.014 |
| \                                            |                       | 1(111 < 000 14/111111              | 1.0044           | S275JR                  | AISI 1020                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $ a_p $ $ a_{eff} $                          |                       |                                    | 1.0715           | 11SMn30                 | AISI 1215                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      |                       |                                    | 1.5752           | 15NiCr13                | ASTM 3415                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| de                                           |                       | Stähle                             | 1.7131           | 16MnCr5                 | AISI 5115                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| 15°\                                         |                       | niedriglegiert                     | 1.3505           | 100Cr6                  | AISI 52100                 | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.011 | 89             | 0.47             | 0.013 |
|                                              |                       | Rm > 900 N/mm <sup>2</sup>         | 1.7225           | 42CrMo4                 | AISI 4140                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $\mathbf{a}_{p} = 0.1 \times \mathbf{d}_{1}$ |                       |                                    | 1.2842           | 90MnCrV8                | AISI O2                    |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $  a_e = 0.05 \times d_1 $                   |                       |                                    | 1.2379           | X153CrMoV12             | AISI D2                    |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| Bearbeitungswinkel = 15°                     |                       | Werkzeugstähle                     |                  | X210CrW12               | AISI D4/D6                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| bearbeitungswinker = 15                      |                       | hochlegiert                        |                  | HS6-5-2C                | AISI M2                    | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.011 |
| n <sub>max</sub> = 60'000 rpm                |                       | Rm<1200 N/mm <sup>2</sup>          |                  | HS18-0-1                | AISI T1                    |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | D 16 1 6:111                       |                  |                         |                            |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              | B 4                   | Rostfreie Stähle-<br>ferritisch    |                  | X6CrNoS17               | AISI 430<br>AISI 430F      | 45             | 0.24             | 0.006 | 59             | 0.31                | 800.0 | 74             | 0.39             | 0.012 | 89             | 0.47             | 0.014 |
|                                              | M                     |                                    |                  | X6CrMoS17<br>X46Cr13    |                            |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| \ii i/                                       |                       | Rostfreie Stähle-<br>martensitisch |                  |                         | AISI 420C                  | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.011 | 89             | 0.47             | 0.012 |
| <b>V</b>                                     |                       |                                    |                  | X90CrMoV18              | AISI 440B                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Rostfreie Stähle-                  |                  | X5CrNiCuNb 16-4         | AISI 630                   | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.011 | 89             | 0.47             | 0.012 |
|                                              |                       | martensitisch – PH                 |                  | X5CrNiCuNb 15-5         | ASTM 15-5 PH               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| (A)                                          |                       |                                    | 1.4301           | X5CrNi 18-10            | AISI 304                   |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| 101                                          |                       | Rostfreie Stähle-                  |                  | X2CrNiMo 18-14-3        | AISI 316L                  | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.012 |
|                                              |                       | austenitisch                       | 1.4441           | X2CrNiMo 18-15-3        | AISI 316LM                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       |                                    | 1.4539           | X1NiCrMoCu25-20-5       | AISI 904L                  | -              |                  |       |                |                     |       | _              |                  |       | _              |                  |       |
| 1//)                                         |                       |                                    | 0.6020           | GG20                    | ASTM 30                    |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| <i>\// \</i> /                               | K                     | Gusseisen                          | 0.6030           | GG30                    | ASTM 40B                   | 10             | 0.24             | 0.004 | E0.            | 0.21                | 0 006 | 74             | 0.20             | 0.007 | 90             | 0.47             | 0.009 |
| // / /                                       |                       | Gusseiseii                         | 0.7040           | GGG40                   | ASTM60-40-18               | 45             | 0.24             | 0.004 | 39             | 0.51                | 0.006 | /4             | 0.59             | 0.007 | 09             | 0.47             | 0.009 |
|                                              |                       |                                    | 0.7060           | GGG60                   | ASTM80-60-03               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Aluminium                          | 3.2315           | AlMgSi1                 | ASTM 6351                  |                |                  |       |                |                     |       |                | l                |       |                |                  |       |
| <b>u</b> 1→                                  | N                     | Knetlegierungen                    | 3.4365           | AlZnMgCu1.5             | ASTM 7075                  | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.014 | 89             | 0.47             | 0.017 |
|                                              | 1.4                   | Aluminium Druck-                   | 3.2163           | GD-AlSi9Cu3             | ASTM A380                  |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | gusslegierungen                    | 3.2381           | GD-AlSi10Mg             | UNS A03590                 | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.014 | 89             | 0.47             | 0.017 |
|                                              |                       |                                    | 2.004            | Cu-OF / CW008A          | UNS C10100                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Kupfer                             | 2.0065           | Cu-ETP / CW004A         | UNS C11000                 | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.017 | 89             | 0.47             | 0.019 |
|                                              |                       |                                    | 2.0321           | CuZn37 CW508L           | UNS C27400                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Messing bleifrei                   | 2.036            | CuZn40 CW509L           | UNS C28000                 | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.017 | 89             | 0.47             | 0.019 |
|                                              |                       | Messing, Bronze                    | 2.0401           | CuZn39Pb3               | UNS C38500                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Rm < 400 N/mm <sup>2</sup>         | 2.102            | CuSn6                   | UNS C51900                 | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.017 | 89             | 0.47             | 0.019 |
|                                              |                       | Bronze                             | 2.0966           | CuAl10Ni5Fe4            | UNS C63000                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       | Rm < 600 N/mm <sup>2</sup>         |                  | CuAl9Mn2                | UNS C63200                 | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.014 | 89             | 0.47             | 0.017 |
|                                              |                       |                                    |                  | 23/ 113/11/12           |                            |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              | C                     | Litterate and the                  | 2.4856<br>2.4668 |                         | Inconel 625<br>Inconel 718 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              | S <sub>1</sub>        | Hitzebeständige<br>Stähle          |                  | NiMo28                  | Hastelloy B-2              | 45             | 0.24             | 0.004 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.005 | 89             | 0.47             | 0.006 |
|                                              |                       | Jane                               |                  |                         | -                          |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                              |                       |                                    |                  | NiCr22Fe18Mo            | Hastelloy X                | -              |                  |       |                |                     |       |                |                  |       | -              |                  |       |
|                                              | C                     | Titan rein                         | 3.7035           |                         | ASTM B348                  | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.011 |
|                                              | S <sub>2</sub>        |                                    | 3.7065           |                         | ASTM B348                  | -              | -                |       |                |                     |       |                |                  |       |                |                  |       |
|                                              | _                     | Titan Legierungen                  |                  | TiAl6V4                 | ASTM B348                  | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.011 |
|                                              |                       |                                    | 9.9367           | TiAl6Nb7                | ASTM F1295                 | -              |                  |       |                |                     |       |                |                  |       | _              |                  |       |
|                                              | <b>S</b> <sub>3</sub> | CrCo-Legierungen                   | 2.4964           | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537    | 45             | 0.24             | 0.004 | 59             | 0.31                | 0.004 | 74             | 0.39             | 0.006 | 89             | 0.47             | 0.006 |
|                                              |                       | Stähle gehärtet                    | 1 2512           |                         |                            |                | 0.7.             | 0.00- |                | 0.7:                | 0.05= |                | 0.77             | 0.00= | 65             | 0.55             | 0.0:: |
|                                              | $ H_1 $               | < 55 HRC                           | 1.2510           | 100MnCrMoW4             | AISI O1                    | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.008 | 80             | 0.47             | 0.010 |
|                                              |                       | Stähle gehärtet                    |                  |                         |                            | 1              |                  |       | 1              |                     |       |                |                  |       | 1              |                  |       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                | Ç  | Ød1   | l              |                       | Ød               | 1              |                | Ød                 | 1              |                       | Ød               | 1              |                       | Ød                          | 1              |                | Ød                        | 1              |                       | Ød                 | 1              |                | Ød               | 1              |                | Ød                          | 1              |                | Ød               | 1              |                | Ød.              | 1              |
|----------------|----|-------|----------------|-----------------------|------------------|----------------|----------------|--------------------|----------------|-----------------------|------------------|----------------|-----------------------|-----------------------------|----------------|----------------|---------------------------|----------------|-----------------------|--------------------|----------------|----------------|------------------|----------------|----------------|-----------------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
|                |    | .8 mı |                |                       | 1.0 n            | nm             |                | 1.2 m              | nm             |                       | 1.5 m            | ım             |                       | 1.8 m                       | nm             |                | 2.0 m                     | ım             |                       | 2.5 m              |                |                | 3.0 m            | ım             |                | 4.0 m                       | ım             |                | 6.0 m            | ım             |                | 8.0 m            | nm             |
| V <sub>c</sub> | d  | eff   | f <sub>z</sub> | <b>V</b> <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{eff}$ | f <sub>z</sub> | <b>V</b> <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | <b>V</b> <sub>c</sub> | $\mathbf{d}_{\mathrm{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\text{eff}}$ | f <sub>z</sub> | <b>V</b> <sub>c</sub> | $\mathbf{d}_{eff}$ | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\mathrm{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> |
| 100            | 0. | .63   | 0.017          | 140                   | 0.79             | 0.018          | 140            | 0.94               | 0.020          | 200                   | 1.18             | 0.029          | 200                   | 1.42                        | 0.031          | 220            | 1.57                      | 0.041          | 220                   | 1.97               | 0.043          | 240            | 2.36             | 0.058          | 260            | 3.15                        | 0.060          | 260            | 4.72             | 0.060          | 260            | 6.29             | 0.060          |
| 100            | 0. | .63   | 0.014          | 140                   | 0.79             | 0.017          | 140            | 0.94               | 0.019          | 200                   | 1.18             | 0.026          | 200                   | 1.42                        | 0.029          | 220            | 1.57                      | 0.038          | 220                   | 1.97               | 0.041          | 240            | 2.36             | 0.055          | 260            | 3.15                        | 0.058          | 260            | 4.72             | 0.058          | 260            | 6.29             | 0.058          |
| 100            | 0. | .63   | 0.013          | 140                   | 0.79             | 0.013          | 140            | 0.94               | 0.016          | 200                   | 1.18             | 0.024          | 200                   | 1.42                        | 0.026          | 220            | 1.57                      | 0.036          | 220                   | 1.97               | 0.038          | 240            | 2.36             | 0.050          | 260            | 3.15                        | 0.053          | 260            | 4.72             | 0.053          | 260            | 6.29             | 0.05           |
| 100            | 0. | .63   | 0.017          | 140                   | 0.79             | 0.019          | 140            | 0.94               | 0.022          | 200                   | 1.18             | 0.029          | 200                   | 1.42                        | 0.031          | 220            | 1.57                      | 0.041          | 220                   | 1.97               | 0.043          | 240            | 2.36             | 0.055          | 260            | 3.15                        | 0.058          | 260            | 4.72             | 0.058          | 260            | 6.29             | 0.058          |
| 100            | 0. | .63   | 0.014          | 140                   | 0.79             | 0.018          | 140            | 0.94               | 0.020          | 200                   | 1.18             | 0.026          | 200                   | 1.42                        | 0.029          | 220            | 1.57                      | 0.038          | 220                   | 1.97               | 0.041          | 240            | 2.36             | 0.053          | 260            | 3.15                        | 0.055          | 260            | 4.72             | 0.055          | 260            | 6.29             | 0.05           |
| 100            | 0. | .63   | 0.014          | 140                   | 0.79             | 0.018          | 140            | 0.94               | 0.020          | 200                   | 1.18             | 0.026          | 200                   | 1.42                        | 0.029          | 220            | 1.57                      | 0.038          | 220                   | 1.97               | 0.041          | 240            | 2.36             | 0.053          | 260            | 3.15                        | 0.055          | 260            | 4.72             | 0.055          | 260            | 6.29             | 0.05!          |
| 100            | 0. | .63   | 0.013          | 140                   | 0.79             | 0.014          | 140            | 0.94               | 0.017          | 200                   | 1.18             | 0.019          | 200                   | 1.42                        | 0.022          | 220            | 1.57                      | 0.036          | 220                   | 1.97               | 0.038          | 240            | 2.36             | 0.050          | 260            | 3.15                        | 0.053          | 260            | 4.72             | 0.053          | 260            | 6.29             | 0.05           |
| 100            | 0. | .63   | 0.011          | 120                   | 0.79             | 0.013          | 120            | 0.94               | 0.026          | 140                   | 1.18             | 0.029          | 140                   | 1.42                        | 0.031          | 160            | 1.57                      | 0.034          | 160                   | 1.97               | 0.043          | 180            | 2.36             | 0.053          | 200            | 3.15                        | 0.066          | 200            | 4.72             | 0.066          | 200            | 6.29             | 0.06           |
| 100            | 0. | .63   | 0.019          | 140                   | 0.79             | 0.022          | 140            | 0.94               | 0.024          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.019          | 140                   | 0.79             | 0.022          | 140            | 0.94               | 0.024          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.022          | 140                   | 0.79             | 0.024          | 140            | 0.94               | 0.026          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.022          | 140                   | 0.79             | 0.024          | 140            | 0.94               | 0.026          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.022          | 140                   | 0.79             | 0.024          | 140            | 0.94               | 0.026          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.019          | 140                   | 0.79             | 0.022          | 140            | 0.94               | 0.024          | 200                   | 1.18             | 0.031          | 200                   | 1.42                        | 0.034          | 220            | 1.57                      | 0.043          | 220                   | 1.97               | 0.048          | 240            | 2.36             | 0.070          | 260            | 3.15                        | 0.072          | 260            | 4.72             | 0.072          | 260            | 6.29             | 0.07           |
| 100            | 0. | .63   | 0.007          | 120                   | 0.79             | 0.008          | 120            | 0.94               | 0.010          | 130                   | 1.18             | 0.011          | 130                   | 1.42                        | 0.012          | 140            | 1.57                      | 0.012          | 140                   | 1.97               | 0.014          | 150            | 2.36             | 0.018          | 170            | 3.15                        | 0.024          | 170            | 4.72             | 0.024          | 170            | 6.29             | 0.024          |
| 100            | 0. | .63   | 0.013          | 120                   | 0.79             | 0.019          | 120            | 0.94               | 0.022          | 130                   | 1.18             | 0.024          | 130                   | 1.42                        | 0.026          | 140            | 1.57                      | 0.034          | 140                   | 1.97               | 0.036          | 150            | 2.36             | 0.050          | 170            | 3.15                        | 0.053          | 170            | 4.72             | 0.053          | 170            | 6.29             | 0.05           |
| 100            | 0. | .63   | 0.013          | 120                   | 0.79             | 0.019          | 120            | 0.94               | 0.022          | 130                   | 1.18             | 0.024          | 130                   | 1.42                        | 0.026          | 140            | 1.57                      | 0.034          | 140                   | 1.97               | 0.036          | 150            | 2.36             | 0.050          | 170            | 3.15                        | 0.053          | 170            | 4.72             | 0.053          | 170            | 6.29             | 0.05           |
| 100            | 0. | .63   | 0.007          | 140                   | 0.79             | 0.008          | 140            | 0.94               | 0.010          | 180                   | 1.18             | 0.011          | 180                   | 1.42                        | 0.012          | 200            | 1.57                      | 0.012          | 200                   | 1.97               | 0.014          | 220            | 2.36             | 0.018          | 240            | 3.15                        | 0.024          | 240            | 4.72             | 0.024          | 240            | 6.29             | 0.02           |
| 80             | 0. | .63   | 0.011          | 100                   | 0.79             | 0.012          | 100            | 0.94               | 0.014          | 140                   | 1.18             | 0.017          | 140                   | 1.42                        | 0.022          | 180            | 1.57                      | 0.024          | 180                   | 1.97               | 0.031          | 200            | 2.36             | 0.042          | 240            | 3.15                        | 0.048          | 240            | 4.72             | 0.048          | 240            | 6.29             | 0.04           |



## CrazyMill Cool Vollradius - Typ B - 3 x d

### FRÄSEN MIT INTEGRIERTER KÜHLUNG



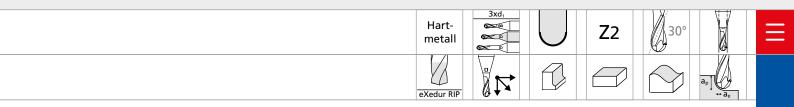
Fräser CrazyMill Cool Vollradius Typ B, für eine max. Bearbeitungstiefe von 3 x d und mit einer Schneidenlänge von 2 x d:

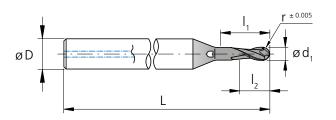
CrazyMill Cool Vollradius setzt neue Massstäbe beim Kopierfräsen und Wandungsfräsen. Seine Stärken sind die hohen Schnittgeschwindigkeiten und -tiefen, Abtragsraten, Standzeiten und die erreichbare Oberflächenqualität.

Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


### **Hinweis**

Sie haben nicht die passende Variante von CrazyMill Cool Vollradius (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







I<sub>1</sub> = Nutzlänge l<sub>2</sub> = Schneidenlänge

| ab Lager | Artikelnummer      | <b>d</b> <sub>1</sub><br>-/+ 0.01<br>[mm] | <b>r</b> | <b>I</b> <sub>1</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6) | <b>L</b> [mm] | <b>Z</b> [Zähne] |
|----------|--------------------|-------------------------------------------|----------|-----------------------|------------------------------|------------------|---------------|------------------|
| -        |                    |                                           |          |                       |                              |                  |               |                  |
| -        | 2.CMC30.B5Z2.030.1 | 0.30                                      | 0.15     | 0.9                   | 0.6                          | 3                | 38            | 2                |
| -        | 2.CMC30.B5Z2.040.1 | 0.40                                      | 0.20     | 1.2                   | 8.0                          | 3                | 38            | 2                |
| -        | 2.CMC30.B5Z2.050.1 | 0.50                                      | 0.25     | 1.5                   | 1.0                          | 3                | 38            | 2                |
| -        | 2.CMC30.B5Z2.060.1 | 0.60                                      | 0.30     | 1.8                   | 1.2                          | 3                | 38            | 2                |
| -        | 2.CMC30.B5Z2.080.1 | 0.80                                      | 0.40     | 2.4                   | 1.6                          | 3                | 38            | 2                |
| -        | 2.CMC30.B5Z2.100.1 | 1.00                                      | 0.50     | 3.0                   | 2.0                          | 4                | 40            | 2                |
| -        | 2.CMC30.B5Z2.120.1 | 1.20                                      | 0.60     | 3.6                   | 2.4                          | 4                | 40            | 2                |
| -        | 2.CMC30.B5Z2.150.1 | 1.50                                      | 0.75     | 4.5                   | 3.0                          | 4                | 40            | 2                |
| -        | 2.CMC30.B5Z2.180.1 | 1.80                                      | 0.90     | 5.4                   | 3.6                          | 4                | 40            | 2                |
| -        | 2.CMC30.B5Z2.200.1 | 2.00                                      | 1.00     | 6.0                   | 4.0                          | 4                | 40            | 2                |
| -        | 2.CMC30.B5Z2.250.1 | 2.50                                      | 1.25     | 7.5                   | 5.0                          | 6                | 45            | 2                |
| -        | 2.CMC30.B5Z2.300.1 | 3.00                                      | 1.50     | 9.0                   | 6.0                          | 6                | 50            | 2                |
| -        | 2.CMC30.B5Z2.400.1 | 4.00                                      | 2.00     | 12.0                  | 8.0                          | 6                | 55            | 2                |
| -        | 2.CMC30.B5Z2.600.1 | 6.00                                      | 3.00     | 18.0                  | 12.0                         | 10               | 65            | 2                |
|          | 2.CMC30.B5Z2.800.1 | 8.00                                      | 4.00     | 24.0                  | 16.0                         | 12               | 80            | 2                |



# CrazyMill Cool Vollradius - Typ B - Schruppen

|                                                            | Werkstoff-<br>gruppe  | Werkstoff                   | Wr.Nr. | DIN                     | AISI/ASTM/UNS                  |     | <b>Ød1</b><br>-0.4 mm |
|------------------------------------------------------------|-----------------------|-----------------------------|--------|-------------------------|--------------------------------|-----|-----------------------|
|                                                            | gruppe                |                             |        |                         |                                | V.  | f <sub>z</sub>        |
|                                                            |                       |                             | 1.0301 | C10                     | AISI 1010                      | - ( | -2                    |
|                                                            | D                     |                             | 1.0401 | C15                     | AISI 1015                      |     |                       |
| ruppen                                                     | P                     | Stähle unlegiert            | 1.1191 | C45E/CK45               | AISI 1015                      | 60  | 0.005-0.007           |
| 1//1                                                       |                       | Rm < 800 N/mm <sup>2</sup>  | 1.0044 | S275JR                  | AISI 1049                      | 60  | 0.005-0.007           |
| <i>V//</i> /l                                              |                       |                             |        | 11SMn30                 |                                |     |                       |
| _/// / \                                                   |                       |                             | 1.0715 |                         | AISI 1215                      |     |                       |
|                                                            |                       |                             | 1.5752 | 15NiCr13<br>16MnCr5     | ASTM 3415 / AISI 3310          |     |                       |
|                                                            |                       | Stähle niedriglegiert       | 1.7131 |                         | AISI 5115                      |     | 0.004.0.005           |
| ↔ d <sub>e</sub>                                           |                       | Rm > 900 N/mm <sup>2</sup>  | 1.3505 | 100Cr6                  | AISI 52100                     | 60  | 0.004-0.006           |
| =0.5 x d <sub>1</sub>                                      |                       |                             | 1.7225 | 42CrMo4                 | AISI 4140                      |     |                       |
| d₁≤0.5 mm)                                                 |                       |                             | 1.2842 | 90MnCrV8                | AISI O2                        |     |                       |
| = 1 x d <sub>1</sub>                                       |                       | Werkzeugstähle              | 1.2379 | X153CrMoV12             | AISI D2                        |     |                       |
| d <sub>1</sub> >0.5 mm)                                    |                       | hochlegiert                 | 1.2436 | X210CrW12               | AISI D4/D6                     | 60  | 0.004-0.006           |
| = 0.3 x d <sub>1</sub>                                     |                       | Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C                | AISI M2 / UNS T11302           |     |                       |
| - 0.5 X u <sub>1</sub>                                     |                       |                             | 1.3355 | HS18-0-1                | AISI T1 / UNS T12001           |     |                       |
| beitungswinkel = 0°                                        |                       | Rostfreie Stähle-           | 1.4016 | X6Cr17                  | AISI 430 / UNS S43000          | 60  | 0.005-0.007           |
|                                                            | M                     | ferritisch                  | 1.4105 | X6CrMoS17               | AISI 430F                      |     | 0.003-0.007           |
|                                                            | IVI                   | Rostfreie Stähle-           | 1.4034 | X46Cr13                 | AISI 420C                      | 60  | 0.004-0.006           |
|                                                            |                       | martensitisch               | 1.4112 | X90CrMoV18              | AISI 440B                      | 00  | 0.004-0.000           |
| \ <del>\</del>                                             |                       | Rostfreie Stähle-           | 1.4542 | X5CrNiCuNb 16-4         | AISI 630 / ASTM 17-4 PH        | 60  | 0.004-0.006           |
| <b>\b \d</b>                                               |                       | martensitisch – PH          | 1.4545 | X5CrNiCuNb 15-5         | ASTM 15-5 PH                   | 00  | 0.004-0.000           |
|                                                            |                       |                             | 1.4301 | X5CrNi 18-10            | AISI 304                       |     |                       |
|                                                            |                       | Rostfreie Stähle-           | 1.4435 | X2CrNiMo 18-14-3        | AISI 316L                      | 60  | 0.004-0.006           |
|                                                            |                       | austenitisch                | 1.4441 | X2CrNiMo 18-15-3        | AISI 316LM                     | 60  | 0.004-0.006           |
| 191                                                        |                       |                             | 1.4539 | X1NiCrMoCu 25-20-5      | AISI 904L                      |     |                       |
|                                                            |                       |                             | 0.6020 | GG20                    | ASTM 30                        |     |                       |
|                                                            | K                     |                             | 0.6030 | GG30                    | ASTM 40B                       |     |                       |
| 1//)                                                       |                       | Gusseisen                   | 0.7040 | GGG40                   | ASTM 60-40-18                  | 60  | 0.003-0.005           |
| <i>\//</i> / /                                             |                       |                             | 0.7060 | GGG60                   | ASTM 80-60-03                  |     |                       |
| <b>//</b> /                                                |                       | Aluminium                   | 3.2315 | AlMgSi1                 | ASTM 6351                      |     |                       |
|                                                            | N                     | Knetlegierungen             | 3.4365 | AlZnMgCu1.5             | ASTM 7075                      | 60  | 0.006-0.008           |
| $\left  \begin{array}{c} \mathbf{d}_1 \end{array} \right $ | I VI                  | Aluminium                   | 3.2163 | GD-AlSi9Cu3             | ASTM A380                      |     |                       |
| <del>                                     </del>           |                       | Druckgusslegierungen        | 3.2381 | GD-AlSi10Mg             | UNS A03590                     | 60  | 0.006-0.008           |
|                                                            |                       |                             | 2.004  | Cu-OF / CW008A          | UNS C10100                     |     |                       |
|                                                            |                       | Kupfer                      | 2.0065 | Cu-ETP / CW004A         | UNS C11000                     | 60  | 0.006-0.008           |
|                                                            |                       |                             | 2.0321 | CuZn37 CW508L           | UNS C27400                     |     |                       |
|                                                            |                       | Messing bleifrei            | 2.036  | CuZn40 CW509L           | UNS C28000                     | 60  | 0.006-0.008           |
|                                                            |                       | Messing, Bronze             | 2.0401 | CuZn39Pb3 / CW614N      |                                |     |                       |
|                                                            |                       | Rm < 400 N/mm <sup>2</sup>  | 2.102  | CuSn6                   | UNS C51900                     | 60  | 0.006-0.008           |
|                                                            |                       | Bronze                      | 2.0966 | CuAl10Ni5Fe4            | UNS C63000                     |     |                       |
|                                                            |                       | Rm < 600 N/mm <sup>2</sup>  | 2.096  | CuAl9Mn2                | UNS C63200                     | 60  | 0.006-0.008           |
|                                                            |                       |                             |        |                         |                                |     |                       |
|                                                            | C                     | I Canada and C              | 2.4856 |                         | Inconel 625<br>Inconel 718     |     |                       |
|                                                            | S <sub>1</sub>        | Hitzebeständige<br>Stähle   | 2.4617 | NiMo28                  | Hastelloy B-2                  | 60  | 0.003-0.004           |
|                                                            | "                     | Startic                     | 2.4665 | NiCr22Fe18Mo            | Hastelloy X                    |     |                       |
|                                                            |                       |                             | 3.7035 | Gr.2                    | ASTM B348 / F67                |     |                       |
|                                                            | C                     | Titan rein                  | 3.7055 | Gr.4                    | ASTM B348 / F68                | 60  | 0.004-0.006           |
|                                                            | S <sub>2</sub>        |                             | 3.7065 | TiAl6V4                 |                                |     |                       |
|                                                            | _                     | Titan Legierungen           | 9.9367 | TiAl6Nb7                | ASTM B348 / F136<br>ASTM F1295 | 60  | 0.004-0.006           |
|                                                            | C                     |                             |        |                         |                                |     |                       |
|                                                            | <b>S</b> <sub>3</sub> | CrCo-Legierungen            | 2.4964 | CoCr20W15Ni<br>CrCoMo28 | Haynes 25                      | 60  | 0.003-0.004           |
|                                                            | - 3                   |                             |        | CICUIVIUZŎ              | ASTM F1537                     |     |                       |
|                                                            | $H_1$                 | Stähle gehärtet             | 1.2510 | 100MnCrMoW4             | AISI O1                        | 60  | 0.004-0.006           |
|                                                            | 1 11                  | < 55 HRC                    |        | -                       |                                |     |                       |
|                                                            | $H_2$                 | Stähle gehärtet             |        |                         |                                |     |                       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

Ød1

Ød1

Ød1

ANWENDUNGSEMPFEHLUNG

Ød1

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen

Ød1



Ød1

|                | bui            |                | gui            |                | gui            |                | , out          |                | you i          |                | bui            |                | bui            |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                | 5-0.8 mm       |                | 0-1.2 mm       |                | 5–1.8mm        |                | 0–2.5 mm       |                | 3.0 mm         |                | 0-6.0 mm       |                | 8.0 mm         |
| V <sub>c</sub> | f <sub>z</sub> |
| 100            | 0.010-0.014    | 140            | 0.015-0.017    | 200            | 0.024-0.026    | 220            | 0.034-0.036    | 240            | 0.046          | 280            | 0.050          | 280            | 0.050          |
| 100            | 0.009-0.012    | 140            | 0.014-0.016    | 200            | 0.022-0.024    | 220            | 0.032-0.034    | 240            | 0.044          | 280            | 0.048          | 280            | 0.048          |
| 100            | 0.008-0.011    | 140            | 0.011-0.013    | 200            | 0.020-0.022    | 220            | 0.030-0.032    | 240            | 0.040          | 280            | 0.042          | 280            | 0.042          |
| 100            | 0.010-0.014    | 140            | 0.016-0.018    | 200            | 0.024-0.026    | 220            | 0.034-0.036    | 240            | 0.044          | 280            | 0.048          | 280            | 0.048          |
| 100            | 0.009-0.012    | 140            | 0.015-0.017    | 200            | 0.022-0.024    | 220            | 0.032-0.034    | 240            | 0.044          | 280            | 0.046          | 280            | 0.046          |
| 100            | 0.009-0.012    | 140            | 0.015-0.017    | 200            | 0.022-0.024    | 220            | 0.032-0.034    | 240            | 0.044          | 280            | 0.046          | 280            | 0.046          |
| 100            | 0.008-0.011    | 140            | 0.012-0.014    | 200            | 0.016-0.018    | 220            | 0.030-0.032    | 240            | 0.040          | 280            | 0.044          | 280            | 0.044          |
| 100            | 0.006-0.009    | 120            | 0.011-0.022    | 140            | 0.024-0.026    | 160            | 0.028-0.036    | 180            | 0.040-0.047    | 200            | 0.050-0.054    | 200            | 0.050-0.054    |
| 100            | 0.012-0.016    | 140            | 0.018-0.020    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.012-0.016    | 140            | 0.018-0.020    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.014-0.018    | 140            | 0.020-0.022    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.014-0.018    | 140            | 0.020-0.022    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.014-0.018    | 140            | 0.020-0.022    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.012-0.016    | 140            | 0.018-0.020    | 200            | 0.026-0.028    | 220            | 0.036-0.040    | 240            | 0.058          | 280            | 0.060          | 280            | 0.060          |
| 100            | 0.004-0.006    | 120            | 0.007-0.008    | 130            | 0.009-0.010    | 140            | 0.010-0.012    | 150            | 0.015          | 170            | 0.020          | 170            | 0.020          |
| 100            | 0.008-0.011    | 120            | 0.016-0.018    | 130            | 0.020-0.022    | 140            | 0.028-0.030    | 150            | 0.040          | 170            | 0.044          | 170            | 0.044          |
| 100            | 0.008-0.011    | 120            | 0.016-0.018    | 130            | 0.020-0.022    | 140            | 0.028-0.030    | 150            | 0.040          | 170            | 0.044          | 170            | 0.044          |
| 100            | 0.004-0.006    | 140            | 0.007-0.008    | 180            | 0.009-0.010    | 200            | 0.010-0.012    | 220            | 0.015          | 240            | 0.020          | 240            | 0.020          |
| 80             | 0.007-0.009    | 100            | 0.010-0.012    | 140            | 0.014-0.018    | 180            | 0.020-0.026    | 200            | 0.033          | 240            | 0.040          | 240            | 0.040          |
|                |                |                |                |                |                |                |                |                |                |                |                |                |                |
|                | <u> </u>       |                |                |                |                |                |                |                |                |                | 1              |                |                |

Ød1



# CrazyMill Cool Vollradius - Typ B - Vorschlichten

|                                                         | Werkstoff-<br>gruppe  | Werkstoff                                | Wr.Nr. | DIN                     | AISI/ASTM/<br>UNS       |    | <b>Ød</b> ′      |       |     | <b>Ød</b> 0.4 m  |       |     | <b>Ød</b> 0.5 m  |       |     | <b>Ød</b><br>0.6 m |       |
|---------------------------------------------------------|-----------------------|------------------------------------------|--------|-------------------------|-------------------------|----|------------------|-------|-----|------------------|-------|-----|------------------|-------|-----|--------------------|-------|
|                                                         | 5 11                  |                                          |        |                         | UNS                     | V. | $d_{\text{eff}}$ | f.    | V.  | $d_{\text{eff}}$ | f.    | V.  | $d_{\text{eff}}$ | f.    | V.  | $d_{\text{eff}}$   | f.    |
|                                                         |                       |                                          | 1.0301 | C10                     | AISI 1010               | T  | en               |       |     | · en             |       |     | - 611            |       |     | · en               | _     |
|                                                         | D                     |                                          | 1.0401 | C15                     | AISI 1015               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| Vorschlichten                                           | P                     | Stähle unlegiert                         | 1.1191 | C45E/CK45               | AISI 1045               | 55 | 0.29             | 0.005 | 73  | 0.39             | 0.007 | 92  | 0.48             | 0.010 | 100 | 0.60               | 0.013 |
| \                                                       |                       | Rm < 800 N/mm <sup>2</sup>               | 1.0044 | S275JR                  | AISI 1020               | "  | 0.23             | 0.005 | ,,, | 0.55             | 0.007 | "   | 0.10             | 0.0.0 |     | 0.00               | 0.01. |
| a <sub>p</sub> ↑  d <sub>eff</sub>                      |                       |                                          |        | 11SMn30                 | AISI 1215               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       |                                          |        | 15NiCr13                | ASTM 3415               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| a <sub>e</sub>                                          |                       | Stähle                                   | 1.7131 | 16MnCr5                 | AISI 5115               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| 15°                                                     |                       | niedriglegiert                           | 1.3505 | 100Cr6                  | AISI 52100              | 55 | 0.29             | 0.004 | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.009 | 100 | 0.60               | 0.01  |
| - a 0.25 v.d                                            |                       | Rm > 900 N/mm <sup>2</sup>               | 1.7225 | 42CrMo4                 | AISI 4140               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| ■ $a_p = 0.25 \times d_1$<br>(Ød <sub>1</sub> ≤ 0.5 mm) |                       |                                          | 1.2842 | 90MnCrV8                | AISI O2                 |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| ,                                                       |                       |                                          | 1.2379 | X153CrMoV12             | AISI D2                 |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| ■ $a_p = 0.5 \times d_1$<br>(Ød <sub>1</sub> >0.5 mm)   |                       | Werkzeugstähle                           | 1.2436 | X210CrW12               | AISI D4/D6              |    | 0.20             | 0.004 | 72  | 0.20             | 0.000 | 0.3 | 0.40             | 0.000 | 100 | 0.00               | 0.000 |
|                                                         |                       | hochlegiert<br>Rm<1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C                | AISI M2                 | 55 | 0.29             | 0.004 | /3  | 0.39             | 0.006 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.009 |
| $\mathbf{a}_{e} = 0.1 \times \mathbf{d}_{1}$            |                       | 1111 < 1200 14111111                     | 1.3355 | HS18-0-1                | AISI T1                 |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| Bearbeitungswinkel = 15°                                |                       | Rostfreie Stähle-                        | 1.4016 | X6Cr17                  | AISI 430                |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         | M                     | ferritisch                               |        | X6CrMoS17               | AISI 430F               | 55 | 0.29             | 0.005 | 73  | 0.39             | 0.007 | 92  | 0.48             | 0.010 | 100 | 0.60               | 0.012 |
|                                                         | IVI                   | Rostfreie Stähle-                        | 1.4034 | X46Cr13                 | AISI 420C               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       | martensitisch                            | 1.4112 | X90CrMoV18              | AISI 440B               | 55 | 0.29             | 0.004 | /3  | 0.39             | 0.006 | 92  | 0.48             | 0.009 | 100 | 0.60               | 0.010 |
| \i i/                                                   |                       | Rostfreie Stähle-                        | 1.4542 | X5CrNiCuNb 16-4         | AISI 630                |    | 0.20             | 0.004 | 73  | 0.20             | 0.006 | 02  | 0.40             | 0.000 | 100 | 0.60               | 0.014 |
| <b>∀ ∀</b>                                              |                       | martensitisch – PH                       | 1.4545 | X5CrNiCuNb 15-5         | ASTM 15-5 PH            | 55 | 0.29             | 0.004 | /3  | 0.39             | 0.006 | 92  | 0.48             | 0.009 | 100 | 0.60               | 0.010 |
| A                                                       |                       |                                          | 1.4301 | X5CrNi 18-10            | AISI 304                |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
| /                                                       |                       | Rostfreie Stähle-                        | 1.4435 | X2CrNiMo 18-14-3        | AISI 316L               |    | 0.20             | 0.004 | 72  | 0.20             | 0.000 | 0.3 | 0.40             | 0.000 | 100 | 0.00               | 0.01/ |
| $\omega$                                                |                       | austenitisch                             | 1.4441 | X2CrNiMo 18-15-3        | AISI 316LM              | 25 | 0.29             | 0.004 | /3  | 0.39             | 0.006 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.010 |
| • •                                                     |                       |                                          | 1.4539 | X1NiCrMoCu25-20-5       | AISI 904L               |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       |                                          | 0.6020 | GG20                    | ASTM 30                 |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         | K                     | C                                        | 0.6030 | GG30                    | ASTM 40B                |    | 0.20             | 0.000 | 72  | 0.20             | 0.005 | 0.2 | 0.40             | 0.006 | 100 | 0.00               | 0.000 |
| \// <b>\</b>                                            |                       | Gusseisen                                | 0.7040 | GGG40                   | ASTM60-40-18            | 55 | 0.29             | 0.003 | /3  | 0.39             | 0.005 | 92  | 0.48             | 0.006 | 100 | 0.60               | 0.008 |
| // //                                                   |                       |                                          | 0.7060 | GGG60                   | ASTM80-60-03            |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       | Aluminium                                | 3.2315 | AlMgSi1                 | ASTM 6351               | l  |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         | N                     | Knetlegierungen                          | 3.4365 | AlZnMgCu1.5             | ASTM 7075               | 55 | 0.29             | 0.006 | /3  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.014 |
| $d_1$                                                   | 1.4                   | Aluminium Druck-                         | 3.2163 | GD-AlSi9Cu3             | ASTM A380               |    | 0.20             | 0.000 | 72  | 0.20             | 0.000 | 0.2 | 0.40             | 0.013 | 100 | 0.00               | 0.01  |
|                                                         |                       | gusslegierungen                          | 3.2381 | GD-AlSi10Mg             | UNS A03590              | 55 | 0.29             | 0.006 | /3  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.012 |
|                                                         |                       | Kupfer                                   | 2.004  | Cu-OF / CW008A          | UNS C10100              | 55 | 0.20             | 0.006 | 72  | 0.30             | 0.008 | 02  | 0.49             | 0.014 | 100 | 0.60               | 0.016 |
|                                                         |                       | Kupiei                                   | 2.0065 | Cu-ETP / CW004A         | UNS C11000              | رد | 0.23             | 0.000 | /3  | 0.55             | 0.008 | 32  | 0.40             | 0.014 | 100 | 0.00               | 0.010 |
|                                                         |                       | Messing bleifrei                         | 2.0321 | CuZn37 CW508L           | UNS C27400              | 55 | 0.20             | 0 006 | 73  | U 30             | 0.008 | 92  | 0.48             | 0.014 | 100 | 0.60               | 0.016 |
|                                                         |                       | TVICSSITIS DICTITET                      | 2.036  | CuZn40 CW509L           | UNS C28000              | 55 | 0.23             | 0.000 | ,,, | 0.55             | 0.000 | J2  | 0.40             | 0.014 | 100 | 0.00               | 0.01  |
|                                                         |                       | Messing, Bronze                          | 2.0401 | CuZn39Pb3               | UNS C38500              | 55 | 0.29             | 0.006 | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.014 | 100 | 0,60               | 0.016 |
|                                                         |                       | Rm < 400 N/mm <sup>2</sup>               | 2.102  | CuSn6                   | UNS C51900              |    |                  | 2.300 |     |                  | 2.300 |     |                  | 2.3.1 |     |                    |       |
|                                                         |                       | Bronze                                   | 2.0966 | CuAl10Ni5Fe4            | UNS C63000              | 55 | 0.29             | 0.006 | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.014 |
|                                                         |                       | Rm < 600 N/mm <sup>2</sup>               | 2.096  | CuAl9Mn2                | UNS C63200              | _  |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       |                                          | 2.4856 |                         | Inconel 625             |    |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         | S <sub>1</sub>        | Hitzebeständige                          | 2.4668 |                         | Inconel 718             | 55 | 0.29             | 0.003 | 73  | 0 30             | 0.004 | 92  | 0 48             | 0.004 | 100 | 0 60               | 0 004 |
|                                                         | <b>9</b> 1            | Stähle                                   |        | NiMo28                  | Hastelloy B-2           | 33 | 0.23             | 0.005 | ,,, | 0.55             | 0.004 | 52  | 0.40             | 0.004 | 100 | 0.00               | 0.00. |
|                                                         |                       |                                          |        | NiCr22Fe18Mo            | Hastelloy X             | _  |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       | Titan rein                               | 3.7035 |                         | ASTM B348               | 55 | 0.29             | 0.004 | 73  | 0.39             | 0.004 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.009 |
|                                                         | S <sub>2</sub>        |                                          | 3.7065 |                         | ASTM B348               | _  |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         |                       | Titan Legierungen                        |        | TiAl6V4                 | ASTM B348               | 55 | 0.29             | 0.004 | 73  | 0.39             | 0.004 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.009 |
|                                                         |                       | J : 1 Jul                                |        | TiAl6Nb7                | ASTM F1295              | -  |                  |       |     |                  |       |     |                  |       |     |                    |       |
|                                                         | <b>S</b> <sub>3</sub> | CrCo-Legierungen                         | 2.4964 | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537 | 55 | 0.29             | 0.003 | 73  | 0.39             | 0.003 | 92  | 0.48             | 0.005 | 100 | 0.60               | 0.00  |
|                                                         | Η₁                    | Stähle gehärtet<br>< 55 HRC              | 1.2510 | 100MnCrMoW4             | AISI O1                 | 55 | 0.29             | 0.004 | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.007 | 80  | 0.60               | 0.008 |
|                                                         | H <sub>2</sub>        | Stähle gehärtet                          | 1.2379 | X153CrMoV12             | AISI D2                 |    |                  |       |     |                  |       |     |                  |       |     |                    |       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|            |     | ۵ď               |                |                | Ød               |                |                | Ød               |                |                       | Ød               |                |                | Ød               |                |              | Ød               |                |            | Ød               |                |                | Ød               |                |     | Ød               |                |                       | Ød.              |                |                       | Ød               |      |
|------------|-----|------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|-----------------------|------------------|----------------|----------------|------------------|----------------|--------------|------------------|----------------|------------|------------------|----------------|----------------|------------------|----------------|-----|------------------|----------------|-----------------------|------------------|----------------|-----------------------|------------------|------|
| <b>,</b> , |     | اه.0<br>م        | _              |                | 1.0 m            | _              | .,             | 1.2 m            |                |                       | 1.5 m            |                |                | 1.8 n            | f <sub>z</sub> | \ <b>,</b> , | 2.0 n            | _              | <b>,</b> , | 2.5 m            |                | 1              | 3.0 m            | _              | 1   | 4.0 m            |                |                       | 6.0 m            | _              | 1                     | 8.0 m            |      |
| V.         | ,   | u <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | u <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | u <sub>eff</sub> | f <sub>z</sub> | <b>V</b> <sub>c</sub> | u <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | u <sub>eff</sub> | I <sub>z</sub> | Vc           | u <sub>eff</sub> | f <sub>z</sub> | Vc         | u <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | I <sub>z</sub> | Vc  | u <sub>eff</sub> | f <sub>z</sub> | <b>V</b> <sub>c</sub> | d <sub>eff</sub> | I <sub>z</sub> | <b>V</b> <sub>c</sub> | d <sub>eff</sub> | Iz   |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | U   | 0.80             | 0.014          | 140            | 1.00             | 0.015          | 140            | 1.20             | 0.017          | 200                   | 1.50             | 0.024          | 200            | 1.80             | 0.026          | 220          | 2.00             | 0.034          | 220        | 2.50             | 0.036          | 240            | 3.00             | 0.046          | 260 | 4.00             | 0.050          | 260                   | 6.00             | 0.050          | 260                   | 8.00             | 0.05 |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | U   | 0.80             | 0.012          | 140            | 1.00             | 0.014          | 140            | 1.20             | 0.016          | 200                   | 1.50             | 0.022          | 200            | 1.80             | 0.024          | 220          | 2.00             | 0.032          | 220        | 2.50             | 0.034          | 240            | 3.00             | 0.044          | 260 | 4.00             | 0.048          | 260                   | 6.00             | 0.048          | 260                   | 8.00             | 0.04 |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.011          | 140            | 1.00             | 0.011          | 140            | 1.20             | 0.013          | 200                   | 1.50             | 0.020          | 200            | 1.80             | 0.022          | 220          | 2.00             | 0.030          | 220        | 2.50             | 0.032          | 240            | 3.00             | 0.040          | 260 | 4.00             | 0.042          | 260                   | 6.00             | 0.042          | 260                   | 8.00             | 0.0  |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.014          | 140            | 1.00             | 0.016          | 140            | 1.20             | 0.018          | 200                   | 1.50             | 0.024          | 200            | 1.80             | 0.026          | 220          | 2.00             | 0.034          | 220        | 2.50             | 0.036          | 240            | 3.00             | 0.044          | 260 | 4.00             | 0.048          | 260                   | 6.00             | 0.048          | 260                   | 8.00             | 0.04 |
| 100        | 0 0 | 0.80             | 0.012          | 140            | 1.00             | 0.015          | 140            | 1.20             | 0.017          | 200                   | 1.50             | 0.022          | 200            | 1.80             | 0.024          | 220          | 2.00             | 0.032          | 220        | 2.50             | 0.034          | 240            | 3.00             | 0.044          | 260 | 4.00             | 0.046          | 260                   | 6.00             | 0.046          | 260                   | 8.00             | 0.04 |
| 100        | 0 0 | 0.80             | 0.012          | 140            | 1.00             | 0.015          | 140            | 1.20             | 0.017          | 200                   | 1.50             | 0.022          | 200            | 1.80             | 0.024          | 220          | 2.00             | 0.032          | 220        | 2.50             | 0.034          | 240            | 3.00             | 0.044          | 260 | 4.00             | 0.046          | 260                   | 6.00             | 0.046          | 260                   | 8.00             | 0.0  |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.011          | 140            | 1.00             | 0.012          | 140            | 1.20             | 0.014          | 200                   | 1.50             | 0.016          | 200            | 1.80             | 0.018          | 220          | 2.00             | 0.030          | 220        | 2.50             | 0.032          | 240            | 3.00             | 0.040          | 260 | 4.00             | 0.044          | 260                   | 6.00             | 0.044          | 260                   | 8.00             | 0.0  |
| -          | +   |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0 009          | 120            | 1 00             | 0.011          | 120            | 1 20             | 0.022          | 140                   | 1 50             | 0.024          | 140            | 1.80             | 0.026          | 160          | 2 00             | 0.028          | 160        | 2 50             | 0.036          | 180            | 3 00             | 0.043          | 200 | 4 00             | 0.050          | 200                   | 6.00             | 0.052          | 200                   | 8 00             | 0.0  |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.016          | 140            | 1.00             | 0.018          | 140            | 1.20             | 0.020          | 200                   | 1.50             | 0.026          | 200            | 1.80             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3.00             | 0.058          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8.00             | 0.06 |
| 100        | 0 0 | 0.80             | 0.016          | 140            | 1.00             | 0.018          | 140            | 1.20             | 0.020          | 200                   | 1.50             | 0.026          | 200            | 1.80             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3.00             | 0.058          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8.00             | 0.06 |
| 100        | 0 0 | 0.80             | 0.018          | 140            | 1.00             | 0.020          | 140            | 1.20             | 0.022          | 200                   | 1.50             | 0.026          | 200            | 1.80             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3.00             | 0.058          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8.00             | 0.06 |
| 100        | 0 0 | 0.00             | 0.019          | 140            | 1.00             | 0.020          | 140            | 1 20             | 0.022          | 200                   | 1 50             | 0.026          | 200            | 1 90             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3 00             | 0.059          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8 00             | 0.06 |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.018          | 140            | 1.00             | 0.020          | 140            | 1.20             | 0.022          | 200                   | 1.50             | 0.026          | 200            | 1.80             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3.00             | 0.058          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8.00             | 0.0  |
| 100        | 0 0 | 0.80             | 0.016          | 140            | 1.00             | 0.018          | 140            | 1.20             | 0.020          | 200                   | 1.50             | 0.026          | 200            | 1.80             | 0.028          | 220          | 2.00             | 0.036          | 220        | 2.50             | 0.040          | 240            | 3.00             | 0.058          | 260 | 4.00             | 0.060          | 260                   | 6.00             | 0.060          | 260                   | 8.00             | 0.06 |
|            |     |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | ט ס | 0.80             | 0.006          | 120            | 1.00             | 0.007          | 120            | 1.20             | 0.008          | 130                   | 1.50             | 0.009          | 130            | 1.80             | 0.010          | 140          | 2.00             | 0.010          | 140        | 2.50             | 0.012          | 150            | 3.00             | 0.015          | 170 | 4.00             | 0.020          | 170                   | 6.00             | 0.020          | 170                   | 8.00             | 0.02 |
| 100        | 0 0 | 0.80             | 0.011          | 120            | 1.00             | 0.016          | 120            | 1.20             | 0.018          | 130                   | 1.50             | 0.020          | 130            | 1.80             | 0.022          | 140          | 2.00             | 0.028          | 140        | 2.50             | 0.030          | 150            | 3.00             | 0.040          | 170 | 4.00             | 0.044          | 170                   | 6.00             | 0.044          | 170                   | 8.00             | 0.04 |
| 100        | 0 0 | ) <u>8</u> 0     | 0.011          | 120            | 1.00             | 0.016          | 120            | 1 20             | 0.019          | 130                   | 1 50             | 0.020          | 130            | 1 20             | 0.022          | 140          | 2 00             | 0.038          | 140        | 2 50             | 0.030          | 150            | 3 00             | 0.040          | 170 | 4 00             | 0.044          | 170                   | 6.00             | 0.044          | 170                   | 8 00             | 0.0  |
|            | +   |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |
| 100        | 0 0 | 0.80             | 0.006          | 140            | 1.00             | 0.007          | 140            | 1.20             | 0.008          | 180                   | 1.50             | 0.009          | 180            | 1.80             | 0.010          | 200          | 2.00             | 0.010          | 200        | 2.50             | 0.012          | 220            | 3.00             | 0.015          | 240 | 4.00             | 0.020          | 240                   | 6.00             | 0.020          | 240                   | 8.00             | 0.02 |
| 80         | 0   | 0.80             | 0.009          | 100            | 1.00             | 0.010          | 100            | 1.20             | 0.012          | 140                   | 1.50             | 0.014          | 140            | 1.80             | 0.018          | 180          | 2.00             | 0.020          | 180        | 2.50             | 0.026          | 200            | 3.00             | 0.033          | 240 | 4.00             | 0.040          | 240                   | 6.00             | 0.040          | 240                   | 8.00             | 0.04 |
|            | T   |                  |                |                |                  |                |                |                  |                |                       |                  |                |                |                  |                |              |                  |                |            |                  |                |                |                  |                |     |                  |                |                       |                  |                |                       |                  |      |



# CrazyMill Cool Vollradius - Typ B - Schlichten

|                                                  | Werkstoff-            | Werkstoff                                      | Wr.Nr.   | DIN                     | AISI/ASTM/              |                | <b>Ød</b> ′      |       |                | <b>Ød</b> ′<br>0.4m |       |                | <b>Ød</b> 0.5 m  |       |                | <b>Ød</b> 0.6 m  |       |
|--------------------------------------------------|-----------------------|------------------------------------------------|----------|-------------------------|-------------------------|----------------|------------------|-------|----------------|---------------------|-------|----------------|------------------|-------|----------------|------------------|-------|
|                                                  | gruppe                | vverkstorr                                     | VVr.INr. | DIN                     | UNS                     |                |                  |       | ı              |                     |       | ı              |                  |       | ı              |                  |       |
|                                                  |                       |                                                |          |                         |                         | V <sub>c</sub> | d <sub>eff</sub> | Tz    | V <sub>c</sub> | d <sub>eff</sub>    | Tz    | V <sub>c</sub> | d <sub>eff</sub> | Tz    | V <sub>c</sub> | d <sub>eff</sub> | Tz    |
|                                                  |                       |                                                | 1.0301   | C10                     | AISI 1010               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| Schlichten                                       | P                     | Ctäble uplegiert                               | 1.0401   | C15                     | AISI 1015               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| \ 7/\                                            |                       | Stähle unlegiert<br>Rm < 800 N/mm <sup>2</sup> | 1.1191   | C45E/CK45               | AISI 1045               | 45             | 0.24             | 0.006 | 59             | 0.31                | 0.008 | 74             | 0.39             | 0.012 | 89             | 0.47             | 0.014 |
| · \// \                                          |                       | 1111 4 000 14111111                            | 1.0044   | S275JR                  | AISI 1020               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $a_p \mid \sqrt{\frac{d_{eff}}{d_{eff}}}$        |                       |                                                | 1.0715   | 11SMn30                 | AISI 1215               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| + <b> </b>                                       |                       |                                                | 1.5752   | 15NiCr13                | ASTM 3415               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| — due                                            |                       | Stähle                                         | 1.7131   | 16MnCr5                 | AISI 5115               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| 15°                                              |                       | niedriglegiert                                 | 1.3505   | 100Cr6                  | AISI 52100              | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.011 | 89             | 0.47             | 0.013 |
| - a -0.1 v d                                     |                       | Rm > 900 N/mm <sup>2</sup>                     | 1.7225   | 42CrMo4                 | AISI 4140               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $\mathbf{a}_{p} = 0.1 \times \mathbf{d}_{1}$     |                       |                                                | 1.2842   | 90MnCrV8                | AISI O2                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| $\mathbf{a}_{e} = 0.05 \times \mathbf{d}_{1}$    |                       |                                                | 1.2379   | X153CrMoV12             | AISI D2                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| Bearbeitungswinkel=15°                           |                       | Werkzeugstähle<br>hochlegiert                  | 1.2436   | X210CrW12               | AISI D4/D6              | 15             | 0.24             | 0.005 | 50             | 0.21                | 0.007 | 7/             | 0.30             | 0.010 | 90             | 0.47             | 0.011 |
|                                                  |                       | Rm<1200 N/mm <sup>2</sup>                      | 1.3343   | HS6-5-2C                | AISI M2                 | 45             | 0.24             | 0.003 | 39             | 0.51                | 0.007 | /4             | 0.55             | 0.010 | 03             | 0.47             | 0.011 |
| n <sub>max</sub> = 60'000 rpm                    |                       |                                                | 1.3355   | HS18-0-1                | AISI T1                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                                  |                       | Rostfreie Stähle-                              | 1.4016   | X6Cr17                  | AISI 430                |                |                  | 0.65  |                |                     | 0.655 | l              |                  |       |                |                  |       |
|                                                  | M                     | ferritisch                                     | 1.4105   | X6CrMoS17               | AISI 430F               | 45             | 0.24             | 0.006 | 59             | 0.31                | 0.008 | /4             | 0.39             | 0.012 | 89             | 0.47             | 0.014 |
| <del>\                                    </del> | IVI                   | Rostfreie Stähle-                              | 1.4034   | X46Cr13                 | AISI 420C               | 45             | 0.34             | 0.005 | F0             | 0.31                | 0.007 | 7.4            | 0.30             | 0.011 | 00             | 0.47             | 0.012 |
|                                                  |                       | martensitisch                                  | 1.4112   | X90CrMoV18              | AISI 440B               | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | /4             | 0.39             | 0.011 | 89             | 0.47             | 0.012 |
| <u> </u>                                         |                       | Rostfreie Stähle-                              | 1.4542   | X5CrNiCuNb 16-4         | AISI 630                | 45             | 0.24             | 0.005 |                | 0.21                | 0.007 | 7.4            | 0.20             | 0.011 | -00            | 0.47             | 0.013 |
|                                                  |                       | martensitisch – PH                             | 1.4545   | X5CrNiCuNb 15-5         | ASTM 15-5 PH            | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | /4             | 0.39             | 0.011 | 89             | 0.47             | 0.012 |
| <b>/</b> /_                                      |                       |                                                | 1.4301   | X5CrNi 18-10            | AISI 304                |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                                  |                       | Rostfreie Stähle-                              | 1.4435   | X2CrNiMo 18-14-3        | AISI 316L               | 45             | 0.24             | 0.005 |                | 0.21                | 0.007 | 7.1            | 0.20             | 0.010 | 00             | 0.47             | 0.013 |
|                                                  |                       | austenitisch                                   | 1.4441   | X2CrNiMo 18-15-3        | AISI 316LM              | 45             | 0.24             | 0.003 | 29             | 0.51                | 0.007 | /4             | 0.59             | 0.010 | 09             | 0.47             | 0.012 |
|                                                  |                       |                                                | 1.4539   | X1NiCrMoCu25-20-5       | AISI 904L               |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| 1 //1                                            |                       |                                                | 0.6020   | GG20                    | ASTM 30                 |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
| V//I                                             | K                     |                                                | 0.6030   | GG30                    | ASTM 40B                |                |                  |       |                | 0.24                |       | ١.,            | 0.00             |       |                |                  |       |
| // / \                                           |                       | Gusseisen                                      | 0.7040   | GGG40                   | ASTM60-40-18            | 45             | 0.24             | 0.004 | 59             | 0.31                | 0.006 | /4             | 0.39             | 0.007 | 89             | 0.47             | 0.009 |
|                                                  |                       |                                                | 0.7060   | GGG60                   | ASTM80-60-03            |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                                  |                       | Aluminium                                      | 3.2315   | AlMgSi1                 | ASTM 6351               | 4.5            |                  |       |                | 0.24                |       | ٠.             | 0.00             |       |                |                  | 0.047 |
| <del>  □  </del>                                 | N                     | Knetlegierungen                                | 3.4365   | AlZnMgCu1.5             | ASTM 7075               | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | /4             | 0.39             | 0.014 | 89             | 0.47             | 0.017 |
|                                                  | 1 4                   | Aluminium Druck-                               | 3.2163   | GD-AlSi9Cu3             | ASTM A380               | 15             | 0.24             | 0.007 | 50             | 0.21                | 0.010 | 7/             | 0.30             | 0.014 | 90             | 0.47             | 0.017 |
|                                                  |                       | gusslegierungen                                | 3.2381   | GD-AlSi10Mg             | UNS A03590              | 43             | 0.24             | 0.007 | 33             | 0.51                | 0.010 | /              | 0.55             | 0.014 | 05             | 0.47             | 0.017 |
|                                                  |                       | Kupfer                                         | 2.004    | Cu-OF / CW008A          | UNS C10100              | 15             | 0.24             | 0.007 | 50             | 0.31                | 0.010 | 7/             | 0.30             | 0.017 | 80             | 0.47             | 0.019 |
|                                                  |                       | Rupici                                         | 2.0065   | Cu-ETP / CW004A         | UNS C11000              | 73             | 0.24             | 0.007 |                | 0.51                | 0.010 | , ,            | 0.55             | 0.017 | 05             | 0.47             | 0.015 |
|                                                  |                       | Messing bleifrei                               | 2.0321   | CuZn37 CW508L           | UNS C27400              | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.30             | 0.017 | 89             | 0.47             | 0.019 |
|                                                  |                       | essing biclifel                                | 2.036    | CuZn40 CW509L           | UNS C28000              | "              | 5.2-4            | 3.307 | 55             | 0.51                | 3.510 |                | 0.55             | 5.517 | 55             | 5.47             | 5.515 |
|                                                  |                       | Messing, Bronze                                | 2.0401   | CuZn39Pb3               | UNS C38500              | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.017 | 89             | 0.47             | 0.019 |
|                                                  |                       | Rm < 400 N/mm <sup>2</sup>                     | 2.102    | CuSn6                   | UNS C51900              |                |                  |       |                | - 1                 |       | Ľ              |                  |       | -              |                  |       |
|                                                  |                       | Bronze                                         | 2.0966   | CuAl10Ni5Fe4            | UNS C63000              | 45             | 0.24             | 0.007 | 59             | 0.31                | 0.010 | 74             | 0.39             | 0.014 | 89             | 0.47             | 0.017 |
|                                                  |                       | Rm < 600 N/mm <sup>2</sup>                     | 2.096    | CuAl9Mn2                | UNS C63200              | _              |                  |       |                |                     |       | -              |                  |       | _              |                  |       |
|                                                  |                       |                                                | 2.4856   |                         | Inconel 625             |                |                  |       |                |                     |       |                |                  |       |                |                  |       |
|                                                  | S <sub>1</sub>        | Hitzebeständige                                | 2.4668   |                         | Inconel 718             | 45             | 0.24             | 0.004 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.005 | 89             | 0.47             | 0.006 |
|                                                  | 7                     | Stähle                                         |          | NiMo28                  | Hastelloy B-2           | .              | - (              |       |                |                     |       | .              |                  |       | -              |                  |       |
|                                                  |                       |                                                |          | NiCr22Fe18Mo            | Hastelloy X             | _              |                  |       |                | $\vdash$            |       | -              |                  |       | _              |                  |       |
|                                                  |                       | Titan rein                                     | 3.7035   |                         | ASTM B348               | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.011 |
|                                                  | S <sub>2</sub>        |                                                | 3.7065   |                         | ASTM B348               | -              | -                |       |                |                     |       | -              |                  |       |                | -                |       |
|                                                  | _                     | Titan Legierungen                              |          | TiAl6V4                 | ASTM B348               | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.005 | 74             | 0.39             | 0.010 | 89             | 0.47             | 0.011 |
|                                                  |                       |                                                | 9.9367   | TiAl6Nb7                | ASTM F1295              | -              | -                |       |                |                     |       | -              |                  |       |                |                  |       |
|                                                  | <b>S</b> <sub>3</sub> | CrCo-Legierungen                               | 2.4964   | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537 | 45             | 0.24             | 0.004 | 59             | 0.31                | 0.004 | 74             | 0.39             | 0.006 | 89             | 0.47             | 0.006 |
|                                                  | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                    | 1.2510   | 100MnCrMoW4             | AISI O1                 | 45             | 0.24             | 0.005 | 59             | 0.31                | 0.007 | 74             | 0.39             | 0.008 | 80             | 0.47             | 0.010 |
|                                                  |                       | Stähle gehärtet                                |          |                         |                         |                |                  |       |                |                     |       |                |                  |       |                |                  |       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|                | Ød               | l1             |                | Ød               | 11             |                | Ød                        | 1              |                | Ød                          | 1              |                | Ød                          | 1              |                | Ød                            | 1              |                | Ød                            | 1              |                | Ød                          | 1              |                | Ød                            | 1              |                | Ød                            | 1              |                | Øď                        | nm<br>f <sub>z</sub> |  |
|----------------|------------------|----------------|----------------|------------------|----------------|----------------|---------------------------|----------------|----------------|-----------------------------|----------------|----------------|-----------------------------|----------------|----------------|-------------------------------|----------------|----------------|-------------------------------|----------------|----------------|-----------------------------|----------------|----------------|-------------------------------|----------------|----------------|-------------------------------|----------------|----------------|---------------------------|----------------------|--|
|                | 0.8 mm           |                | 1.0 mm         |                  |                | 1.2 mm         |                           |                | 1.5 mm         |                             |                | 1.8 mm         |                             |                | 2.0 mm         |                               | 2.5 mm         |                |                               | 3.0 mm         |                | 4.0 mm                      |                | 6.0 mm         |                               | 8.0 mm         |                | ım                            |                |                |                           |                      |  |
| V <sub>c</sub> | $d_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $d_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\mathrm{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\mathrm{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\boldsymbol{d}_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\boldsymbol{d}_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\mathrm{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\boldsymbol{d}_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\boldsymbol{d}_{\text{eff}}$ | f <sub>z</sub> | V <sub>c</sub> | $\mathbf{d}_{\text{eff}}$ | f,                   |  |
| 100            | 0.63             | 0.017          | 140            | 0.79             | 0.018          | 140            | 0.94                      | 0.020          | 200            | 1.18                        | 0.029          | 200            | 1.42                        | 0.031          | 220            | 1.57                          | 0.041          | 220            | 1.97                          | 0.043          | 240            | 2.36                        | 0.055          | 260            | 3.15                          | 0.060          | 260            | 4.72                          | 0.060          | 260            | 6.29                      | 0.060                |  |
| 100            | 0.63             | 0.014          | 140            | 0.79             | 0.017          | 140            | 0.94                      | 0.019          | 200            | 1.18                        | 0.026          | 200            | 1.42                        | 0.029          | 220            | 1.57                          | 0.038          | 220            | 1.97                          | 0.041          | 240            | 2.36                        | 0.053          | 260            | 3.15                          | 0.058          | 260            | 4.72                          | 0.058          | 260            | 6.29                      | 0.058                |  |
| 100            | 0.63             | 0.013          | 140            | 0.79             | 0.013          | 140            | 0.94                      | 0.016          | 200            | 1.18                        | 0.024          | 200            | 1.42                        | 0.026          | 220            | 1.57                          | 0.036          | 220            | 1.97                          | 0.038          | 240            | 2.36                        | 0.048          | 260            | 3.15                          | 0.050          | 260            | 4.72                          | 0.050          | 260            | 6.29                      | 0.050                |  |
| 100            | 0.63             | 0.017          | 140            | 0.79             | 0.019          | 140            | 0.94                      | 0.022          | 200            | 1.18                        | 0.029          | 200            | 1.42                        | 0.031          | 220            | 1.57                          | 0.041          | 220            | 1.97                          | 0.043          | 240            | 2.36                        | 0.053          | 260            | 3.15                          | 0.058          | 260            | 4.72                          | 0.058          | 260            | 6.29                      | 0.058                |  |
| 100            | 0.63             | 0.014          | 140            | 0.79             | 0.018          | 140            | 0.94                      | 0.020          | 200            | 1.18                        | 0.026          | 200            | 1.42                        | 0.029          | 220            | 1.57                          | 0.038          | 220            | 1.97                          | 0.041          | 240            | 2.36                        | 0.053          | 260            | 3.15                          | 0.055          | 260            | 4.72                          | 0.055          | 260            | 6.29                      | 0.055                |  |
| 100            | 0.63             | 0.014          | 140            | 0.79             | 0.018          | 140            | 0.94                      | 0.020          | 200            | 1.18                        | 0.026          | 200            | 1.42                        | 0.029          | 220            | 1.57                          | 0.038          | 220            | 1.97                          | 0.041          | 240            | 2.36                        | 0.053          | 260            | 3.15                          | 0.055          | 260            | 4.72                          | 0.055          | 260            | 6.29                      | 0.055                |  |
| 100            | 0.63             | 0.013          | 140            | 0.79             | 0.014          | 140            | 0.94                      | 0.017          | 200            | 1.18                        | 0.019          | 200            | 1.42                        | 0.022          | 220            | 1.57                          | 0.036          | 220            | 1.97                          | 0.038          | 240            | 2.36                        | 0.048          | 260            | 3.15                          | 0.053          | 260            | 4.72                          | 0.053          | 260            | 6.29                      | 0.053                |  |
| 100            | 0.63             | 0.011          | 120            | 0.79             | 0.013          | 120            | 0.94                      | 0.026          | 140            | 1.18                        | 0.029          | 140            | 1.42                        | 0.031          | 160            | 1.57                          | 0.034          | 160            | 1.97                          | 0.043          | 180            | 2.36                        | 0.052          | 200            | 3.15                          | 0.060          | 200            | 4.72                          | 0.060          | 200            | 6.29                      | 0.060                |  |
| 100            | 0.63             | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94                      | 0.024          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94                      | 0.024          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94                      | 0.026          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94                      | 0.026          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94                      | 0.026          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94                      | 0.024          | 200            | 1.18                        | 0.031          | 200            | 1.42                        | 0.034          | 220            | 1.57                          | 0.043          | 220            | 1.97                          | 0.048          | 240            | 2.36                        | 0.070          | 260            | 3.15                          | 0.072          | 260            | 4.72                          | 0.072          | 260            | 6.29                      | 0.072                |  |
| 100            | 0.63             | 0.007          | 120            | 0.79             | 0.008          | 120            | 0.94                      | 0.010          | 130            | 1.18                        | 0.011          | 130            | 1.42                        | 0.012          | 140            | 1.57                          | 0.012          | 140            | 1.97                          | 0.014          | 150            | 2.36                        | 0.018          | 170            | 3.15                          | 0.024          | 170            | 4.72                          | 0.024          | 170            | 6.29                      | 0.024                |  |
| 100            | 0.63             | 0.013          | 120            | 0.79             | 0.019          | 120            | 0.94                      | 0.022          | 130            | 1.18                        | 0.024          | 130            | 1.42                        | 0.026          | 140            | 1.57                          | 0.034          | 140            | 1.97                          | 0.036          | 150            | 2.36                        | 0.048          | 170            | 3.15                          | 0.053          | 170            | 4.72                          | 0.053          | 170            | 6.29                      | 0.053                |  |
| 100            | 0.63             | 0.013          | 120            | 0.79             | 0.019          | 120            | 0.94                      | 0.022          | 130            | 1.18                        | 0.024          | 130            | 1.42                        | 0.026          | 140            | 1.57                          | 0.034          | 140            | 1.97                          | 0.036          | 150            | 2.36                        | 0.048          | 170            | 3.15                          | 0.053          | 170            | 4.72                          | 0.053          | 170            | 6.29                      | 0.053                |  |
| 100            | 0.63             | 0.007          | 140            | 0.79             | 0.008          | 140            | 0.94                      | 0.010          | 180            | 1.18                        | 0.011          | 180            | 1.42                        | 0.012          | 200            | 1.57                          | 0.012          | 200            | 1.97                          | 0.014          | 220            | 2.36                        | 0.018          | 240            | 3.15                          | 0.024          | 240            | 4.72                          | 0.024          | 240            | 6.29                      | 0.024                |  |
| 80             | 0.63             | 0.011          | 100            | 0.79             | 0.012          | 100            | 0.94                      | 0.014          | 140            | 1.18                        | 0.017          | 140            | 1.42                        | 0.022          | 180            | 1.57                          | 0.024          | 180            | 1.97                          | 0.031          | 200            | 2.36                        | 0.040          | 240            | 3.15                          | 0.048          | 240            | 4.72                          | 0.048          | 240            | 6.29                      | 0.048                |  |



## CrazyMill Cool Vollradius - Typ C - 5 x d

### FRÄSEN MIT INTEGRIERTER KÜHLUNG



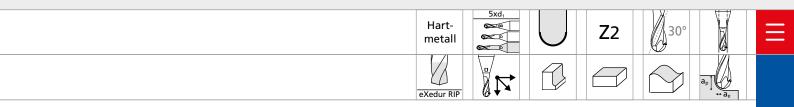
Fräser CrazyMill Cool Vollradius Typ C, für eine max. Bearbeitungstiefe von 5 x d und mit einer Schneidenlänge von 2 x d:

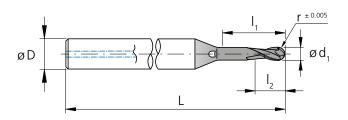
CrazyMill Cool Vollradius setzt neue Massstäbe beim Kopierfräsen und Wandungsfräsen. Seine Stärken sind die hohen Schnittgeschwindigkeiten und -tiefen, Abtragsraten, Standzeiten und die erreichbare Oberflächenqualität.

Neu sind bei diesem Schrupp- und Schlichtfräser das Hartmetall, die Beschichtung und die Geometrie, besonders aber das einzigartige Kühlsystem mit im Schaft integrierten Kühlkanälen, welche eine konstante und massive Kühlung an den Schneiden erzielen und damit höchste Schnittgeschwindigkeiten und maximale Zustellung ermöglichen.

Die Fräser besitzen je nach Schaftdurchmesser 3 bis 5 integrierte Kühlkanäle.

### Kühlschmierstoff, Filter und Druck


Detaillierte Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Fräsprozess.


### **Hinweis**

Sie haben nicht die passende Variante von CrazyMill Cool Vollradius (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.







I<sub>1</sub> = Nutzlänge l<sub>2</sub> = Schneidenlänge

| Lager | Artikelnummer      | <b>d</b> <sub>1</sub> | r    | I <sub>1</sub> | l <sub>2</sub> | D<br>(h6) | L    | Z       |
|-------|--------------------|-----------------------|------|----------------|----------------|-----------|------|---------|
| ab    |                    | [mm]                  | [mm] | [mm]           | [mm]           | [mm]      | [mm] | [Zähne] |
|       | 2.CMC30.C5Z2.030.1 | 0.30                  | 0.15 | 1.5            | 0.6            | 3         | 38   | 2       |
| -     | 2.CMC30.C5Z2.040.1 | 0.40                  | 0.20 | 2.0            | 0.8            | 3         | 38   | 2       |
|       | 2.CMC30.C5Z2.050.1 | 0.50                  | 0.25 | 2.5            | 1.0            | 3         | 38   | 2       |
|       | 2.CMC30.C5Z2.060.1 | 0.60                  | 0.30 | 3.0            | 1.2            | 3         | 38   | 2       |
|       | 2.CMC30.C5Z2.080.1 | 0.80                  | 0.40 | 4.0            | 1.6            | 3         | 38   | 2       |
| -     | 2.CMC30.C5Z2.100.1 | 1.00                  | 0.50 | 5.0            | 2.0            | 4         | 40   | 2       |
|       | 2.CMC30.C5Z2.120.1 | 1.20                  | 0.60 | 6.0            | 2.4            | 4         | 40   | 2       |
|       | 2.CMC30.C5Z2.150.1 | 1.50                  | 0.75 | 7.5            | 3.0            | 4         | 40   | 2       |
|       | 2.CMC30.C5Z2.180.1 | 1.80                  | 0.90 | 9.0            | 3.6            | 4         | 44   | 2       |
| -     | 2.CMC30.C5Z2.200.1 | 2.00                  | 1.00 | 10.0           | 4.0            | 4         | 44   | 2       |
|       | 2.CMC30.C5Z2.250.1 | 2.50                  | 1.25 | 12.5           | 5.0            | 6         | 50   | 2       |
|       | 2.CMC30.C5Z2.300.1 | 3.00                  | 1.50 | 15.0           | 6.0            | 6         | 55   | 2       |
|       | 2.CMC30.C5Z2.400.1 | 4.00                  | 2.00 | 20.0           | 8.0            | 6         | 60   | 2       |
|       | 2.CMC30.C5Z2.600.1 | 6.00                  | 3.00 | 30.0           | 12.0           | 10        | 70   | 2       |
|       | 2.CMC30.C5Z2.800.1 | 8.00                  | 4.00 | 40.0           | 16.0           | 12        | 90   | 2       |



# CrazyMill Cool Vollradius - Typ C - Schruppen

|                                                            | Werkstoff-<br>gruppe  | Werkstoff                          | Wr.Nr.           | DIN                  | AISI/ASTM/UNS           | <b>Ød1</b><br>0.3-0.4 mm |                |  |  |
|------------------------------------------------------------|-----------------------|------------------------------------|------------------|----------------------|-------------------------|--------------------------|----------------|--|--|
|                                                            | gruppe                |                                    |                  |                      |                         | V.                       | f <sub>z</sub> |  |  |
|                                                            |                       |                                    | 1.0301           | C10                  | AISI 1010               | - (                      | -2             |  |  |
|                                                            | D                     |                                    | 1.0401           | C15                  | AISI 1015               |                          |                |  |  |
| ruppen                                                     | P                     | Stähle unlegiert<br>Rm < 800 N/mm² | 1.1191           | C45E/CK45            | AISI 1045               | 60                       | 0.005-0.007    |  |  |
|                                                            |                       |                                    | 1.0044           | S275JR               | AISI 1020               | 00                       | 0.005-0.007    |  |  |
| <i>\//</i> /\                                              |                       |                                    | 1.0044           | 11SMn30              | AISI 1020<br>AISI 1215  |                          |                |  |  |
| _// / \                                                    |                       |                                    | 1.5752           | 15NiCr13             | ASTM 3415 / AISI 3310   |                          |                |  |  |
| Î ((./^\)                                                  |                       |                                    | 1.7131           | 16MnCr5              | ASIN 5415 / AISI 5510   |                          |                |  |  |
|                                                            |                       | Stähle niedriglegiert              | 1.3505           |                      |                         | 60                       | 0.004.0.006    |  |  |
| ↔ d <sub>e</sub>                                           |                       | Rm > 900 N/mm <sup>2</sup>         |                  | 100Cr6               | AISI 52100              | 60                       | 0.004-0.006    |  |  |
| =0.5 x d <sub>1</sub>                                      |                       |                                    | 1.7225           | 42CrMo4              | AISI 4140               |                          |                |  |  |
| d₁≤0.5 mm)                                                 |                       |                                    | 1.2842           | 90MnCrV8             | AISI O2                 |                          |                |  |  |
| =1xd <sub>1</sub>                                          |                       | Werkzeugstähle                     | 1.2379           | X153CrMoV12          | AISI D2                 |                          |                |  |  |
| d <sub>1</sub> >0.5 mm)                                    |                       | hochlegiert                        | 1.2436           | X210CrW12            | AISI D4/D6              | 60                       | 0.004-0.006    |  |  |
| = 0.3 x d <sub>1</sub>                                     |                       | Rm < 1200 N/mm <sup>2</sup>        | 1.3343           | HS6-5-2C             | AISI M2 / UNS T11302    |                          |                |  |  |
| - 0.5 X u <sub>1</sub>                                     |                       |                                    | 1.3355           | HS18-0-1             | AISI T1 / UNS T12001    |                          |                |  |  |
| beitungswinkel = 0°                                        |                       | Rostfreie Stähle-                  | 1.4016           | X6Cr17               | AISI 430 / UNS S43000   | 60                       | 0.005-0.007    |  |  |
|                                                            | M                     | ferritisch                         | 1.4105           | X6CrMoS17            | AISI 430F               |                          | 0.005-0.007    |  |  |
|                                                            | 1 W 1                 | Rostfreie Stähle-                  | 1.4034           | X46Cr13              | AISI 420C               | 60                       | 0.004-0.006    |  |  |
|                                                            |                       | martensitisch                      | 1.4112           | X90CrMoV18           | AISI 440B               |                          | 0.004 0.000    |  |  |
| \i i/                                                      |                       | Rostfreie Stähle-                  | 1.4542           | X5CrNiCuNb 16-4      | AISI 630 / ASTM 17-4 PH | 60                       | 0.004-0.006    |  |  |
| <b>b d</b>                                                 |                       | martensitisch – PH                 | 1.4545           | X5CrNiCuNb 15-5      | ASTM 15-5 PH            | 00                       | 0.004-0.000    |  |  |
|                                                            |                       |                                    | 1.4301           | X5CrNi 18-10         | AISI 304                |                          |                |  |  |
|                                                            |                       | Rostfreie Stähle-                  | 1.4435           | X2CrNiMo 18-14-3     | AISI 316L               | 60                       | 0.004-0.006    |  |  |
|                                                            |                       | austenitisch                       | 1.4441           | X2CrNiMo 18-15-3     | AISI 316LM              | 00                       |                |  |  |
| 101                                                        |                       |                                    | 1.4539           | X1NiCrMoCu 25-20-5   | AISI 904L               |                          |                |  |  |
|                                                            |                       |                                    | 0.6020           | GG20                 | ASTM 30                 |                          |                |  |  |
|                                                            | K                     | Gusseisen                          | 0.6030           | GG30                 | ASTM 40B                |                          |                |  |  |
| 1//)                                                       |                       |                                    | 0.7040           | GGG40                | ASTM 60-40-18           | 60                       | 0.003-0.005    |  |  |
| <i>y//</i> /                                               |                       |                                    | 0.7060           | GGG60                | ASTM 80-60-03           |                          |                |  |  |
| // / <sub>1</sub> \\                                       |                       | Aluminium                          | 3.2315           | AlMgSi1              | ASTM 6351               |                          |                |  |  |
|                                                            | N                     | Knetlegierungen                    | 3.4365           | AlZnMgCu1.5          | ASTM 7075               | 60                       | 0.006-0.008    |  |  |
| $\left  \begin{array}{c} \mathbf{d}_1 \end{array} \right $ | IN                    | Aluminium                          | 3.2163           | GD-AlSi9Cu3          | ASTM A380               |                          |                |  |  |
| <del>                                     </del>           |                       | Druckgusslegierungen               | 3.2381           | GD-AlSi10Mg          | UNS A03590              | 60                       | 0.006-0.008    |  |  |
|                                                            |                       |                                    | 2.004            | Cu-OF / CW008A       | UNS C10100              |                          |                |  |  |
|                                                            |                       | Kupfer                             | 2.0065           | Cu-ETP / CW000/C     | UNS C11000              | 60                       | 0.006-0.008    |  |  |
|                                                            |                       |                                    | 2.0321           | CuZn37 CW508L        | UNS C27400              |                          |                |  |  |
|                                                            |                       | Messing bleifrei                   | 2.036            | CuZn40 CW509L        | UNS C28000              | 60                       | 0.006-0.008    |  |  |
|                                                            |                       | Messing, Bronze                    | 2.0401           | CuZn39Pb3 / CW614N   |                         |                          |                |  |  |
|                                                            |                       | Rm < 400 N/mm <sup>2</sup>         | 2.102            | CuSn6                | UNS C51900              | 60                       | 0.006-0.008    |  |  |
|                                                            |                       | Bronze                             | 2.0966           | CuAl10Ni5Fe4         | UNS C63000              |                          |                |  |  |
|                                                            |                       | Rm < 600 N/mm <sup>2</sup>         | 2.096            | CuAl9Mn2             | UNS C63200              | 60                       | 0.006-0.008    |  |  |
|                                                            |                       |                                    |                  | 20, 13,111.2         |                         |                          |                |  |  |
|                                                            | C                     | 100 1 00 0                         | 2.4856           |                      | Inconel 625             |                          |                |  |  |
|                                                            | $S_1$                 | Hitzebeständige<br>Stähle          | 2.4668<br>2.4617 | NiMo28               | Inconel 718             | 60                       | 0.003-0.004    |  |  |
|                                                            |                       | Statile                            | 2.4617           |                      | Hastelloy B-2           |                          |                |  |  |
|                                                            |                       |                                    | 3.7035           | NiCr22Fe18Mo<br>Gr.2 | Hastelloy X             |                          |                |  |  |
|                                                            | C                     | Titan rein                         | 3.7035           | Gr.4                 | ASTM B348 / F67         | 60                       | 0.004-0.006    |  |  |
|                                                            | S <sub>2</sub>        |                                    |                  |                      | ASTM B348 / F68         |                          |                |  |  |
|                                                            | _                     | Titan Legierungen                  | 3.7165<br>9.9367 | TiAl6V4              | ASTM B348 / F136        | 60                       | 0.004-0.006    |  |  |
|                                                            | C                     |                                    |                  | TiAl6Nb7             | ASTM F1295              |                          |                |  |  |
|                                                            | <b>S</b> <sub>3</sub> | CrCo-Legierungen                   | 2.4964           | CoCr20W15Ni          | Haynes 25               | 60                       | 0.003-0.004    |  |  |
|                                                            | - 3                   |                                    |                  | CrCoMo28             | ASTM F1537              |                          |                |  |  |
|                                                            | Ш                     | Stähle gehärtet                    | 1.2510           | 100MnCrMoW4          | AISI O1                 | 60                       | 0.004-0.006    |  |  |
|                                                            | $H_1$                 | < 55 HRC                           | 1.2310           | 1001411101101044     | 7 1131 0 1              |                          | 0.007 0.000    |  |  |
|                                                            | ш                     | Stähle gehärtet                    | 1 2270           | V1E2CrMa\/12         | VICI DO                 |                          |                |  |  |
|                                                            | $H_2$                 | ≥ 55 HRC                           | 1.2379           | X153CrMoV12          | AISI D2                 |                          |                |  |  |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]

Ød1

Ød1

Ød1

Ød1

ANWENDUNGSEMPFEHLUNG

lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen

Ød1

Ød1



Ød1

| 0.  | 5-0.8mm     | 1.  | 0-1.2 mm    | 1.  | 5-1.8mm     | 2.  | 0-2.5mm        |     | 3.0 mm | 4.0 | 0-6.0 mm |     | 8.0 mm         |
|-----|-------------|-----|-------------|-----|-------------|-----|----------------|-----|--------|-----|----------|-----|----------------|
|     |             |     |             |     |             |     | f <sub>z</sub> |     |        |     |          |     | f <sub>z</sub> |
| 100 | 0.010-0.014 | 140 | 0.015-0.017 | 200 | 0.024-0.026 | 220 | 0.034-0.036    | 240 | 0.040  | 280 | 0.050    | 280 | 0.050          |
| 100 | 0.009-0.012 | 140 | 0.014-0.016 | 200 | 0.022-0.024 | 220 | 0.032-0.034    | 240 | 0.038  | 280 | 0.048    | 280 | 0.048          |
| 100 | 0.008-0.011 | 140 | 0.011-0.013 | 200 | 0.020-0.022 | 220 | 0.030-0.032    | 240 | 0.035  | 280 | 0.044    | 280 | 0.044          |
| 100 | 0.010-0.014 | 140 | 0.016-0.018 | 200 | 0.024-0.026 | 220 | 0.034-0.036    | 240 | 0.040  | 280 | 0.048    | 280 | 0.048          |
| 100 | 0.009-0.012 | 140 | 0.015-0.017 | 200 | 0.022-0.024 | 220 | 0.032-0.034    | 240 | 0.036  | 280 | 0.046    | 280 | 0.046          |
| 100 | 0.009-0.012 | 140 | 0.015-0.017 | 200 | 0.022-0.024 | 220 | 0.032-0.034    | 240 | 0.036  | 280 | 0.046    | 280 | 0.046          |
| 100 | 0.008-0.011 | 140 | 0.012-0.014 | 200 | 0.016-0.018 | 220 | 0.030-0.032    | 240 | 0.034  | 280 | 0.044    | 280 | 0.044          |
| 100 | 0.006-0.009 | 120 | 0.011-0.022 | 140 | 0.024-0.026 | 160 | 0.028-0.036    | 180 | 0.042  | 200 | 0.052    | 200 | 0.052          |
| 100 | 0.012-0.016 | 140 | 0.018-0.020 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.012-0.016 | 140 | 0.018-0.020 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.014-0.018 | 140 | 0.020-0.022 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.014-0.018 | 140 | 0.020-0.022 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.014-0.018 | 140 | 0.020-0.022 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.012-0.016 | 140 | 0.018-0.020 | 200 | 0.026-0.028 | 220 | 0.036-0.040    | 240 | 0.058  | 280 | 0.055    | 280 | 0.055          |
| 100 | 0.004-0.006 | 120 | 0.007-0.008 | 130 | 0.009-0.010 | 140 | 0.010-0.012    | 150 | 0.015  | 170 | 0.020    | 170 | 0.020          |
| 100 | 0.008-0.011 | 120 | 0.016-0.018 | 130 | 0.020-0.022 | 140 | 0.028-0.030    | 150 | 0.034  | 170 | 0.042    | 170 | 0.042          |
| 100 | 0.008-0.011 | 120 | 0.016-0.018 | 130 | 0.020-0.022 | 140 | 0.028-0.030    | 150 | 0.034  | 170 | 0.042    | 170 | 0.042          |
| 100 | 0.004-0.006 | 140 | 0.007-0.008 | 180 | 0.009-0.010 | 200 | 0.010-0.012    | 220 | 0.015  | 240 | 0.020    | 240 | 0.020          |
| 80  | 0.007-0.009 | 100 | 0.010-0.012 | 140 | 0.014-0.018 | 180 | 0.020-0.026    | 200 | 0.030  | 240 | 0.032    | 240 | 0.032          |
|     |             |     |             |     |             |     |                |     |        |     |          |     |                |
|     | 1           |     |             |     |             |     |                |     |        |     |          |     |                |



# NEW

# CrazyMill Cool Vollradius - Typ C - Vorschlichten

## FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                           | Werkstoff-            | Werkstoff                   | Wr.Nr.   | DIN                     | AISI/ASTM/              |     | <b>Ød</b> 0.3 m |                |     | <b>Ød</b> 0.4 m  |       |     | <b>Ød</b> 0.5 m  |       |     | <b>Ød</b><br>0.6 m |                |
|---------------------------|-----------------------|-----------------------------|----------|-------------------------|-------------------------|-----|-----------------|----------------|-----|------------------|-------|-----|------------------|-------|-----|--------------------|----------------|
|                           | gruppe                | Werkstori                   | vvi.ivi. | DIN                     | UNS                     | V.  |                 | f <sub>z</sub> | v.  | d <sub>eff</sub> |       | v.  | d <sub>eff</sub> | _     |     |                    | f <sub>z</sub> |
|                           |                       |                             | 1.0301   | C10                     | AISI 1010               | • ( | err             | * z            | • ( | ⊶еп              | * z   | • c | ⊶еп              | *z    | • ( | err                | * z            |
|                           | D                     |                             | 1.0401   | C15                     | AISI 1015               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| orschlichten              | P                     | Stähle unlegiert            | 1.1191   |                         | AISI 1015               |     | 0.20            | 0.005          | 72  | 0.20             | 0.007 | 0.2 | 0.40             | 0.010 | 100 | 0.60               | 0.013          |
| \ //\                     |                       | Rm < 800 N/mm <sup>2</sup>  | 1.0044   |                         | AISI 1043               | رر  | 0.23            | 0.003          | /3  | 0.55             | 0.007 | 32  | 0.40             | 0.010 | 100 | 0.00               | 0.012          |
| a <sub>p</sub> ↑          |                       |                             |          | 11SMn30                 | AISI 1020               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| 'P L CHETT                |                       |                             |          | 15NiCr13                | ASTM 3415               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| (_/)a <sub>e</sub>        |                       | 6                           | 1.7131   | 16MnCr5                 | AISI 5115               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| 15°                       |                       | Stähle<br>niedriglegiert    |          | 100Cr6                  | AISI 52100              | 55  | 0.29            | 0.004          | 73  | 0.39             | 0.006 | 92  | 0.48             | 0 009 | 100 | 0.60               | 0.011          |
|                           |                       | Rm > 900 N/mm <sup>2</sup>  | 1.7225   | 42CrMo4                 | AISI 4140               | 55  | 0.23            | 0.001          | ,,, | 0.55             | 0.000 | "   | 0.10             | 0.005 |     | 0.00               | 0.0            |
| $a_p = 0.25 \times d_1$   |                       |                             | 1.2842   | 90MnCrV8                | AISI O2                 |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| (Ød₁≤0.5 mm)              |                       |                             |          | X153CrMoV12             | AISI D2                 |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| $a_p = 0.5 \times d_1$    |                       | Werkzeugstähle              |          | X210CrW12               | AISI D4/D6              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| $(Ød_1 > 0.5 \text{ mm})$ |                       | hochlegiert                 |          | HS6-5-2C                | AISI M2                 | 55  | 0.29            | 0.004          | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.009          |
| $a_e = 0.1 \times d_1$    |                       | Rm < 1200 N/mm <sup>2</sup> |          | HS18-0-1                | AISI T1                 |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| 1 1 1 450                 |                       |                             |          |                         |                         | _   |                 |                | _   |                  |       |     |                  |       |     |                    |                |
| earbeitungswinkel = 15°   |                       | Rostfreie Stähle-           |          | X6Cr17                  | AISI 430                | 55  | 0.29            | 0.005          | 73  | 0.39             | 0.007 | 92  | 0.48             | 0.010 | 100 | 0.60               | 0.012          |
|                           | M                     | ferritisch                  |          | X6CrMoS17               | AISI 430F               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       | Rostfreie Stähle-           |          | X46Cr13                 | AISI 420C               | 55  | 0.29            | 0.004          | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.009 | 100 | 0.60               | 0.010          |
|                           |                       | martensitisch               |          | X90CrMoV18              | AISI 440B               |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| \i i/                     |                       | Rostfreie Stähle-           |          | X5CrNiCuNb 16-4         | AISI 630                | 55  | 0.29            | 0.004          | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.009 | 100 | 0.60               | 0.010          |
| <u> </u>                  |                       | martensitisch – PH          |          | X5CrNiCuNb 15-5         | ASTM 15-5 PH            |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       |                             | 1.4301   | X5CrNi 18-10            | AISI 304                |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| <b>V</b> A                |                       | Rostfreie Stähle-           |          | X2CrNiMo 18-14-3        | AISI 316L               | 55  | 0.29            | 0.004          | 73  | 0.39             | 0.006 | 92  | 0.48             | 0.008 | 100 | 0.60               | 0.010          |
|                           |                       | austenitisch                | 1.4441   | X2CrNiMo 18-15-3        | AISI 316LM              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       |                             | 1.4539   | X1NiCrMoCu25-20-5       | AISI 904L               |     |                 |                | _   |                  |       | _   |                  |       |     |                    |                |
|                           |                       |                             | 0.6020   | GG20                    | ASTM 30                 |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| 1 //1                     | K                     | Gusseisen                   | 0.6030   | GG30                    | ASTM 40B                | 55  | 0.29            | 0.003          | 73  | 0.39             | 0.005 | 92  | 0.48             | 0.006 | 100 | 0.60               | 0.008          |
| V//I                      |                       | - Cusselsell                | 0.7040   | GGG40                   | ASTM60-40-18            |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
| // /\                     |                       |                             | 0.7060   | GGG60                   | ASTM80-60-03            |     |                 |                | _   |                  |       |     |                  |       |     |                    |                |
|                           |                       | Aluminium                   | 3.2315   | AlMgSi1                 | ASTM 6351               | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.014          |
|                           | IN.                   | Knetlegierungen             | 3.4365   | AlZnMgCu1.5             | ASTM 7075               | 33  | 0.23            | 0.000          | ,,, | 0.55             | 0.000 | -   | 0.10             | 0.012 |     | 0.00               | 0.01           |
| <u>a₁</u>                 |                       | Aluminium Druck-            |          | GD-AlSi9Cu3             | ASTM A380               | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.014          |
|                           |                       | gusslegierungen             | 3.2381   | GD-AlSi10Mg             | UNS A03590              |     | 0.23            | 0.000          | ,,, | 0.55             | 0.000 | -   | 0.10             | 0.012 |     | 0.00               | 0.01           |
|                           |                       | Kupfer                      | 2.004    | Cu-OF / CW008A          | UNS C10100              | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.014 | 100 | 0.60               | 0.016          |
|                           |                       | rapici                      | 2.0065   | Cu-ETP / CW004A         | UNS C11000              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       | Messing bleifrei            | 2.0321   | CuZn37 CW508L           | UNS C27400              | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.014 | 100 | 0.60               | 0.016          |
|                           |                       | Triessing bienrei           | 2.036    | CuZn40 CW509L           | UNS C28000              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       | Messing, Bronze             | 2.0401   | CuZn39Pb3               | UNS C38500              | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.014 | 100 | 0.60               | 0.016          |
|                           |                       | Rm < 400 N/mm <sup>2</sup>  | 2.102    | CuSn6                   | UNS C51900              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       | Bronze                      | 2.0966   | CuAl10Ni5Fe4            | UNS C63000              | 55  | 0.29            | 0.006          | 73  | 0.39             | 0.008 | 92  | 0.48             | 0.012 | 100 | 0.60               | 0.014          |
|                           |                       | Rm < 600 N/mm <sup>2</sup>  | 2.096    | CuAl9Mn2                | UNS C63200              |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       |                             | 2.4856   |                         | Inconel 625             |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           | 5                     | Hitzebeständige             | 2.4668   |                         | Inconel 718             | 55  | 0.20            | 0.003          | 72  | 0.30             | 0.004 | 02  | 0.49             | 0.004 | 100 | 0.60               | 0.005          |
|                           | <b>9</b> 1            | Stähle                      | 2.4617   | NiMo28                  | Hastelloy B-2           | رر  | 0.23            | 0.003          | /3  | 0.55             | 0.004 | 32  | 0.40             | 0.004 | 100 | 0.00               | 0.003          |
|                           |                       |                             | 2.4665   | NiCr22Fe18Mo            | Hastelloy X             |     |                 |                |     |                  |       |     |                  |       |     |                    |                |
|                           |                       | Titan rein                  | 3.7035   | Gr.2                    | ASTM B348               | 55  | 0.20            | 0.004          | 73  | U 30             | 0.004 | 92  | 0.48             | 0.008 | 100 | 0.60               | n nno          |
|                           | <b>S</b> <sub>2</sub> | Titali lelli                | 3.7065   | Gr.4                    | ASTM B348               |     | 0.23            | 0.004          |     | 0.55             | 0.004 | 12  | 0.40             | 0.000 | 100 | 0.00               | 0.003          |
|                           | 2                     | Titan Legierungen           | 3.7165   | TiAl6V4                 | ASTM B348               | 55  | 0.20            | 0.004          | 73  | U 30             | 0.004 | 92  | 0.48             | 0.008 | 100 | 0.60               | n nno          |
|                           |                       | Titan Legierungen           | 9.9367   | TiAl6Nb7                | ASTM F1295              |     | 0.23            | 0.004          |     | 0.55             | 0.004 | 12  | 0.40             | 0.000 | 100 | 0.00               | 0.003          |
|                           | $S_3$                 | CrCo-Legierungen            | 2.4964   | CoCr20W15Ni<br>CrCoMo28 | Haynes 25<br>ASTM F1537 | 55  | 0.29            | 0.003          | 73  | 0.39             | 0.003 | 92  | 0.48             | 0.005 | 100 | 0.60               | 0.005          |
|                           | L                     | Stähle gehärtet             | 1.2510   | 100MnCrMoW4             | AISI O1                 | 55  | 0.20            | 0.004          | 72  | 0.30             | 0.006 | 07  | 0.40             | 0.007 | 80  | 0.60               | 0.008          |
|                           | $\Pi_1$               | < 55 HRC                    | 1.2310   | TOOMINGTIVIOVV4         | ו ט וכוח                |     | 0.23            | 0.004          | د,  | 0.33             | 0.000 | 12  | 0.40             | 0.007 |     | 0.00               | 0.000          |
|                           | The second            | Stähle gehärtet             |          | X153CrMoV12             | AISI D2                 |     |                 |                |     |                  |       |     |                  |       |     |                    |                |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|   |                       | Ød                      |                |      | Ød                      |                  |            | Ød               |                |     | Ød                      |                |     | Ød                      |                |            | Ød               |                |            | Ød                      |                |            | Ød               |                |     | Ød                      |                |     | Ød               |                  |                | Ød               |      |
|---|-----------------------|-------------------------|----------------|------|-------------------------|------------------|------------|------------------|----------------|-----|-------------------------|----------------|-----|-------------------------|----------------|------------|------------------|----------------|------------|-------------------------|----------------|------------|------------------|----------------|-----|-------------------------|----------------|-----|------------------|------------------|----------------|------------------|------|
|   |                       | 0.8 m                   | _              |      | 1.0 m                   | nm<br><b>f</b> , | \ <b>\</b> | 1.2 n            |                |     | 1.5 m                   |                |     | 1.8 n                   | _              | \ <b>,</b> | 2.0 n            | _              | \ <b>\</b> | 2.5 m                   | _              | \ <b>,</b> | 3.0 n            |                | 1   | 4.0 m                   | _              | 1   | 6.0 m            | nm<br><b>f</b> , |                | 8.0 m            |      |
|   | <b>V</b> <sub>c</sub> | <b>u</b> <sub>eff</sub> | † <sub>z</sub> | Vc   | <b>u</b> <sub>eff</sub> | I <sub>z</sub>   | Vc         | U <sub>eff</sub> | f <sub>z</sub> | Vc  | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | Vc  | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | Vc         | U <sub>eff</sub> | f <sub>z</sub> | Vc         | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | Vc         | U <sub>eff</sub> | f <sub>z</sub> | Vc  | <b>u</b> <sub>eff</sub> | f <sub>z</sub> | Vc  | U <sub>eff</sub> | Iz               | V <sub>c</sub> | d <sub>eff</sub> | Iz   |
|   | 100                   | 0.00                    | 0.014          | 140  | 1.00                    | 0.015            | 140        | 1 20             | 0.017          | 200 | 1 50                    | 0.024          | 300 | 1 00                    | 0.026          | 220        | 2.00             | 0.034          | 220        | 2 50                    | 0.036          | 240        | 2 00             | 0.040          | 260 | 4.00                    | 0.050          | 260 | <i>c</i> 00      | 0.050            | 260            | 9 00             | 0.05 |
|   | 100                   | 0.60                    | 0.014          | 140  | 1.00                    | 0.015            | 140        | 1.20             | 0.017          | 200 | 1.50                    | 0.024          | 200 | 1.60                    | 0.020          | 220        | 2.00             | 0.034          | 220        | 2.30                    | 0.030          | 240        | 3.00             | 0.040          | 200 | 4.00                    | 0.030          | 200 | 0.00             | 0.030            | 200            | 8.00             | 0.05 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.012          | 140  | 1.00                    | 0.014            | 140        | 1.20             | 0.016          | 200 | 1.50                    | 0.022          | 200 | 1.80                    | 0.024          | 220        | 2.00             | 0.032          | 220        | 2.50                    | 0.034          | 240        | 3.00             | 0.038          | 260 | 4.00                    | 0.048          | 260 | 6.00             | 0.048            | 260            | 8.00             | 0.04 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.011          | 140  | 1.00                    | 0.011            | 140        | 1.20             | 0.013          | 200 | 1.50                    | 0.020          | 200 | 1.80                    | 0.022          | 220        | 2.00             | 0.030          | 220        | 2.50                    | 0.032          | 240        | 3.00             | 0.035          | 260 | 4.00                    | 0.044          | 260 | 6.00             | 0.044            | 260            | 8.00             | 0.04 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.014          | 140  | 1.00                    | 0.016            | 140        | 1.20             | 0.018          | 200 | 1.50                    | 0.024          | 200 | 1.80                    | 0.026          | 220        | 2.00             | 0.034          | 220        | 2.50                    | 0.036          | 240        | 3.00             | 0.040          | 260 | 4.00                    | 0.048          | 260 | 6.00             | 0.048            | 260            | 8.00             | 0.04 |
| 1 | 100                   | 0.80                    | 0.012          | 140  | 1.00                    | 0.015            | 140        | 1.20             | 0.017          | 200 | 1.50                    | 0.022          | 200 | 1.80                    | 0.024          | 220        | 2.00             | 0.032          | 220        | 2.50                    | 0.034          | 240        | 3.00             | 0.036          | 260 | 4.00                    | 0.046          | 260 | 6.00             | 0.046            | 260            | 8.00             | 0.04 |
| 1 | 100                   | 0.80                    | 0.012          | 140  | 1.00                    | 0.015            | 140        | 1.20             | 0.017          | 200 | 1.50                    | 0.022          | 200 | 1.80                    | 0.024          | 220        | 2.00             | 0.032          | 220        | 2.50                    | 0.034          | 240        | 3.00             | 0.036          | 260 | 4.00                    | 0.046          | 260 | 6.00             | 0.046            | 260            | 8.00             | 0.04 |
|   | 100                   | n 8n                    | 0.011          | 1/10 | 1.00                    | 0.012            | 140        | 1 20             | 0.014          | 200 | 1 50                    | 0.016          | 200 | 1 80                    | 0.018          | 220        | 2 00             | 0.030          | 220        | 2 50                    | 0 032          | 240        | 3 00             | 0.034          | 260 | 4.00                    | 0.044          | 260 | 6.00             | 0.044            | 260            | 8 00             | 0.04 |
|   | .00                   | 0.00                    | 0.011          | 140  | 1.00                    | 0.012            | 140        | 1.20             | 0.014          | 200 | 1.50                    | 0.010          | 200 | 1.00                    | 0.010          | 220        | 2.00             | 0.050          | 220        | 2.50                    | 0.032          | 240        | 3.00             | 0.034          | 200 | 4.00                    | 0.044          | 200 | 0.00             | 0.044            | 200            | 0.00             | 0.04 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.009          | 120  | 1.00                    | 0.011            | 120        | 1.20             | 0.022          | 140 | 1.50                    | 0.024          | 140 | 1.80                    | 0.026          | 160        | 2.00             | 0.028          | 160        | 2.50                    | 0.036          | 180        | 3.00             | 0.042          | 200 | 4.00                    | 0.052          | 200 | 6.00             | 0.052            | 200            | 8.00             | 0.05 |
|   |                       | 0.00                    | 0.016          | 1.40 | 1.00                    | 0.018            | 140        | 1 20             | 0.020          | 200 | 1.50                    | 0.036          | 200 | 1.00                    | 0.030          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 2.00             | 0.050          | 200 | 4.00                    | 0.055          | 200 | c 00             | 0.055            | 200            | 0.00             | 0.05 |
|   |                       |                         |                |      |                         | 0.018            |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.016          | 140  | 1.00                    | 0.018            | 140        | 1.20             | 0.020          | 200 | 1.50                    | 0.026          | 200 | 1.80                    | 0.028          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 3.00             | 0.058          | 260 | 4.00                    | 0.055          | 260 | 6.00             | 0.055            | 260            | 8.00             | 0.05 |
| 1 | 100                   | 0.80                    | 0.018          | 140  | 1.00                    | 0.020            | 140        | 1.20             | 0.022          | 200 | 1.50                    | 0.026          | 200 | 1.80                    | 0.028          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 3.00             | 0.058          | 260 | 4.00                    | 0.055          | 260 | 6.00             | 0.055            | 260            | 8.00             | 0.05 |
| 1 | 100                   | 0.80                    | 0.018          | 140  | 1.00                    | 0.020            | 140        | 1.20             | 0.022          | 200 | 1.50                    | 0.026          | 200 | 1.80                    | 0.028          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 3.00             | 0.058          | 260 | 4.00                    | 0.055          | 260 | 6.00             | 0.055            | 260            | 8.00             | 0.05 |
| 1 | 100                   | 0.80                    | 0.018          | 140  | 1.00                    | 0.020            | 140        | 1.20             | 0.022          | 200 | 1.50                    | 0.026          | 200 | 1.80                    | 0.028          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 3.00             | 0.058          | 260 | 4.00                    | 0.055          | 260 | 6.00             | 0.055            | 260            | 8.00             | 0.05 |
| 1 | 100                   | 0.80                    | 0.016          | 140  | 1.00                    | 0.018            | 140        | 1.20             | 0.020          | 200 | 1.50                    | 0.026          | 200 | 1.80                    | 0.028          | 220        | 2.00             | 0.036          | 220        | 2.50                    | 0.040          | 240        | 3.00             | 0.058          | 260 | 4.00                    | 0.055          | 260 | 6.00             | 0.055            | 260            | 8.00             | 0.05 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.006          | 120  | 1.00                    | 0.007            | 120        | 1.20             | 0.008          | 130 | 1.50                    | 0.009          | 130 | 1.80                    | 0.010          | 140        | 2.00             | 0.010          | 140        | 2.50                    | 0.012          | 150        | 3.00             | 0.015          | 170 | 4.00                    | 0.020          | 170 | 6.00             | 0.020            | 170            | 8.00             | 0.02 |
| 1 | 100                   | 0.80                    | 0.011          | 120  | 1.00                    | 0.016            | 120        | 1.20             | 0.018          | 130 | 1.50                    | 0.020          | 130 | 1.80                    | 0.022          | 140        | 2.00             | 0.028          | 140        | 2.50                    | 0.030          | 150        | 3.00             | 0.034          | 170 | 4.00                    | 0.042          | 170 | 6.00             | 0.042            | 170            | 8.00             | 0.04 |
| - | _                     |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| + | _                     |                         |                |      |                         | 0.016            |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |
| 1 | 100                   | 0.80                    | 0.006          | 140  | 1.00                    | 0.007            | 140        | 1.20             | 0.008          | 180 | 1.50                    | 0.009          | 180 | 1.80                    | 0.010          | 200        | 2.00             | 0.010          | 200        | 2.50                    | 0.012          | 220        | 3.00             | 0.015          | 240 | 4.00                    | 0.020          | 240 | 6.00             | 0.020            | 240            | 8.00             | 0.02 |
|   | 80                    | 0.80                    | 0.009          | 100  | 1.00                    | 0.010            | 100        | 1.20             | 0.012          | 140 | 1.50                    | 0.014          | 140 | 1.80                    | 0.018          | 180        | 2.00             | 0.020          | 180        | 2.50                    | 0.026          | 200        | 3.00             | 0.030          | 240 | 4.00                    | 0.032          | 240 | 6.00             | 0.032            | 240            | 8.00             | 0.03 |
|   |                       |                         |                |      |                         |                  |            |                  |                |     |                         |                |     |                         |                |            |                  |                |            |                         |                |            |                  |                |     |                         |                |     |                  |                  |                |                  |      |



# NEW

# CrazyMill Cool Vollradius - Typ C - Schlichten

## FRÄSEN MIT INTEGRIERTER KÜHLUNG | SCHNITTDATENÜBERSICHT

|                                       | Werkstoff-            | Werkstoff                                      | Wr.Nr.   | DIN               | AISI/ASTM/    |                | <b>Ød</b><br>0.3 m |       |                | <b>Ød</b> 0.4 m  |       |                | <b>Ød</b><br>0.5 m |       |                | <b>Ød</b><br>0.6 m |       |
|---------------------------------------|-----------------------|------------------------------------------------|----------|-------------------|---------------|----------------|--------------------|-------|----------------|------------------|-------|----------------|--------------------|-------|----------------|--------------------|-------|
|                                       | gruppe                | Weikston                                       | VVI.IVI. | DIN               | UNS           |                |                    |       | ١              |                  |       | l              |                    |       | ١              |                    |       |
|                                       |                       |                                                |          |                   |               | V <sub>c</sub> | d <sub>eff</sub>   | Tz    | V <sub>c</sub> | d <sub>eff</sub> | Tz    | V <sub>c</sub> | d <sub>eff</sub>   | Tz    | V <sub>c</sub> | d <sub>eff</sub>   | Tz    |
|                                       |                       |                                                | 1.0301   |                   | AISI 1010     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| Schlichten                            | P                     | Ctäble uplegiert                               | 1.0401   | C15               | AISI 1015     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Stähle unlegiert<br>Rm < 800 N/mm <sup>2</sup> | 1.1191   | C45E/CK45         | AISI 1045     | 45             | 0.24               | 0.006 | 59             | 0.31             | 0.008 | 74             | 0.39               | 0.012 | 89             | 0.47               | 0.014 |
| · /// \                               |                       | 11111 \ 000 1411111                            | 1.0044   | S275JR            | AISI 1020     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| a <sub>p</sub>                        |                       |                                                | 1.0715   | 11SMn30           | AISI 1215     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| +   Tyla                              |                       |                                                | 1.5752   | 15NiCr13          | ASTM 3415     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| ————————————————————————————————————— |                       | Stähle                                         | 1.7131   | 16MnCr5           | AISI 5115     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| 15°1                                  |                       | niedriglegiert                                 | 1.3505   | 100Cr6            | AISI 52100    | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.007 | 74             | 0.39               | 0.011 | 89             | 0.47               | 0.013 |
| - a -0.1vd                            |                       | Rm > 900 N/mm <sup>2</sup>                     | 1.7225   | 42CrMo4           | AISI 4140     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| $\blacksquare a_p = 0.1 \times d_1$   |                       |                                                | 1.2842   | 90MnCrV8          | AISI O2       |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| $\blacksquare a_e = 0.05 \times d_1$  |                       |                                                | 1.2379   | X153CrMoV12       | AISI D2       |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| Bearbeitungswinkel = 15°              |                       | Werkzeugstähle<br>hochlegiert                  | 1.2436   | X210CrW12         | AISI D4/D6    | 15             | 0.24               | 0.005 | 50             | 0.31             | 0 007 | 7/             | U 30               | 0.010 | 80             | 0.47               | 0.011 |
| - C0'000                              |                       | Rm < 1200 N/mm <sup>2</sup>                    | 1.3343   | HS6-5-2C          | AISI M2       | 45             | 0.24               | 0.003 | 33             | 0.51             | 0.007 | /-             | 0.55               | 0.010 | 05             | 0.47               | 0.011 |
| n <sub>max</sub> = 60'000 rpm         |                       |                                                | 1.3355   | HS18-0-1          | AISI T1       |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Rostfreie Stähle-                              | 1.4016   | X6Cr17            | AISI 430      |                | 0.3:               | 0.000 |                | 0.31             | 0.000 | ١              | 0.35               | 0.015 |                |                    | 0.01  |
|                                       | M                     | ferritisch                                     | 1.4105   | X6CrMoS17         | AISI 430F     | 45             | 0.24               | 0.006 | 59             | 0.31             | 0.008 | /4             | 0.39               | 0.012 | 89             | 0.47               | 0.014 |
|                                       | IVI                   | Rostfreie Stähle-                              | 1.4034   | X46Cr13           | AISI 420C     | 45             | 0.34               | 0.005 | E0.            | 0.31             | 0.007 | 74             | 0.20               | 0.011 | 00             | 0.47               | 0.017 |
|                                       |                       | martensitisch                                  | 1.4112   | X90CrMoV18        | AISI 440B     | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.007 | /4             | 0.39               | 0.011 | 89             | 0.47               | 0.012 |
| <b>X_Y</b>                            |                       | Rostfreie Stähle-                              | 1.4542   | X5CrNiCuNb 16-4   | AISI 630      | 45             | 0.24               | 0.005 |                | 0.21             | 0.007 | 74             | 0.20               | 0.011 | 00             | 0.47               | 0.017 |
|                                       |                       | martensitisch – PH                             | 1.4545   | X5CrNiCuNb 15-5   | ASTM 15-5 PH  | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.007 | /4             | 0.39               | 0.011 | 89             | 0.47               | 0.012 |
| <b> /</b>                             |                       |                                                | 1.4301   | X5CrNi 18-10      | AISI 304      |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Rostfreie Stähle-                              | 1.4435   | X2CrNiMo 18-14-3  | AISI 316L     | 4.5            | 0.24               | 0.005 |                | 0.21             | 0.007 | 74             | 0.20               | 0.010 | 00             | 0.47               | 0.017 |
|                                       |                       | austenitisch                                   | 1.4441   | X2CrNiMo 18-15-3  | AISI 316LM    | 45             | 0.24               | 0.005 | 59             | 0.51             | 0.007 | /4             | 0.39               | 0.010 | 89             | 0.47               | 0.012 |
|                                       |                       |                                                | 1.4539   | X1NiCrMoCu25-20-5 | AISI 904L     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       |                                                | 0.6020   | GG20              | ASTM 30       |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| V// I                                 | K                     |                                                | 0.6030   | GG30              | ASTM 40B      | 1              |                    |       |                |                  |       | l              |                    |       |                |                    |       |
| // /\                                 |                       | Gusseisen                                      | 0.7040   | GGG40             | ASTM60-40-18  | 45             | 0.24               | 0.004 | 59             | 0.31             | 0.006 | 74             | 0.39               | 0.007 | 89             | 0.47               | 0.009 |
|                                       |                       |                                                | 0.7060   | GGG60             | ASTM80-60-03  |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Aluminium                                      | 3.2315   | AlMgSi1           | ASTM 6351     |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
| <u> </u>                              | N                     | Knetlegierungen                                | 3.4365   | AlZnMgCu1.5       | ASTM 7075     | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | 74             | 0.39               | 0.014 | 89             | 0.47               | 0.017 |
|                                       | IN                    | Aluminium Druck-                               |          |                   | ASTM A380     | Ī.,            |                    |       |                |                  |       |                |                    |       | Ī.,            |                    |       |
|                                       |                       | gusslegierungen                                | 3.2381   | GD-AlSi10Mg       | UNS A03590    | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | /4             | 0.39               | 0.014 | 89             | 0.47               | 0.017 |
|                                       |                       |                                                | 2.004    | Cu-OF / CW008A    | UNS C10100    |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Kupfer                                         | 2.0065   | Cu-ETP / CW004A   | UNS C11000    | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | /4             | 0.39               | 0.017 | 89             | 0.47               | 0.019 |
|                                       |                       |                                                | 2.0321   | CuZn37 CW508L     | UNS C27400    | Ī.,            |                    |       |                |                  |       |                |                    |       | l              |                    |       |
|                                       |                       | Messing bleifrei                               | 2.036    | CuZn40 CW509L     | UNS C28000    | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | /4             | 0.39               | 0.017 | 89             | 0.47               | 0.019 |
|                                       |                       | Messing, Bronze                                | 2.0401   | CuZn39Pb3         | UNS C38500    |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Rm < 400 N/mm <sup>2</sup>                     | 2.102    | CuSn6             | UNS C51900    | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | /4             | 0.39               | 0.017 | 89             | 0.47               | 0.019 |
|                                       |                       | Bronze                                         | 2.0966   | CuAl10Ni5Fe4      | UNS C63000    |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Rm < 600 N/mm <sup>2</sup>                     | 2.096    | CuAl9Mn2          | UNS C63200    | 45             | 0.24               | 0.007 | 59             | 0.31             | 0.010 | /4             | 0.39               | 0.014 | 89             | 0.47               | 0.017 |
|                                       |                       |                                                | 2.4856   |                   | Inconel 625   |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       | C                     | Hitzebeständige                                | 2.4668   |                   | Inconel 718   |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       | $S_1$                 | Stähle                                         |          | NiMo28            | Hastelloy B-2 | 45             | 0.24               | 0.004 | 59             | 0.31             | 0.005 | 74             | 0.39               | 0.005 | 89             | 0.47               | 0.006 |
|                                       |                       |                                                | 2.4665   | NiCr22Fe18Mo      | Hastelloy X   |                |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | T'                                             | 3.7035   |                   | ASTM B348     | 4.5            | 0.24               | 0.005 |                | 0.24             | 0.005 | ٦.             | 0.00               | 0.040 |                | 0.47               | 0.044 |
|                                       | C                     | Titan rein                                     | 3.7065   | Gr.4              | ASTM B348     | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.005 | /4             | 0.39               | 0.010 | 89             | 0.47               | 0.011 |
|                                       | S <sub>2</sub>        |                                                | 3.7165   | TiAl6V4           | ASTM B348     | T              |                    |       |                |                  |       |                |                    |       |                |                    |       |
|                                       |                       | Titan Legierungen                              | 9.9367   | TiAl6Nb7          | ASTM F1295    | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.005 | /4             | 0.39               | 0.010 | 89             | 0.47               | 0.011 |
|                                       | C                     | CrCo Logiania                                  | 2.4964   | CoCr20W15Ni       | Haynes 25     | ДГ             | 0.24               | 0.004 | E0.            | 0.21             | 0.004 | 74             | 0.20               | 0.000 | 00             | 0.47               | 0.000 |
|                                       | <b>S</b> <sub>3</sub> | CrCo-Legierungen                               |          | CrCoMo28          | ASTM F1537    | 45             | 0.24               | 0.004 | 59             | 0.31             | 0.004 | /4             | 0.39               | 0.006 | 89             | 0.4/               | 0.006 |
|                                       | H <sub>1</sub>        | Stähle gehärtet<br>< 55 HRC                    | 1.2510   | 100MnCrMoW4       | AISI O1       | 45             | 0.24               | 0.005 | 59             | 0.31             | 0.007 | 74             | 0.39               | 0.008 | 80             | 0.47               | 0.010 |
|                                       | H <sub>2</sub>        | Stähle gehärtet<br>≥ 55 HRC                    | 1 2379   | X153CrMoV12       | AISI D2       |                |                    |       |                |                  |       |                |                    |       |                |                    |       |



 $\mathbf{V_c}$  [m/min]  $\mathbf{f_z}$  [mm]  $\mathbf{d_{eff}}$  [mm]

ANWENDUNGSEMPFEHLUNG lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



|    |                | Ød                      |                |                | Ød               |                |                | Ød               |                |                | Ød               |                |                | Ød                      |                |                | Ød               |                |                | Ød               |                |                | Ød                      |                |                       | Ød               |                |                | Ød               |                |                | Ød               |                |
|----|----------------|-------------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|----------------|-------------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|----------------|-------------------------|----------------|-----------------------|------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
| 1  |                | 0.8 m                   | _              | ı              | 1.0 n            |                | l              | 1.2 m            |                | 1              | 1.5 n            |                |                | 1.8 m                   | _              | 1              | 2.0 m            |                |                | 2.5 m            |                | l              | 3.0 n                   |                | 1                     | 4.0 m            | _              | 1 1            | 6.0 m            |                |                | 8.0 m            |                |
| V  | / <sub>c</sub> | <b>d</b> <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | Ť <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | <b>d</b> <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | <b>d</b> <sub>eff</sub> | f <sub>z</sub> | <b>V</b> <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> | V <sub>c</sub> | d <sub>eff</sub> | f <sub>z</sub> |
| 10 | 00             | 0.63                    | 0.017          | 140            | 0.79             | 0.018          | 140            | 0.94             | 0.020          | 200            | 1.18             | 0.029          | 200            | 1.42                    | 0.031          | 220            | 1.57             | 0.041          | 220            | 1.97             | 0.043          | 240            | 2.36                    | 0.048          | 260                   | 3.15             | 0.060          | 260            | 4.72             | 0.060          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.014          | 140            | 0.79             | 0.017          | 140            | 0.94             | 0.019          | 200            | 1.18             | 0.026          | 200            | 1.42                    | 0.029          | 220            | 1.57             | 0.038          | 220            | 1.97             | 0.041          | 240            | 2.36                    | 0.046          | 260                   | 3.15             | 0.058          | 260            | 4.72             | 0.058          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.013          | 140            | 0.79             | 0.013          | 140            | 0.94             | 0.016          | 200            | 1.18             | 0.024          | 200            | 1.42                    | 0.026          | 220            | 1.57             | 0.036          | 220            | 1.97             | 0.038          | 240            | 2.36                    | 0.042          | 260                   | 3.15             | 0.053          | 260            | 4.72             | 0.053          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.017          | 140            | 0.79             | 0.019          | 140            | 0.94             | 0.022          | 200            | 1.18             | 0.029          | 200            | 1.42                    | 0.031          | 220            | 1.57             | 0.041          | 220            | 1.97             | 0.043          | 240            | 2.36                    | 0.048          | 260                   | 3.15             | 0.058          | 260            | 4.72             | 0.058          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.014          | 140            | 0.79             | 0.018          | 140            | 0.94             | 0.020          | 200            | 1.18             | 0.026          | 200            | 1.42                    | 0.029          | 220            | 1.57             | 0.038          | 220            | 1.97             | 0.041          | 240            | 2.36                    | 0.043          | 260                   | 3.15             | 0.055          | 260            | 4.72             | 0.055          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.014          | 140            | 0.79             | 0.018          | 140            | 0.94             | 0.020          | 200            | 1.18             | 0.026          | 200            | 1.42                    | 0.029          | 220            | 1.57             | 0.038          | 220            | 1.97             | 0.041          | 240            | 2.36                    | 0.043          | 260                   | 3.15             | 0.055          | 260            | 4.72             | 0.055          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.013          | 140            | 0.79             | 0.014          | 140            | 0.94             | 0.017          | 200            | 1.18             | 0.019          | 200            | 1.42                    | 0.022          | 220            | 1.57             | 0.036          | 220            | 1.97             | 0.038          | 240            | 2.36                    | 0.041          | 260                   | 3.15             | 0.053          | 260            | 4.72             | 0.053          | 260            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.011          | 120            | 0.79             | 0.013          | 120            | 0.94             | 0.026          | 140            | 1.18             | 0.029          | 140            | 1.42                    | 0.031          | 160            | 1.57             | 0.034          | 160            | 1.97             | 0.043          | 180            | 2.36                    | 0.050          | 200                   | 3.15             | 0.062          | 200            | 4.72             | 0.062          | 200            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94             | 0.024          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94             | 0.024          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94             | 0.026          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94             | 0.026          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.022          | 140            | 0.79             | 0.024          | 140            | 0.94             | 0.026          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.019          | 140            | 0.79             | 0.022          | 140            | 0.94             | 0.024          | 200            | 1.18             | 0.031          | 200            | 1.42                    | 0.034          | 220            | 1.57             | 0.043          | 220            | 1.97             | 0.048          | 240            | 2.36                    | 0.070          | 260                   | 3.15             | 0.066          | 260            | 4.72             | 0.066          | 260            | 6.29             | 0.06           |
| 10 | 00             | 0.63                    | 0.007          | 120            | 0.79             | 0.008          | 120            | 0.94             | 0.010          | 130            | 1.18             | 0.011          | 130            | 1.42                    | 0.012          | 140            | 1.57             | 0.012          | 140            | 1.97             | 0.014          | 150            | 2.36                    | 0.018          | 170                   | 3.15             | 0.024          | 170            | 4.72             | 0.024          | 170            | 6.29             | 0.02           |
| 10 | 00             | 0.63                    | 0.013          | 120            | 0.79             | 0.019          | 120            | 0.94             | 0.022          | 130            | 1.18             | 0.024          | 130            | 1.42                    | 0.026          | 140            | 1.57             | 0.034          | 140            | 1.97             | 0.036          | 150            | 2.36                    | 0.041          | 170                   | 3.15             | 0.050          | 170            | 4.72             | 0.050          | 170            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.013          | 120            | 0.79             | 0.019          | 120            | 0.94             | 0.022          | 130            | 1.18             | 0.024          | 130            | 1.42                    | 0.026          | 140            | 1.57             | 0.034          | 140            | 1.97             | 0.036          | 150            | 2.36                    | 0.041          | 170                   | 3.15             | 0.050          | 170            | 4.72             | 0.050          | 170            | 6.29             | 0.05           |
| 10 | 00             | 0.63                    | 0.007          | 140            | 0.79             | 0.008          | 140            | 0.94             | 0.010          | 180            | 1.18             | 0.011          | 180            | 1.42                    | 0.012          | 200            | 1.57             | 0.012          | 200            | 1.97             | 0.014          | 220            | 2.36                    | 0.018          | 240                   | 3.15             | 0.024          | 240            | 4.72             | 0.024          | 240            | 6.29             | 0.02           |
| 81 | 0              | 0.63                    | 0.011          | 100            | 0.79             | 0.012          | 100            | 0.94             | 0.014          | 140            | 1.18             | 0.017          | 140            | 1.42                    | 0.022          | 180            | 1.57             | 0.024          | 180            | 1.97             | 0.031          | 200            | 2.36                    | 0.036          | 240                   | 3.15             | 0.038          | 240            | 4.72             | 0.038          | 240            | 6.29             | 0.03           |



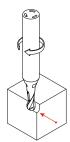
### PRÄZISES UND EFFIZIENTES FRÄSEN

#### Kühlschmierstoff, Filter und Druck

**Kühlschmierstoff:** Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

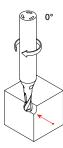
Filter: Die grossen Kühlkanäle erlauben einen Standardfilter mit einer Filterqualität von ≤ 0.05 mm.

**Kühlmitteldruck:** Es werden mindestens 15 bar Kühlmitteldruck benötigt, um prozesssicher zu fräsen. Ein hoher Druck ist prinzipiell besser für den Kühl- und Spüleffekt.


| Drehzahl        | [U/min] | ≤ 10'000 | > 10'000 |  |
|-----------------|---------|----------|----------|--|
| Minimaler Druck | [bar]   | 15       | 30       |  |

#### Spannmittel

Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".


### **FRÄSPROZESS**

#### Fräsen im Gleich- oder Gegenlauf

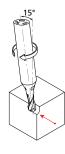


Für das Fräsen von Oberflächen oder Kanten empfiehlt Mikron Tool das Fräsen im Gleichlauf. Hier ist die Spandicke anfangs grösser und verringert sich kontinuierlich, die Schnittkräfte bleiben klein. Beim Fräsen im Gegenlauf hingegen würden hohe Schnittkräfte den Fräser vom Teil wegdrängen. Somit nimmt die Oberflächengüte ab.

#### Schruppen



Für das Schruppen mit CrazyMill Cool Vollradius empfiehlt Mikron Tool eine senkrechte Bearbeitung zum Werkstück (Neigungswinkel 0°). So kann die maximale empfohlene Frästiefe a<sub>D</sub> ausgenützt werden. Das Resultat ist ein extrem hohes Abtragsvolumen (Q [cm<sup>3</sup>/min]).


#### **Empfohlene Schnittparameter**

 $v_c$  und  $f_z$  = wie in der Schnittdatentabelle angegeben

 $a_p = \text{max. } 1 \text{ x d}$ 

 $a_e = 0.3 \times d$ 

#### Schlichten

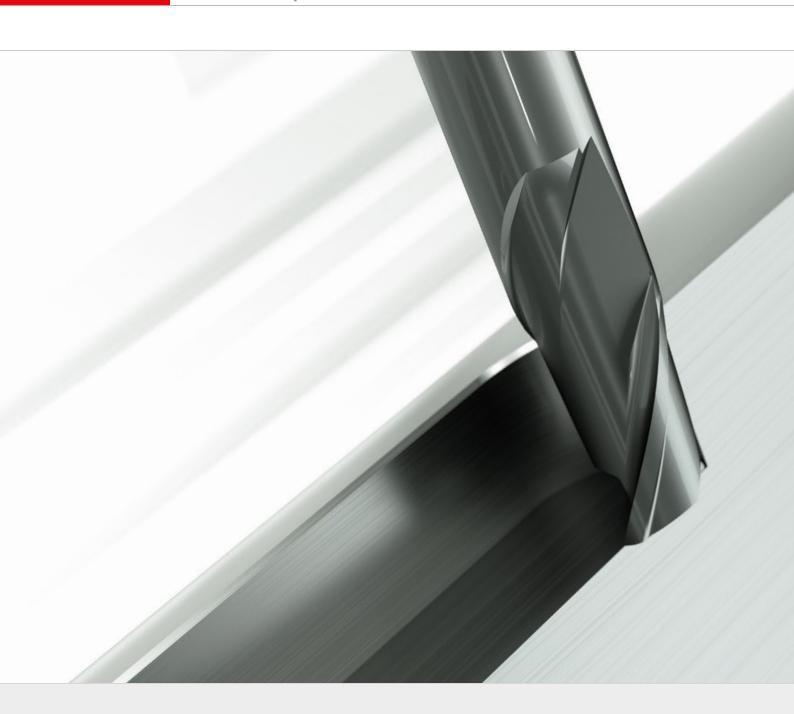


Für das Schlichten mit CrazyMill Cool Vollradius empfiehlt Mikron Tool eine Bearbeitung mit einem Neigungswinkel von 15° der Spindelachse bzw. 75° zur Werkstückoberfläche. So wird der Fräskontakt vom Achsmittelpunkt des Werkzeugs gegen den Aussendurchmesser verlegt, wo die ideale Schneidgeometrie wirkt und auch die Schnittgeschwindigkeit zunimmt (im Zentrum des Werkzeuges beträgt die Schnittgeschwindigkeit null).

Eine Neigung von 15° des Fräskörpers zum Werkstück bringt einige Vorteile:

- Die Schnittgeschwindigkeit ist höher
- Bessere Qualität der Oberfläche
- Verbesserung der Standzeit

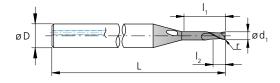
#### **Empfohlene Schnittparameter**


 $v_c$  und  $f_z$  = wie in der Schnittdatentabelle angegeben

 $a_0 = 0.05 - 0.5 \times d$ 

 $a_e = 0.05 - 0.15 \times d$  je nach geforderter Oberflächengüte

 $a_e = f_z$  für eine maximale Oberflächengüte


# Kundenspezifische Fräser



## Mikron Tool produziert Hartmetall - Fräswerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

#### **MERKMALE**

- Durchmesser min.: 0.3 mm,
- Durchmesser max.: 32.0 mm, grösser nach Abklärung
- Maximale Werkzeuglänge: 330 mm
- Werkzeugdurchmesser Toleranz max.: ± 5 µm
- Konzentrizität zwischen Schaft und Werkzeugdurchmesser: ≤ 2 µm
- Fräserarten: konische Fräser, zylindrische Fräser, Kugelfräser, VHM-Scheibenfräser (siehe Kapitel Scheibenfräser), Fräser mit Schutzfase, Fräser mit Eckenradius, Formfräser, Winkelfräser, VHM T-Nutenfräser, Schrupp-, Schlichtfräser, usw.
- Schneiden Anzahl: 2 bis 16
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Fräswerkzeuge: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



#### **BESCHICHTUNGEN**

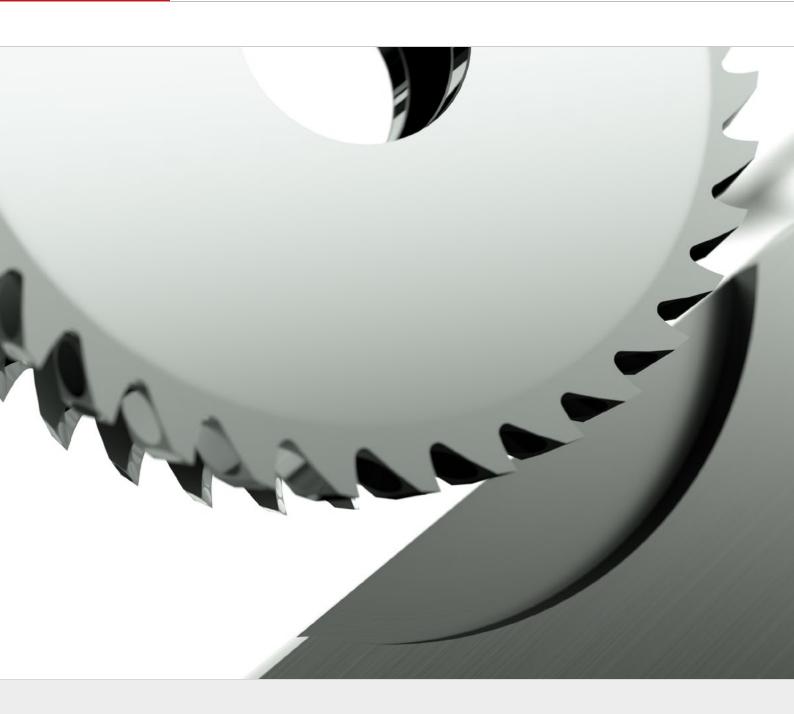
Verschiedene, Auswahl erfolgt je Anwendung

#### KÜHLUNG

- Fräser mit Innenkühlung gerade im Schaft
- Fräser mit Innenkühlung mit Sonderaustritt (z.B. in Nut)
- Fräser für äussere Kühlmittelzufuhr

#### **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch


#### **MATERIAL ANWENDUNG**

Für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe usw.

#### **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten.

# Kundenspezifische Scheibenfräser



## Mikron Tool produziert Hartmetall – Scheibenfräser gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

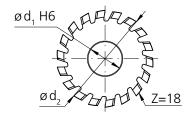
#### **MERKMALE**

- Aussendurchmesser min.: 5 mm 200 mm
- Breite: 0.1 mm 30.0 mm
- Innendurchmesser (Aufnahmedurchmesser): 2.0 mm – 40.0 mm
- Werkzeugdurchmesser Toleranz max.: ± 0.01 µm
- Konzentrizität Innen- zu Aussendurchmesser: 0.01 mm
- Schneiden Anzahl: 10 bis 160
- Schneidengeometrie: mit oder ohne logarithmischem Hinterschliff
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Scheibenfräser: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung

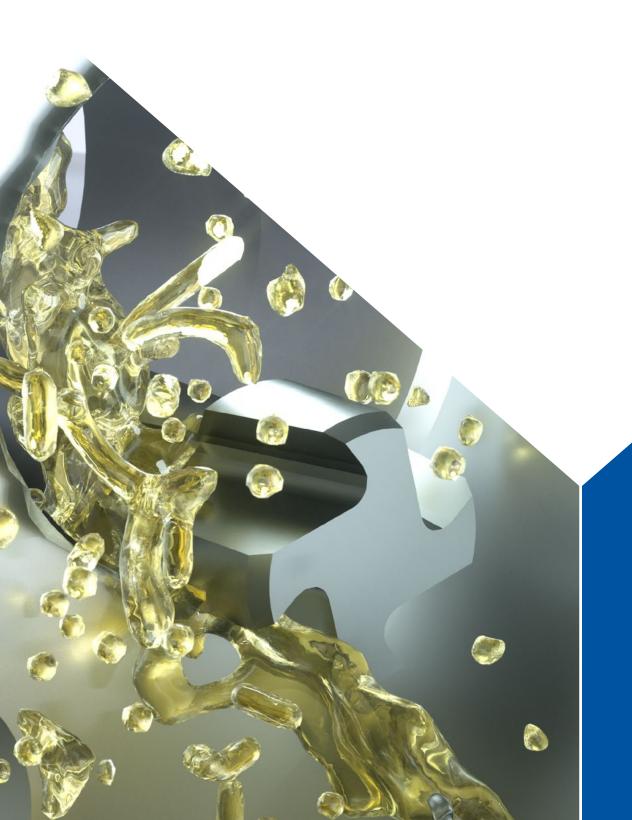


Verschiedene, Auswahl erfolgt je Anwendung

#### KÜHLUNG


■ Werkzeuge für äussere Kühlmittelzufuhr

#### **MATERIAL ANWENDUNG**


Für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

#### **BEHANDLUNGEN**

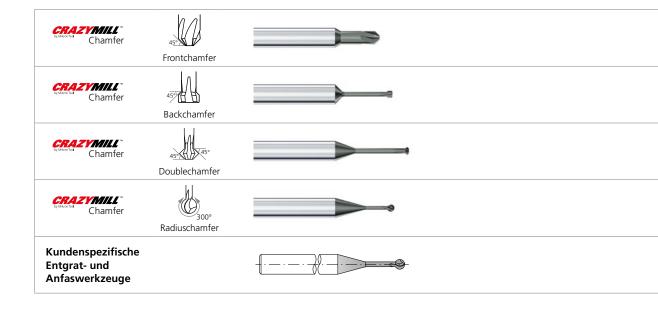
Kantenpräparation



# crazy about deburring



80


**ENTGRATEN** 

| ÜBERSICHT                                        | 554 |
|--------------------------------------------------|-----|
| CRAZYMILL CHAMFER                                | 556 |
| KUNDENSPEZIFISCHE ENTGRAT- UND<br>ANFASWERKZEUGE | 580 |

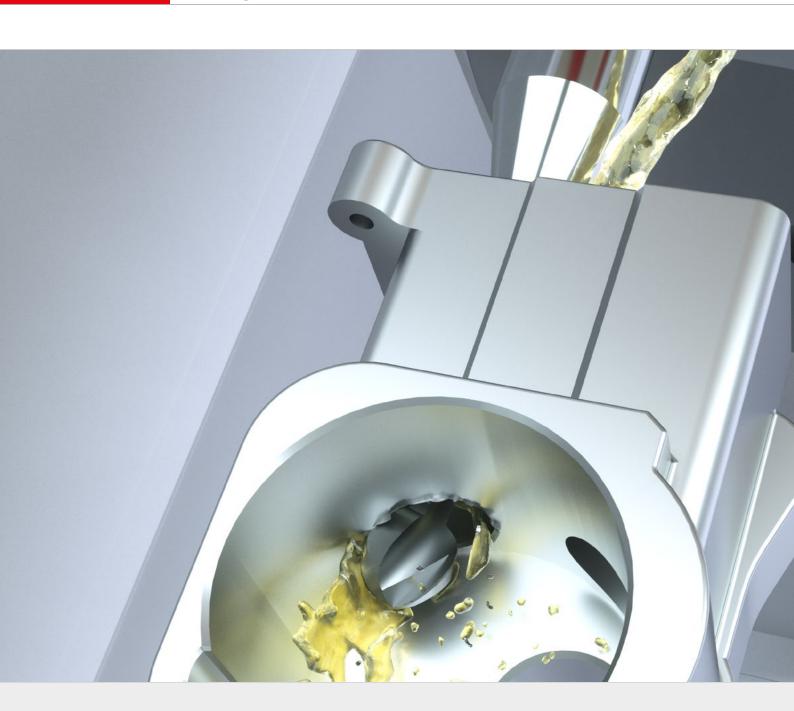
08

# Übersicht

## ZERSPANUNGSLÖSUNGEN



ANWENDUNGSEMPFEHLUNG


lacktriangle Sehr gut geeignet | lacktriangle Gut geeignet | lacktriangle bedingt geeignet | lacktriangle Nicht empfohlen

|                   | ngs-                           |         | Р                                   | M                   | K         | N                      | S <sub>1</sub>                 | S <sub>2</sub>                        | S₃                   | H <sub>1</sub>                | H <sub>2</sub>                |       |
|-------------------|--------------------------------|---------|-------------------------------------|---------------------|-----------|------------------------|--------------------------------|---------------------------------------|----------------------|-------------------------------|-------------------------------|-------|
| ø-Bereich<br>[mm] | max.<br>Bearbeitungs-<br>tiefe | Kühlung | Unlegierte<br>u. legierte<br>Stähle | Rostfreie<br>Stähle | Gusseisen | Nichteisen-<br>metalle | Hitzebe-<br>ständige<br>Stähle | Titan rein<br>u. Titan<br>Legierungen | CrCo-<br>Legierungen | Stähle<br>gehärtet<br><55 HRC | Stähle<br>gehärtet<br>≥55 HRC | Seite |
| 1.0 – 6.0         | -                              |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 556   |
| 0.36 – 5.70       | 3 x d<br>5 x d                 |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 556   |
| 0.9 – 5.7         | 3 x d<br>6 x d                 |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 556   |
| 1.0 – 6.0         | 4 x d                          |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 556   |
| 0.1 – 32.0        | nach<br>Bedarf                 |         | •                                   | •                   | •         | •                      | •                              | •                                     | •                    | •                             | ×                             | 580   |

80



# CrazyMill Chamfer







Jedes einzelne Modell ist spezialisiert auf's Anfasen und Entgraten im Durchmesserbereich 0.4 bis 6.0 mm.

Die unterschiedlichen Werkzeuge ergänzen sich und bieten dem Anwender für jede Entgratungsoperation das ideale Werkzeug. Ob in Stahl, Edelstahl, Guss, Buntmetall oder Titan – die Fräser sind sehr universell in vielen Materialien einsetzbar.

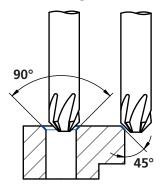
Für alle vier Modelle gelten dieselben Qualitätsattribute: Sie eignen sich für den Einsatz von kleinen Bearbeitungen in den unterschiedlichsten Materialien, sie können mit hohen Vorschubgeschwindigkeiten eingesetzt werden, schneiden scharf und ergeben eine erstklassige Oberflächenqualität. Für hohe Standzeiten ist einerseits das spezielle Hartmetall mit hoher Bruchzähigkeit verantwortlich, andererseits die bei allen Modellen verwendete Hochleistungsbeschichtung.



# Sauberer Abschluss der Bearbeitung

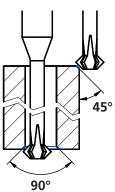
#### ANFASEN UND ENTGRATEN IN KLEINEN DIMENSIONEN

Mikron Tool bietet mit CrazyMill Chamfer ein komplettes Programm von Vollhartmetall Entgratungsfräsern an. Jedes einzelne Modell ist spezialisiert auf 's Anfasen und Entgraten im Durchmesserbereich 0.4 bis 6.0 mm.


- CrazyMill Frontchamfer für vorderseitiges Anfasen und Entgraten
- CrazyMill Backchamfer für rückseitiges Entgraten, Nutzlänge 3 x d und 5 x d
- CrazyMill Doublechamfer für vorder- und rückseitiges Entgraten, Nutzlänge 3 x d und 6 x d
- CrazyMill Radiuschamfer für universellen Einsatz, Nutzlänge 3 x d

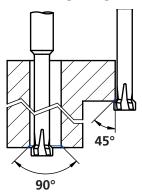


## Alle Möglichkeiten mit 4 Versionen


### CrazyMill Frontchamfer

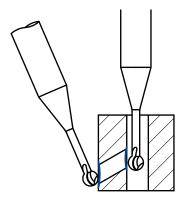
Für vorderseitiges Anfasen und Entgraten




### CrazyMill Doublechamfer

Für vorder- und rückseitiges Entgraten




### CrazyMill Backchamfer

Für rückseitiges Entgraten



### CrazyMill Radiuschamfer

Für universellen Einsatz





| Front                                                                     | Back                                                  | Double                                              | Radius                                              |
|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                                                           | 3 x d / 5 x d                                         | 3 x d / 6 x d                                       | 4 x d                                               |
| <ul><li>Aussenkühlung</li><li>Beschichtet</li><li>Ø1.0 - 6.0 mm</li></ul> | ■ Aussenkühlung<br>■ Beschichtet<br>■ Ø0.36 - 5.70 mm | ■ Aussenkühlung<br>■ Beschichtet<br>■ Ø0.9 - 5.7 mm | ■ Aussenkühlung<br>■ Beschichtet<br>■ Ø1.0 - 6.0 mm |
|                                                                           |                                                       |                                                     |                                                     |
| 1<br>2<br>3<br>4<br>5B<br>7                                               | 1<br>2<br>3<br>3<br>5A<br>5B<br>8                     | 1<br>2<br>3<br>3<br>5A<br>5B<br>9                   | 1<br>2<br>3<br>4<br>5A<br>5B<br>10                  |
| CrazyMill                                                                 | CrazyMill                                             | CrazyMill                                           | CrazyMill                                           |
| Frontchamfer                                                              | Backchamfer                                           | Doublechamfer                                       | Radiuschamfer                                       |





#### 1 | SCHAFT / NUTZLÄNGE

Der robuste Hartmetallschaft, kombiniert mit einer kurz gehaltenen Nutzlänge, unterstützt ein stabiles schwingungsfreies Bearbeiten.

#### 2 | VOLLHARTMETALL

Hohe Standzeit der Werkzeuge auch bei schwer zerspanbaren Materialien dank Hartmetall mit hoher Bruchzähigkeit und Resistenz gegen Wärmeschock.

#### 3 | BESCHICHTUNG

Hochleistungsbeschichtung für hohe Standzeiten und perfekte Oberflächenqualität.

#### 4 | WERKZEUGFORM

Unterschiedlichste Geometrien ergeben eine komplette Palette an Entgratwerkzeugen für alle möglichen Entgratoperationen.

#### **5A | SCHNEIDENGEOMETRIE**

Die Schneidengeometrie ist so ausgelegt, dass keine Sekundärgräte entstehen.

■ Schneiden positiv, scharf geschliffen.

#### **5B | HOHE ANZAHL ZÄHNE**

3 bis 6 Zähne je nach Durchmesser ermöglichen eine hohe Vorschubgeschwindigkeit und ergeben eine hervorragende Oberflächenqualität.

#### 6 | FASE 90°

Beim vorder- und rückseitigen Entgraten kann gleichzeitig eine Fase von 90° angebracht werden.

#### 7 | CRAZYMILL FRONTCHAMFER

Empfiehlt sich für vorderseitiges Anfasen und Entgraten.

#### 8 | CRAZYMILL BACKCHAMFER

Empfiehlt sich für rückseitiges Entgraten von Kanten, Bohrungen und Gewinden.

#### 9 | CRAZYMILL DOUBLECHAMFER

Kann in einer Aufspannung sowohl vorderseitig als auch rückseitig entgraten.

#### 10 | CRAZYMILL RADIUSCHAMFER: 300° SCHNEIDZONE

Eignet sich für schwer zugängliche Stellen, für Innen- und Aussenkonturen, Verschneidungen von Bohrungen/Fräsungen und schräge Bohraustritte.



# CrazyMill Frontchamfer

#### **VORDERSEITIGES ENTGRATEN MIT AUSSENKÜHLUNG**



Das VHM-Entgratwerkzeug CrazyMill Frontchamfer empfiehlt sich für vorderseitiges Anfasen und Entgraten. Das Entgraten von Kanten, Bohrungen oder auch Gewinden erfolgt mit dem scharfen Entgratungsfräser präzise und ohne Bildung eines Sekundärgrates auch an schwer zugänglichen Stellen. Mit Durchmessern von 1.0 bis 6.0 mm ist er für Kleinstbearbeitungen in den unterschiedlichsten Materialien (auch schwer zerspanbaren) bestens einsetzbar, die 4 bis 6 Zähne sorgen für hohe Oberflächengüte und ermöglichen grosse Vorschubgeschwindigkeiten.

#### Kühlschmierstoff, Filter und Druck

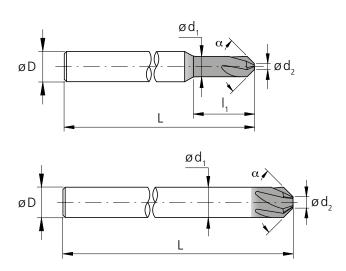
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Entgratprozess.

#### **Hinweis**

Sie haben nicht die passende Variante von CrazyMill Frontchamfer (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.




Hartmetall



Z 4-6







| Lager | Artikelnummer   | d₁   | I <sub>1</sub> | d <sub>2</sub> | D<br>(h6) | L    | Fase<br>α | Z       |
|-------|-----------------|------|----------------|----------------|-----------|------|-----------|---------|
| ge ■  |                 | [mm] | [mm]           | [mm]           | [mm]      | [mm] | 0.        | [Zähne] |
|       | 2.FC.03010090.1 | 1.0  | 3              | 0.3            | 3         | 40   | 90°       | 4       |
|       | 2.FC.06020090.1 | 2.0  | 6              | 0.6            | 3         | 40   | 90°       | 4       |
|       | 2.FC.10030090.1 | 3.0  | -              | 1.0            | 3         | 50   | 90°       | 5       |
|       | 2.FC.15040090.1 | 4.0  | -              | 1.5            | 4         | 50   | 90°       | 6       |
|       | 2.FC.20060090.1 | 6.0  | -              | 2.0            | 6         | 50   | 90°       | 6       |



# CrazyMill Frontchamfer

## ENTGRATEN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstof<br>gruppe             | f-<br>Werkstoff                               | Wr.Nr. | DIN                               | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |  |
|--------------------------------|-----------------------------------------------|--------|-----------------------------------|-------------------------|----------------------------------|--|
|                                |                                               | 1.0301 | C10                               | AISI 1010               |                                  |  |
| P                              |                                               | 1.0401 | C15                               | AISI 1015               |                                  |  |
|                                | Stähle unlegiert                              | 1.1191 | C45E/CK45                         | AISI 1045               | 120                              |  |
|                                | Rm < 800 N/mm <sup>2</sup>                    | 1.0044 | S275JR                            | AISI 1020               |                                  |  |
| VI //                          |                                               | 1.0715 | 11SMn30                           | AISI 1215               |                                  |  |
| \(\lambda_{\pi} \)             |                                               | 1.5752 | 15NiCr13                          | ASTM 3415 / AISI 3310   |                                  |  |
|                                |                                               | 1.7131 | 16MnCr5                           | AISI 5115               |                                  |  |
|                                | Stähle niedriglegiert                         | 1.3505 | 100Cr6                            | AISI 52100              | 100                              |  |
|                                | Rm > 900 N/mm <sup>2</sup>                    | 1.7225 | 42CrMo4                           | AISI 4140               |                                  |  |
| T                              |                                               | 1.2842 | 90MnCrV8                          | AISI O2                 |                                  |  |
| $A \mid \cdot \mid \cdot \mid$ |                                               | 1.2379 | X153CrMoV12                       | AISI D2                 |                                  |  |
| /                              | Werkzeugstähle                                | 1.2436 | X210CrW12                         | AISI D4/D6              |                                  |  |
| 4)                             | hochlegiert                                   | 1.3343 | HS6-5-2C                          | AISI M2 / UNS T11302    | 80                               |  |
|                                | Rm < 1200 N/mm <sup>2</sup>                   | 1.3355 | HS18-0-1                          | AISI T1 / UNS T12001    |                                  |  |
|                                | B 16 1 6 11 1                                 |        |                                   |                         |                                  |  |
|                                | Rostfreie Stähle-                             | 1.4016 | X6CrNoS17                         | AISI 430 / UNS S43000   | 50                               |  |
| M                              | ferritisch                                    | 1.4105 | X6CrMoS17                         | AISI 430F               |                                  |  |
|                                | Rostfreie Stähle-                             | 1.4034 | X46Cr13                           | AISI 420C               | 80                               |  |
|                                | martensitisch                                 | 1.4112 | X90CrMoV18                        | AISI 440B               |                                  |  |
|                                | Rostfreie Stähle-                             | 1.4542 | X5CrNiCuNb 16-4                   | AISI 630 / ASTM 17-4 PH |                                  |  |
|                                | martensitisch – PH                            | 1.4545 | X5CrNiCuNb 15-5                   | ASTM 15-5 PH            |                                  |  |
|                                |                                               | 1.4301 | X5CrNi 18-10                      | AISI 304                | 50                               |  |
|                                | Rostfreie Stähle-                             | 1.4435 | X2CrNiMo 18-14-3                  | AISI 316L               |                                  |  |
|                                | austenitisch                                  | 1.4441 | X2CrNiMo 18-15-3                  | AISI 316LM              |                                  |  |
|                                |                                               | 1.4539 | X1NiCrMoCu 25-20-5                | AISI 904L               |                                  |  |
|                                |                                               | 0.6020 | GG20                              | ASTM 30                 |                                  |  |
| V                              |                                               | 0.6030 | GG30                              | ASTM 40B                |                                  |  |
| K                              | Gusseisen                                     | 0.7040 | GGG40                             | ASTM 60-40-18           | 60                               |  |
|                                |                                               | 0.7060 | GGG60                             | ASTM 80-60-03           |                                  |  |
|                                | Alcondinations                                | 3.2315 | AlMgSi1                           | ASTM 6351               |                                  |  |
| IN II                          | Aluminium<br>Knetlegierungen                  | 3.4365 | AlZnMgCu1.5                       | ASTM 7075               | 200                              |  |
| N                              | Aluminium                                     | 3.4363 | GD-AlSi9Cu3                       | ASTM A380               |                                  |  |
|                                | Druckgusslegierungen                          |        | GD-AlSi10Mg                       | UNS A03590              | 200                              |  |
|                                | Drackgassiegierangen                          |        |                                   |                         |                                  |  |
|                                | Kupfer                                        | 2.004  | Cu-OF / CW008A<br>Cu-ETP / CW004A | UNS C10100              | 40                               |  |
|                                |                                               |        |                                   | UNS C11000              |                                  |  |
|                                | Messing bleifrei                              | 2.0321 | CuZn37 CW508L                     | UNS C27400              | 40                               |  |
|                                |                                               | 2.036  | CuZn40 CW509L                     | UNS C28000              |                                  |  |
|                                | Messing, Bronze<br>Rm < 400 N/mm <sup>2</sup> | 2.0401 | CuZn39Pb3 / CW614N                |                         | 200                              |  |
|                                |                                               | 2.102  | CuSn6                             | UNS C51900              |                                  |  |
|                                | Bronze                                        | 2.0966 | CuAl10Ni5Fe4                      | UNS C63000              | 200                              |  |
|                                | Rm < 600 N/mm <sup>2</sup>                    | 2.096  | CuAl9Mn2                          | UNS C63200              |                                  |  |
|                                |                                               | 2.4856 |                                   | Inconel 625             |                                  |  |
| $ S_1 $                        | Hitzebeständige                               | 2.4668 |                                   | Inconel 718             | 40                               |  |
| 1                              | Stähle                                        | 2.4617 | NiMo28                            | Hastelloy B-2           | .5                               |  |
|                                |                                               | 2.4665 | NiCr22Fe18Mo                      | Hastelloy X             |                                  |  |
|                                | Titan rein                                    | 3.7035 | Gr.2                              | ASTM B348 / F67         | 40                               |  |
| $S_2$                          | Titali iciii                                  | 3.7065 | Gr.4                              | ASTM B348 / F68         | 40                               |  |
| 2                              | Titan Legierungen                             | 3.7165 | TiAl6V4                           | ASTM B348 / F136        | 40                               |  |
|                                | Titan Legierungen                             | 9.9367 | TiAl6Nb7                          | ASTM F1295              |                                  |  |
| C                              | CrCo Logi                                     | 2.4964 | CoCr20W15Ni                       | Haynes 25               |                                  |  |
| $S_3$                          | CrCo-Legierungen                              |        | CrCoMo28                          | ASTM F1537              | 50                               |  |
| H₁                             | Stähle gehärtet<br>< 55 HRC                   | 1.2510 | 100MnCrMoW4                       | AISI O1                 | 60                               |  |
| H <sub>2</sub>                 | Stähle gehärtet<br>≥ 55 HRC                   | 1.2379 | X153CrMoV12                       | AISI D2                 |                                  |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> <sub>z</sub> [r | nm]          |
|--------------------------|--------------|
| Ød1                      | Ød1          |
| 1.0 - 2.0 mm             | 3.0 - 6.0 mm |
| f,                       | f,           |
| 0.01 – 0.04              | 0.03 – 0.05  |
| 0.01 – 0.03              | 0.02 – 0.04  |
| 0.01 – 0.02              | 0.01 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.01 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
|                          |              |
| 0.01 – 0.02              | 0.01 – 0.03  |
| 0.02 – 0.05              | 0.03 – 0.07  |
| 0.02 – 0.05              | 0.03 – 0.07  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.02 – 0.05              | 0.03 – 0.07  |
| 0.02 – 0.05              | 0.03 – 0.07  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.02 – 0.03  |
| 0.01 – 0.02              | 0.01 – 0.03  |
|                          |              |



# CrazyMill Backchamfer 3 x d / 5 x d

#### RÜCKSEITIGES ENTGRATEN MIT AUSSENKÜHLUNG



CrazyMill Backchamfer empfiehlt sich für rückseitiges Entgraten von Kanten, Bohrungen und Gewinden. Er erspart das Umspannen des Teils auf der Maschine und sorgt für mehr Präzision und schnellere Bearbeitungszyklen. Die kurze Variante mit einer Nutzlänge 3 x d verleiht dem Werkzeug eine noch höhere Stabilität und eignet sich speziell, wenn es um geringere Kantenlängen oder Bohrtiefen geht. Die lange Variante mit einer Nutzlänge 5 x d eignet sich für höhere Kanten und grössere Bohrtiefen.

Mit seinem Durchmesserbereich von 0.36 - 5.70 mm eignet sich CrazyMill Backchamfer zum rückseitigen Entgraten von Bohrungen ab Durchmesser 0.4 mm. Durch die hohe Zähnezahl (3 - 6 je nach Durchmesser) und seine spezielle Schneidengeometrie (positiv scharf geschliffen) ermöglicht der Fräser eine hervorragende Oberflächenqualität ohne Bildung eines Sekundärgrates.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Entgratprozess.

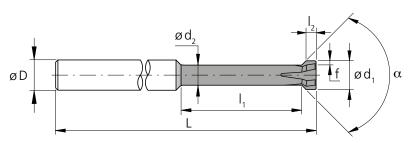
#### Hinweis

Sie haben nicht die passende Variante von CrazyMill Backchamfer (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

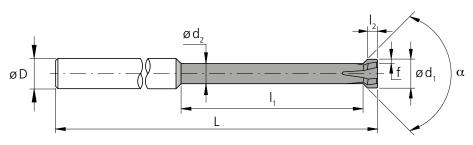


Hartmetall




Z 3-6









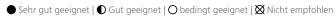

| Lager | → Artikelnummer | <b>d</b> <sub>1</sub> | I <sub>1</sub> | d <sub>2</sub> | I <sub>2</sub> | D<br>(h6) | L    | Fase $\alpha$ | Z       | f     |
|-------|-----------------|-----------------------|----------------|----------------|----------------|-----------|------|---------------|---------|-------|
| ■ ab  |                 | [mm]                  | [mm]           | [mm]           | [mm]           | [mm]      | [mm] |               | [Zähne] | [mm]  |
| -     | 2.BC.03036090.1 | 0.36                  | 1.6            | 0.22           | 0.20           | 3         | 50   | 90°           | 3       | 0.03  |
| -     | 2.BC.03046090.1 | 0.46                  | 2.0            | 0.30           | 0.25           | 3         | 50   | 90°           | 3       | 0.04  |
| •     | 2.BC.03065090.1 | 0.65                  | 2.8            | 0.40           | 0.35           | 3         | 50   | 90°           | 3       | 0.04  |
|       | 2.BC.03090090.1 | 0.90                  | 4.0            | 0.60           | 0.50           | 4         | 50   | 90°           | 4       | 0.075 |
| •     | 2.BC.03140090.1 | 1.40                  | 6.0            | 0.95           | 0.90           | 4         | 50   | 90°           | 4       | 0.10  |
| •     | 2.BC.03190090.1 | 1.90                  | 8.0            | 1.40           | 1.00           | 4         | 50   | 90°           | 5       | 0.10  |
| •     | 2.BC.03290090.1 | 2.90                  | 12.0           | 2.10           | 1.50           | 4         | 60   | 90°           | 5       | 0.20  |
| -     | 2.BC.03370090.1 | 3.70                  | 16.0           | 2.70           | 2.00           | 4         | 60   | 90°           | 5       | 0.30  |
| •     | 2.BC.03470090.1 | 4.70                  | 20.0           | 3.30           | 2.00           | 6         | 70   | 90°           | 6       | 0.40  |
|       | 2.BC.03570090.1 | 5.70                  | 24.0           | 4.00           | 2.00           | 6         | 70   | 90°           | 6       | 0.50  |





| Lager |                 | d <sub>1</sub> | I <sub>1</sub> | d <sub>2</sub> | l <sub>2</sub> | D<br>(h6) | L    | Fase<br>α | Z       | f     |
|-------|-----------------|----------------|----------------|----------------|----------------|-----------|------|-----------|---------|-------|
| ■ ab  |                 | [mm]           | [mm]           | [mm]           | [mm]           | [mm]      | [mm] | -         | [Zähne] | [mm]  |
|       | 2.BC.05036090.1 | 0.36           | 2.4            | 0.22           | 0.20           | 3         | 50   | 90°       | 3       | 0.03  |
|       | 2.BC.05046090.1 | 0.46           | 3.0            | 0.30           | 0.25           | 3         | 50   | 90°       | 3       | 0.04  |
|       | 2.BC.05065090.1 | 0.65           | 4.2            | 0.40           | 0.35           | 3         | 50   | 90°       | 3       | 0.04  |
|       | 2.BC.05090090.1 | 0.90           | 6.0            | 0.60           | 0.50           | 4         | 60   | 90°       | 4       | 0.075 |
| -     | 2.BC.05140090.1 | 1.40           | 9.0            | 0.95           | 0.90           | 4         | 60   | 90°       | 4       | 0.10  |
|       | 2.BC.05190090.1 | 1.90           | 12.0           | 1.40           | 1.00           | 4         | 60   | 90°       | 5       | 0.10  |
| •     | 2.BC.05290090.1 | 2.90           | 18.0           | 2.10           | 1.50           | 4         | 70   | 90°       | 5       | 0.20  |
|       | 2.BC.05370090.1 | 3.70           | 24.0           | 2.70           | 2.00           | 4         | 70   | 90°       | 5       | 0.30  |
|       | 2.BC.05470090.1 | 4.70           | 30.0           | 3.30           | 2.00           | 6         | 80   | 90°       | 6       | 0.40  |
|       | 2.BC.05570090.1 | 5.70           | 36.0           | 4.00           | 2.00           | 6         | 80   | 90°       | 6       | 0.50  |




# CrazyMill Backchamfer 3 x d / 5 x d

## ENTGRATEN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werk<br>grupp  |                                   | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |  |
|----------------|-----------------------------------|--------|--------------------|-------------------------|----------------------------------|--|
|                |                                   | 1.0301 | C10                | AISI 1010               |                                  |  |
|                |                                   | 1.0401 | C15                | AISI 1015               |                                  |  |
| P              | Stähle unlegiert                  | 1.1191 | C45E/CK45          | AISI 1045               | 120                              |  |
|                | Rm < 800 N/mm <sup>2</sup>        | 1.0044 | S275JR             | AISI 1020               | 120                              |  |
| \/(            |                                   | 1.0044 | 11SMn30            | AISI 1020               |                                  |  |
|                |                                   |        |                    |                         |                                  |  |
| 20             |                                   | 1.5752 | 15NiCr13           | ASTM 3415 / AISI 3310   |                                  |  |
|                | Stähle niedriglegiert             | 1.7131 | 16MnCr5            | AISI 5115               | 400                              |  |
|                | Rm > 900 N/mm <sup>2</sup>        | 1.3505 | 100Cr6             | AISI 52100              | 100                              |  |
|                |                                   | 1.7225 | 42CrMo4            | AISI 4140               |                                  |  |
|                |                                   | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |  |
|                | Werkzeugstähle                    | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |  |
|                | hochlegiert                       | 1.2436 | X210CrW12          | AISI D4/D6              | 80                               |  |
|                | Rm < 1200 N/mm <sup>2</sup>       | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 55                               |  |
|                |                                   | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |  |
|                | Rostfreie Stähle-                 | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |  |
| R A            | ferritisch                        | 1.4105 | X6CrMoS17          | AISI 430F               | 50                               |  |
| M              | Rostfreie Stähle-                 | 1.4034 | X46Cr13            | AISI 420C               |                                  |  |
|                | martensitisch                     | 1.4112 | X90CrMoV18         | AISI 440B               | 80                               |  |
|                | Rostfreie Stähle-                 | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |  |
|                | martensitisch – PH                | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |  |
|                | martensitisch – m                 |        |                    |                         | F0                               |  |
|                |                                   | 1.4301 | X5CrNi 18-10       | AISI 304                | 50                               |  |
|                | Rostfreie Stähle-<br>austenitisch | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |  |
|                | austeriitiscri                    | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |  |
|                |                                   | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |  |
|                |                                   | 0.6020 | GG20               | ASTM 30                 |                                  |  |
| K              | C                                 | 0.6030 | GG30               | ASTM 40B                | 60                               |  |
|                | Gusseisen                         | 0.7040 | GGG40              | ASTM 60-40-18           | 60                               |  |
|                |                                   | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |  |
|                | Aluminium                         | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |  |
| IN I           | Knetlegierungen                   | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 200                              |  |
| N              | Aluminium                         | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |  |
|                | Druckgusslegierunger              |        | GD-AlSi10Mg        | UNS A03590              | 200                              |  |
|                | Druckgassiegieranger              | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                  |  |
|                | Kupfer                            |        | Cu-ETP / CW008A    |                         | 40                               |  |
|                |                                   | 2.0065 |                    | UNS C11000              |                                  |  |
|                | Messing bleifrei                  | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40                               |  |
|                |                                   | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |  |
|                | Messing, Bronze                   | 2.0401 | CuZn39Pb3 / CW614N |                         | 200                              |  |
|                | Rm < 400 N/mm <sup>2</sup>        | 2.102  | CuSn6              | UNS C51900              |                                  |  |
|                | Bronze                            | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 200                              |  |
|                | Rm < 600 N/mm <sup>2</sup>        | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |  |
|                |                                   | 2.4856 |                    | Inconel 625             |                                  |  |
| C              | Hitzebeständige                   | 2.4668 |                    | Inconel 718             | 40                               |  |
| $S_1$          | Stähle                            | 2.4617 | NiMo28             | Hastelloy B-2           | 40                               |  |
|                |                                   | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |  |
|                |                                   | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |  |
| C              | Titan rein                        | 3.7065 | Gr.4               | ASTM B348 / F68         | 40                               |  |
| S <sub>2</sub> |                                   |        |                    | ASTM B348 / F136        |                                  |  |
| _              | Titan Legierungen                 | 9.9367 | TiAl6Nb7           | ASTM F1295              | 40                               |  |
|                |                                   |        |                    |                         |                                  |  |
| $S_3$          | CrCo-Legierungen                  | 2.4964 | CoCr20W15Ni        | Haynes 25               | 50                               |  |
| - 3            |                                   |        | CrCoMo28           | ASTM F1537              |                                  |  |
|                | Stähle gehärtet                   | 1.2510 | 100MnCrMoW4        | AISI O1                 | 60                               |  |
|                | < 55 HRC                          | 1.2310 | 1 OOIVII CIIVIOVV4 | ,                       |                                  |  |
|                | Stähle gehärtet                   | 4 2272 | V4536 NA 1/43      | AIGI DO                 |                                  |  |
| IH.            | ≥ 55 HRC                          | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |  |



ANWENDUNGSEMPFEHLUNG





| <b>f</b> , [r  | nm]            |
|----------------|----------------|
| Ød1            | Ød1            |
| 0.36 - 1.90 mm | 2.90 - 5.70 mm |
| f,             | f <sub>z</sub> |
| 0.030          | 0.040          |
| 0.020          | 0.030          |
| 0.015          | 0.030          |
| 0.010          | 0.030          |
| 0.015          | 0.030          |
| 0.015          | 0.030          |
| 0.015          | 0.030          |
| 0.030          | 0.040          |
| 0.030          | 0.040          |
| 0.020          | 0.030          |
| 0.020          | 0.030          |
| 0.030          | 0.040          |
| 0.030          | 0.040          |
| 0.020          | 0.030          |
| 0.020          | 0.030          |
| 0.020          | 0.030          |
| 0.015          | 0.030          |
| 0.015          | 0.020          |
|                |                |



# CrazyMill Doublechamfer 3 x d / 6 x d

#### **VORDER- UND RÜCKSEITIGES ENTGRATEN MIT AUSSENKÜHLUNG**



CrazyMill Doublechamfer kann in einer Aufspannung sowohl vorderseitig als auch rückseitig entgraten. Die kurze Version mit einer Nutzlänge von 3 x d verleiht dem Werkzeug eine höhere Stabilität und eignet sich speziell, wenn es um geringere Kantenlängen oder Bohrtiefen geht. Die lange Variante mit einer Nutzlänge 6 x d eignet sich für höhere Kanten und grössere Bohrtiefen.

Seine kleinen Durchmesser (ab Durchmesser 0.9 mm verfügbar) ermöglichen das rückwärtige Entgraten von Bohrungen ab Durchmesser 1.0 mm. Die hohe Schneidenanzahl (4 - 6 je nach Durchmesser) sorgt für exzellente Oberflächenqualität.

#### Kühlschmierstoff, Filter und Druck

Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Entgratprozess.

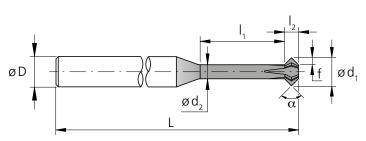
#### **Hinweis**

Sie haben nicht die passende Variante von CrazyMill Doublechamfer (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.

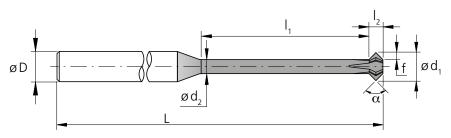


Hartmetall












| ■ ab Lager | Artikelnummer   | d <sub>1</sub> | <b>l</b> <sub>1</sub><br>[mm] | <b>d₂</b><br>[mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | Fase<br>α | <b>Z</b><br>[Zähne] | f<br>[mm] |
|------------|-----------------|----------------|-------------------------------|-------------------|------------------------------|--------------------------|-----------|-----------|---------------------|-----------|
| •          | 2.DC.03090090.1 | 0.9            | 2.7                           | 0.45              | 0.45                         | 3                        | 53.5      | 90°       | 4                   | 0.23      |
| -          | 2.DC.03140090.1 | 1.4            | 4.2                           | 0.70              | 0.70                         | 3                        | 53.5      | 90°       | 5                   | 0.35      |
| •          | 2.DC.03180090.1 | 1.8            | 5.4                           | 0.90              | 0.90                         | 4                        | 55.0      | 90°       | 5                   | 0.45      |
| -          | 2.DC.03280090.1 | 2.8            | 8.4                           | 1.40              | 1.40                         | 4                        | 60.0      | 90°       | 5                   | 0.70      |
| •          | 2.DC.03370090.1 | 3.7            | 11.1                          | 1.85              | 1.85                         | 4                        | 60.0      | 90°       | 5                   | 0.93      |
| -          | 2.DC.03470090.1 | 4.7            | 14.1                          | 2.35              | 2.35                         | 6                        | 70.0      | 90°       | 5                   | 1.18      |
| -          | 2.DC.03570090.1 | 5.7            | 17.1                          | 2.85              | 2.85                         | 6                        | 70.0      | 90°       | 6                   | 1.43      |





| ■ ab Lager | Artikelnummer   | <b>d</b> <sub>1</sub> | <b>l</b> <sub>1</sub> [mm] | d <sub>2</sub> | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | L<br>[mm] | Fase<br>α | <b>Z</b><br>[Zähne] | <b>f</b><br>[mm] |
|------------|-----------------|-----------------------|----------------------------|----------------|------------------------------|--------------------------|-----------|-----------|---------------------|------------------|
|            | 2.DC.06090090.1 | 0.9                   | 5.4                        | 0.54           | 0.36                         | 3                        | 60.0      | 90°       | 4                   | 0.18             |
|            | 2.DC.06140090.1 | 1.4                   | 8.4                        | 0.84           | 0.56                         | 3                        | 60.0      | 90°       | 5                   | 0.28             |
| •          | 2.DC.06180090.1 | 1.8                   | 10.8                       | 1.08           | 0.72                         | 4                        | 60.0      | 90°       | 5                   | 0.36             |
| •          | 2.DC.06280090.1 | 2.8                   | 16.8                       | 1.68           | 1.12                         | 4                        | 60.0      | 90°       | 5                   | 0.56             |
| •          | 2.DC.06370090.1 | 3.7                   | 22.2                       | 2.22           | 1.48                         | 4                        | 60.0      | 90°       | 5                   | 0.74             |
|            | 2.DC.06470090.1 | 4.7                   | 28.2                       | 2.82           | 1.88                         | 6                        | 80.0      | 90°       | 5                   | 0.94             |
| •          | 2.DC.06570090.1 | 5.7                   | 34.2                       | 3.42           | 2.28                         | 6                        | 80.0      | 90°       | 6                   | 1.14             |



# CrazyMill Doublechamfer 3 x d / 6 x d

## ENTGRATEN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werk<br>grup   | sstoff-<br>pe Werkstoff     | Wr.Nr.           | DIN                 | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |  |
|----------------|-----------------------------|------------------|---------------------|-------------------------|----------------------------------|--|
|                |                             | 1.0301           | C10                 | AISI 1010               |                                  |  |
|                |                             | 1.0401           | C15                 | AISI 1015               |                                  |  |
| P              | Stähle unlegiert            | 1.1191           | C45E/CK45           | AISI 1045               | 120                              |  |
|                | Rm < 800 N/mm <sup>2</sup>  | 1.0044           | S275JR              | AISI 1020               | 120                              |  |
| \/( <b>//</b>  |                             | 1.0715           | 11SMn30             | AISI 1020               |                                  |  |
| ()///          |                             |                  |                     |                         |                                  |  |
| ω,             |                             | 1.5752<br>1.7131 | 15NiCr13<br>16MnCr5 | ASTM 3415 / AISI 3310   |                                  |  |
|                | Stähle niedriglegiert       | 1.3505           | 100Cr6              | AISI 5115<br>AISI 52100 | 100                              |  |
|                | Rm > 900 N/mm <sup>2</sup>  |                  | 42CrMo4             |                         | 100                              |  |
|                |                             | 1.7225           |                     | AISI 4140               |                                  |  |
| ]              |                             | 1.2842           | 90MnCrV8            | AISI O2                 |                                  |  |
|                | Werkzeugstähle              | 1.2379           | X153CrMoV12         | AISI D2                 |                                  |  |
| 150            | hochlegiert                 | 1.2436           | X210CrW12           | AISI D4/D6              | 80                               |  |
| 43             | Rm < 1200 N/mm <sup>2</sup> | 1.3343           | HS6-5-2C            | AISI M2 / UNS T11302    |                                  |  |
|                |                             | 1.3355           | HS18-0-1            | AISI T1 / UNS T12001    |                                  |  |
|                | Rostfreie Stähle-           | 1.4016           | X6Cr17              | AISI 430 / UNS S43000   | 50                               |  |
| M              | ferritisch                  | 1.4105           | X6CrMoS17           | AISI 430F               | 50                               |  |
| IV             | Rostfreie Stähle-           | 1.4034           | X46Cr13             | AISI 420C               | 80                               |  |
|                | martensitisch               | 1.4112           | X90CrMoV18          | AISI 440B               | 80                               |  |
|                | Rostfreie Stähle-           | 1.4542           | X5CrNiCuNb 16-4     | AISI 630 / ASTM 17-4 PH |                                  |  |
|                | martensitisch – PH          | 1.4545           | X5CrNiCuNb 15-5     | ASTM 15-5 PH            |                                  |  |
|                |                             | 1.4301           | X5CrNi 18-10        | AISI 304                | 50                               |  |
|                | Rostfreie Stähle-           | 1.4435           | X2CrNiMo 18-14-3    | AISI 316L               |                                  |  |
|                | austenitisch                | 1.4441           | X2CrNiMo 18-15-3    | AISI 316LM              |                                  |  |
|                |                             | 1.4539           | X1NiCrMoCu 25-20-5  | AISI 904L               |                                  |  |
|                |                             |                  |                     |                         |                                  |  |
|                |                             | 0.6020           | GG20                | ASTM 400                |                                  |  |
| K              | Gusseisen                   | 0.6030           | GG30                | ASTM 40B                | 60                               |  |
|                |                             | 0.7040           | GGG40               | ASTM 60-40-18           |                                  |  |
|                |                             | 0.7060           | GGG60               | ASTM 80-60-03           |                                  |  |
|                | Aluminium                   | 3.2315           | AlMgSi1             | ASTM 6351               | 200                              |  |
| N              | Knetlegierungen             | 3.4365           | AlZnMgCu1.5         | ASTM 7075               | 200                              |  |
|                | Aluminium                   | 3.2163           | GD-AlSi9Cu3         | ASTM A380               | 200                              |  |
|                | Druckgusslegierunger        | 3.2381           | GD-AlSi10Mg         | UNS A03590              | 200                              |  |
|                | Kupfer                      | 2.004            | Cu-OF / CW008A      | UNS C10100              | 40                               |  |
|                | Kupiei                      | 2.0065           | Cu-ETP / CW004A     | UNS C11000              | 40                               |  |
|                | Messing bleifrei            | 2.0321           | CuZn37 CW508L       | UNS C27400              | 40                               |  |
|                | iviessing Dieitrei          | 2.036            | CuZn40 CW509L       | UNS C28000              | 40                               |  |
|                | Messing, Bronze             | 2.0401           | CuZn39Pb3 / CW614N  | UNS C38500              | 200                              |  |
|                | Rm < 400 N/mm <sup>2</sup>  | 2.102            | CuSn6               | UNS C51900              | 200                              |  |
|                | Bronze                      | 2.0966           | CuAl10Ni5Fe4        | UNS C63000              | 200                              |  |
|                | Rm < 600 N/mm <sup>2</sup>  | 2.096            | CuAl9Mn2            | UNS C63200              | 200                              |  |
|                |                             | 2.4856           |                     | Inconel 625             |                                  |  |
| C              | Hitzebeständige             | 2.4668           |                     | Inconel 718             |                                  |  |
| $S_1$          | Stähle                      | 2.4617           | NiMo28              | Hastelloy B-2           | 40                               |  |
| "              | 5 cac                       | 2.4665           | NiCr22Fe18Mo        | Hastelloy X             |                                  |  |
|                |                             | 3.7035           | Gr.2                | ASTM B348 / F67         |                                  |  |
| C              | Titan rein                  | 3.7055           | Gr.4                | ASTM B348 / F68         | 40                               |  |
| S <sub>2</sub> |                             | 3.7165           | TiAl6V4             | ASTM B348 / F136        |                                  |  |
| -              | Titan Legierungen           |                  |                     | ASTM F1295              | 40                               |  |
|                |                             | 9.9367           | TiAl6Nb7            |                         |                                  |  |
| S <sub>3</sub> | CrCo-Legierungen            | 2.4964           | CoCr20W15Ni         | Haynes 25               | 50                               |  |
| 3              |                             |                  | CrCoMo28            | ASTM F1537              |                                  |  |
|                | Stähle gehärtet             | 1.2510           | 100MnCrMoW4         | AISI O1                 | 60                               |  |
|                | < 55 HRC                    | 1.2310           | 1 OOIVII CTIVIOVV4  | , 1131 O I              |                                  |  |
|                | Stähle gehärtet             | 4 2270           | V4526 N4 1/42       | AIGI DO                 |                                  |  |
|                | ≥ 55 HRC                    | 1.2379           | X153CrMoV12         | AISI D2                 |                                  |  |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> <sub>z</sub> [r                              | mm]                                                   |
|-------------------------------------------------------|-------------------------------------------------------|
| <b>Ød1</b><br>0.90 - 1.80 mm<br><b>f</b> <sub>z</sub> | <b>Ød1</b><br>2.80 - 5.70 mm<br><b>f</b> <sub>z</sub> |
| 0.030                                                 | 0.040                                                 |
| 0.020                                                 | 0.030                                                 |
| 0.015                                                 | 0.030                                                 |
| 0.010                                                 | 0.030                                                 |
| 0.015                                                 | 0.030                                                 |
| 0.015                                                 | 0.030                                                 |
| 0.015                                                 | 0.030                                                 |
| 0.030                                                 | 0.040                                                 |
| 0.030                                                 | 0.040                                                 |
| 0.020                                                 | 0.030                                                 |
| 0.020                                                 | 0.030                                                 |
| 0.030                                                 | 0.040                                                 |
| 0.030                                                 | 0.040                                                 |
| 0.020                                                 | 0.030                                                 |
| <br>0.020                                             | 0.030                                                 |
| 0.020                                                 | 0.030                                                 |
| 0.015                                                 | 0.030                                                 |
| 0.015                                                 | 0.020                                                 |
|                                                       |                                                       |



# CrazyMill Radiuschamfer

#### UNIVERSELLES ENTGRATEN MIT AUSSENKÜHLUNG



CrazyMill Radiuschamfer wird von vielen wegen seiner speziellen Form auch "Lollipop" genannt. Er ist dank seiner extragrossen Schneidzone von 300° universell einsetzbar. Es eignet sich für vorder- und rückseitiges Entgraten, für alle möglichen Innen- und Aussenkonturen sowie für Verschneidungen an Bohrungen und Fräsbearbeitungen oder schräge Bohrungsaustritte.

Erhältlich schon ab Kugeldurchmesser 1.0 mm und in Ausführung bis 4 x d erreicht das Werkzeug auch schwer zugängliche Winkel und Positionen.

#### Kühlschmierstoff, Filter und Druck

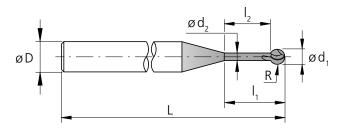
Angaben zu Kühlschmierung, Filter und Kühlmitteldruck finden Sie beim Entgratprozess.

#### Hinweis

Sie haben nicht die passende Variante von CrazyMill Radiuschamfer (Durchmesser, Länge, Schnittrichtung...) gefunden? Fragen Sie uns an bzgl. einer kundenspezifischen Variante!

Nachschärfen: Dieses Produkt eignet sich nicht zum Nachschärfen.




Hartmetall



Z 4-6







| ■ ab Lager | Artikelnummer | <b>d</b> <sub>1</sub><br>0/-0.04<br>[mm] | <b>l</b> <sub>1</sub><br>[mm] | <b>d</b> <sub>2</sub><br>[mm] | <b>l<sub>2</sub></b><br>[mm] | <b>D</b><br>(h6)<br>[mm] | <b>L</b><br>[mm] | <b>Z</b><br>[Zähne] | <b>R</b><br>(- 0.02)<br>[mm] |
|------------|---------------|------------------------------------------|-------------------------------|-------------------------------|------------------------------|--------------------------|------------------|---------------------|------------------------------|
| -          | 2.RC.040100.1 | 1.0                                      | 4                             | 0.50                          | 3.0                          | 4                        | 50               | 3                   | 0.50                         |
| -          | 2.RC.040150.1 | 1.5                                      | 6                             | 0.75                          | 4.5                          | 4                        | 50               | 3                   | 0.75                         |
| -          | 2.RC.040200.1 | 2.0                                      | 8                             | 1.00                          | 6.0                          | 4                        | 60               | 3                   | 1.00                         |
| -          | 2.RC.040250.1 | 2.5                                      | 10                            | 1.25                          | 7.5                          | 4                        | 60               | 3                   | 1.25                         |
| -          | 2.RC.040300.1 | 3.0                                      | 12                            | 1.50                          | 9.0                          | 4                        | 60               | 3                   | 1.50                         |
| -          | 2.RC.040400.1 | 4.0                                      | 16                            | 2.00                          | 12.0                         | 6                        | 70               | 3                   | 2.00                         |
| •          | 2.RC.040600.1 | 6.0                                      | 24                            | 3.00                          | 18.0                         | 6                        | 70               | 3                   | 3.00                         |



# CrazyMill Radiuschamfer

## ENTGRATEN MIT AUSSENKÜHLUNG | SCHNITTDATENÜBERSICHT

| Werkstoff-<br>gruppe | Werkstoff                                  | Wr.Nr. | DIN                | AISI/ASTM/UNS           | <b>V</b> <sub>c</sub><br>[m/min] |
|----------------------|--------------------------------------------|--------|--------------------|-------------------------|----------------------------------|
|                      |                                            | 1.0301 | C10                | AISI 1010               |                                  |
|                      |                                            | 1.0401 | C15                | AISI 1015               |                                  |
| P                    | Stähle unlegiert                           | 1.1191 | C45E/CK45          | AISI 1045               | 120                              |
|                      | Rm < 800 N/mm <sup>2</sup>                 | 1.0044 | S275JR             | AISI 1020               | 120                              |
|                      |                                            | 1.0044 | 11SMn30            | AISI 1020               |                                  |
|                      |                                            |        |                    | ASTM 3415 / AISI 3310   |                                  |
|                      |                                            | 1.5752 | 15NiCr13           |                         |                                  |
|                      | Stähle niedriglegiert                      | 1.7131 | 16MnCr5            | AISI 5115               | 400                              |
|                      | Rm > 900 N/mm <sup>2</sup>                 | 1.3505 | 100Cr6             | AISI 52100              | 100                              |
|                      |                                            | 1.7225 | 42CrMo4            | AISI 4140               |                                  |
|                      |                                            | 1.2842 | 90MnCrV8           | AISI O2                 |                                  |
|                      | Werkzeugstähle                             | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |
|                      |                                            | 1.2436 | X210CrW12          | AISI D4/D6              | 80                               |
|                      | hochlegiert<br>Rm < 1200 N/mm <sup>2</sup> | 1.3343 | HS6-5-2C           | AISI M2 / UNS T11302    | 80                               |
| L                    |                                            | 1.3355 | HS18-0-1           | AISI T1 / UNS T12001    |                                  |
|                      | Rostfreie Stähle-                          | 1.4016 | X6Cr17             | AISI 430 / UNS S43000   |                                  |
| R/I                  | ferritisch                                 | 1.4105 | X6CrMoS17          | AISI 430F               | 50                               |
| M                    | Rostfreie Stähle-                          | 1.4034 | X46Cr13            | AISI 420C               |                                  |
|                      | martensitisch                              | 1.4112 | X90CrMoV18         | AISI 440B               | 80                               |
|                      |                                            | 1.4542 | X5CrNiCuNb 16-4    | AISI 630 / ASTM 17-4 PH |                                  |
|                      | Rostfreie Stähle-                          |        |                    |                         |                                  |
|                      | martensitisch – PH                         | 1.4545 | X5CrNiCuNb 15-5    | ASTM 15-5 PH            |                                  |
|                      |                                            | 1.4301 | X5CrNi 18-10       | AISI 304                | 50                               |
|                      | Rostfreie Stähle-                          | 1.4435 | X2CrNiMo 18-14-3   | AISI 316L               |                                  |
|                      | austenitisch                               | 1.4441 | X2CrNiMo 18-15-3   | AISI 316LM              |                                  |
|                      |                                            | 1.4539 | X1NiCrMoCu 25-20-5 | AISI 904L               |                                  |
|                      |                                            | 0.6020 | GG20               | ASTM 30                 |                                  |
| K                    | Gusseisen                                  | 0.6030 | GG30               | ASTM 40B                |                                  |
|                      |                                            | 0.7040 | GGG40              | ASTM 60-40-18           | 60                               |
|                      |                                            | 0.7060 | GGG60              | ASTM 80-60-03           |                                  |
|                      | Aluminium                                  | 3.2315 | AlMgSi1            | ASTM 6351               |                                  |
| IN I                 | Knetlegierungen                            | 3.4365 | AlZnMgCu1.5        | ASTM 7075               | 200                              |
| N                    | Aluminium                                  | 3.2163 | GD-AlSi9Cu3        | ASTM A380               |                                  |
|                      | Druckgusslegierungen                       |        | GD-AlSi10Mg        | UNS A03590              | 200                              |
|                      | 2. ackgassicgiciangen                      | 2.004  | Cu-OF / CW008A     | UNS C10100              |                                  |
|                      | Kupfer                                     |        | Cu-ETP / CW008A    |                         | 40                               |
|                      |                                            | 2.0065 |                    | UNS C11000              |                                  |
|                      | Messing bleifrei                           | 2.0321 | CuZn37 CW508L      | UNS C27400              | 40                               |
|                      |                                            | 2.036  | CuZn40 CW509L      | UNS C28000              |                                  |
|                      | Messing, Bronze                            | 2.0401 | CuZn39Pb3 / CW614N |                         | 200                              |
|                      | Rm < 400 N/mm <sup>2</sup>                 | 2.102  | CuSn6              | UNS C51900              |                                  |
|                      | Bronze                                     | 2.0966 | CuAl10Ni5Fe4       | UNS C63000              | 200                              |
|                      | Rm < 600 N/mm <sup>2</sup>                 | 2.096  | CuAl9Mn2           | UNS C63200              |                                  |
|                      |                                            | 2.4856 |                    | Inconel 625             |                                  |
| C                    | Hitzebeständige                            | 2.4668 |                    | Inconel 718             |                                  |
| $S_1$                | Stähle                                     | 2.4617 | NiMo28             | Hastelloy B-2           | 40                               |
|                      |                                            | 2.4665 | NiCr22Fe18Mo       | Hastelloy X             |                                  |
|                      |                                            | 3.7035 | Gr.2               | ASTM B348 / F67         |                                  |
| C                    | Titan rein                                 | 3.7065 | Gr.4               | ASTM B348 / F68         | 40                               |
| S <sub>2</sub>       |                                            | 3.7165 | TiAl6V4            | ASTM B348 / F136        |                                  |
| _                    | Titan Legierungen                          | 9.9367 | TiAl6Nb7           |                         | 40                               |
|                      |                                            |        |                    | ASTM F1295              |                                  |
| $S_3$                | CrCo-Legierungen                           | 2.4964 | CoCr20W15Ni        | Haynes 25               | 50                               |
| - 3                  |                                            |        | CrCoMo28           | ASTM F1537              |                                  |
| H <sub>1</sub>       | Stähle gehärtet<br>< 55 HRC                | 1.2510 | 100MnCrMoW4        | AISI O1                 | 60                               |
|                      | Stähle gehärtet                            | 1.2379 | X153CrMoV12        | AISI D2                 |                                  |



ANWENDUNGSEMPFEHLUNG

lack lack Sehr gut geeignet | lack lack lack Gut geeignet | lack lack bedingt geeignet | lack lack lack Nicht empfohlen



| <b>f</b> <sub>z</sub> [r              | nml                                   |
|---------------------------------------|---------------------------------------|
| Ød1<br>1.0 - 2.0 mm<br>f <sub>z</sub> | Ød1<br>3.0 - 6.0 mm<br>f <sub>z</sub> |
| ı,                                    | ı,                                    |
| 0.030                                 | 0.040                                 |
| 0.020                                 | 0.030                                 |
| 0.015                                 | 0.030                                 |
| 0.010                                 | 0.030                                 |
| 0.015                                 | 0.030                                 |
|                                       |                                       |
| 0.015                                 | 0.030                                 |
|                                       |                                       |
| 0.015                                 | 0.030                                 |
| 0.030                                 | 0.040                                 |
| 0.030                                 | 0.040                                 |
| 0.020                                 | 0.030                                 |
| 0.020                                 | 0.030                                 |
| 0.030                                 | 0.040                                 |
| 0.030                                 | 0.040                                 |
| 0.020                                 | 0.030                                 |
| 0.020                                 | 0.030                                 |
| 0.020                                 | 0.030                                 |
| 0.015                                 | 0.030                                 |
| <br>0.015                             | 0.020                                 |
|                                       |                                       |



# PRÄZISES UND EFFIZIENTES ANFASEN UND ENTGRATEN

# Kühlschmierstoff, Filter und Druck

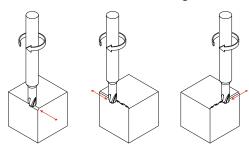
Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Additiven (Extreme-Pressure-Additives) eingesetzt werden.

Bei Werkzeugen mit Aussenkühlung sind keine spezifischen Vorgaben für Filter und Kühlmitteldruck und -menge zu beachten. Es ist jedoch darauf zu achten, dass das Kühlmedium direkt an die Entgratungsfräserspitze geführt wird und somit das Werkzeug perfekt kühlt, schmiert und die Späne wegspült.

# Spannmittel

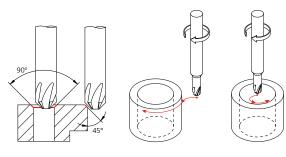
Detaillierte Angaben zu den Spannmitteln finden Sie im Kapitel "Technische Informationen".

## CrazyMill Chamfer


Die Anfas- und Entgratwerkzeuge der Familie CrazyMill Chamfer ergänzen das Bohrerprogramm CrazyDrill / MiquDrill sowie das Fräserprogramm CrazyMill Cool. Bohrungen, Kanten, Nuten, Verschneidungen können mühelos und schnell vorder- oder rückseitig entgratet werden. Das Ergebnis ist ein gratfreies Teil mit definierter Fase.

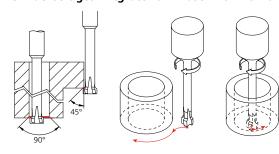
- **CrazyMill Frontchamfer** für vorderseitiges Entgraten und Anfasen
- CrazyMill Backchamfer für rückseitiges Entgraten und Anfasen ohne Umspannen des Werkstücks
- CrazyMill Doublechamfer für vorder- und rückseitiges Entgraten und Anfasen
- **CrazyMill Radiuschamfer** für vorder- und rückseitiges Entgraten, für Innen- und Aussenkonturen sowie für komplexe Profile wie Verschneidungen von Bohrungen und Fräsbearbeitungen




# **ANFAS- UND ENTGRATPROZESS**

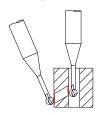
# 1. Fräsen im Gleichlauf oder Gegenlauf




- Beim Anfasen wird das Fräsen im Gleichlauf empfohlen
- Beim Entgraten hängt die Bearbeitungsrichtung von der Richtung der Gratbildung ab. Mikron Tool empfiehlt, den Fräser in der Gegenrichtung zum Grat einzusetzen

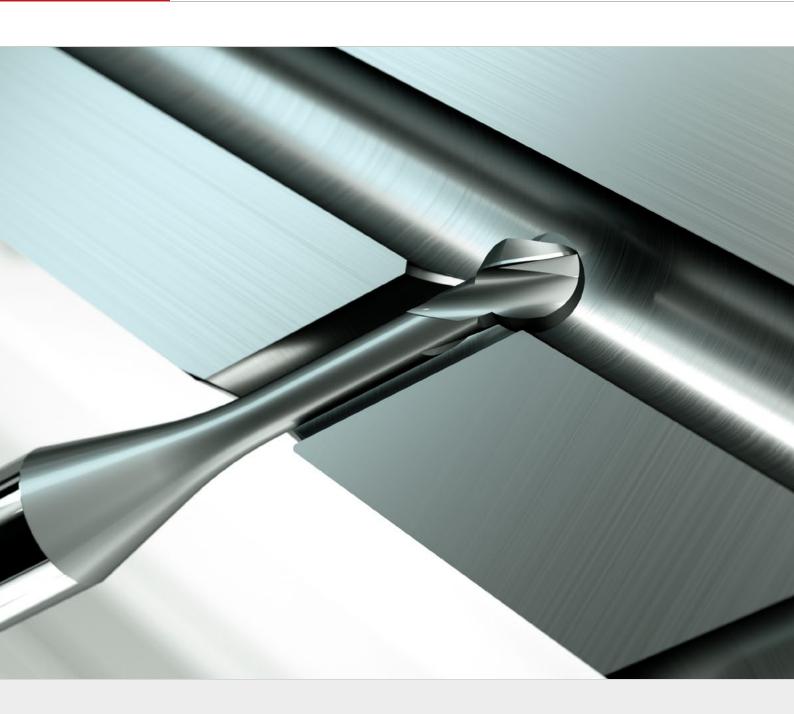
# 2. Vorderseitiges Entgraten / Anfasen von Bohrungen, Taschen und Kanten




■ Annähern mittels Spiralinterpolation, rollendem oder tangentialem Eintritt

# 3. Rückseitiges Entgraten / Anfasen von Bohrungen Taschen und Kanten




 Annähern mittels Spiralinterpolation, rollendem oder tangentialem Eintritt

# 4. Entgraten von komplexen Konturen wie Bohrungsverschneidungen



■ Annähern je nach Werkstückgeometrie mittels Spiralinterpolation, rollendem oder tangentialem Eintritt, seitlicher Zustellung oder CNC-Sonderfunktionen für "rohrförmige Öffnungen"

# Kundenspezifische Entgrat- und Anfaswerkzeuge



Mikron Tool produziert Hartmetall – Entgrat- und Anfaswerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

# ENTGRATUNGSFRÄSER: VORWÄRTS, RÜCKWÄRTS BEARBEITUNG, MEHRFACHFASENFRÄSER

■ Durchmesser min.: 0.36 mm ■ Schneiden Anzahl: 1 bis 16

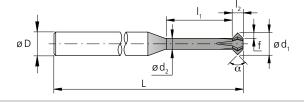
# **ENTGRATUNGSBOHRER**

■ Durchmesser min.: 0.1 mm ■ Schneiden Anzahl: 1 bis 4

## **ENTGRATUNGSREIBAHLEN**

■ Durchmesser min.: 0.4 mm Schneiden Anzahl: 2 bis 8

# **ENTGRATUNGSDREHWERKZEUGE**


### ALLGEMEINE DATEN

■ Durchmesser max.: 32.0 mm, grösser nach Abklärung

■ Maximale Werkzeuglänge: 330 mm

■ Werkzeugdurchmesser Toleranz max.: ± 0.5 µm

■ Konzentrizität zwischen Schaft und Werkzeugdurchmesser: generell ≤ 2 µm



- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Entgrat- und Anfaswerkzeuge: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung

### **BESCHICHTUNGEN**

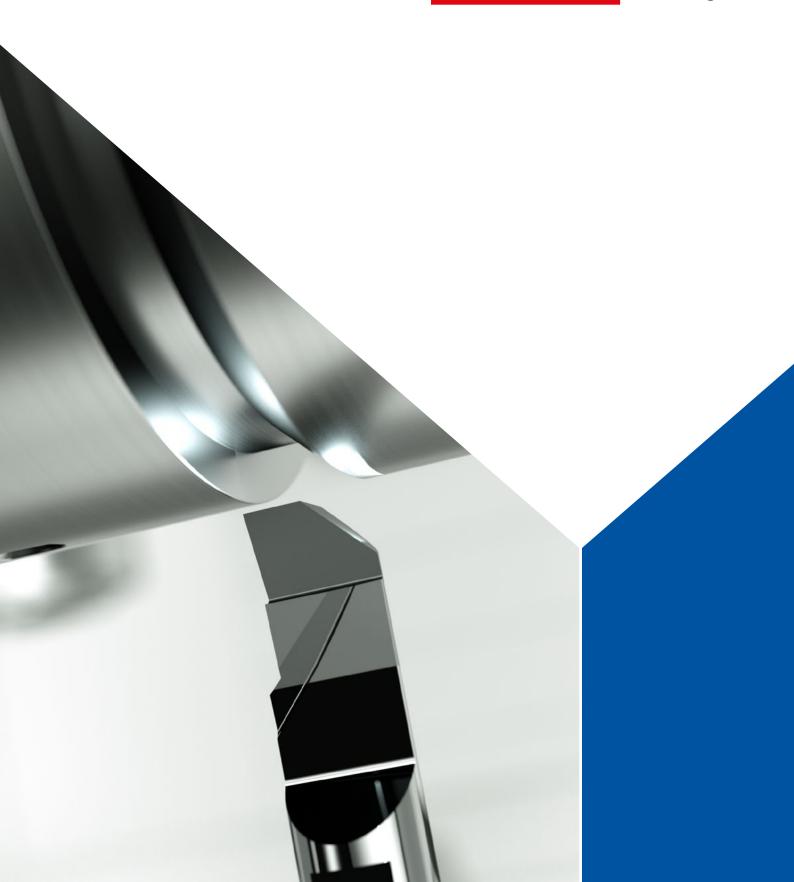
Verschiedene, Auswahl erfolgt je Anwendung

# KÜHLUNG

- Innenkühlung gerade im Schaft
- Innenkühlung mit Sonderaustritt (z.B. in Nut)
- Werkzeuge für äussere Kühlmittelzufuhr

# **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HB (Weldon)
- Spannfläche für Drehwerkzeuge
- Weitere auf Wunsch


## **MATERIAL ANWENDUNG**

Für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

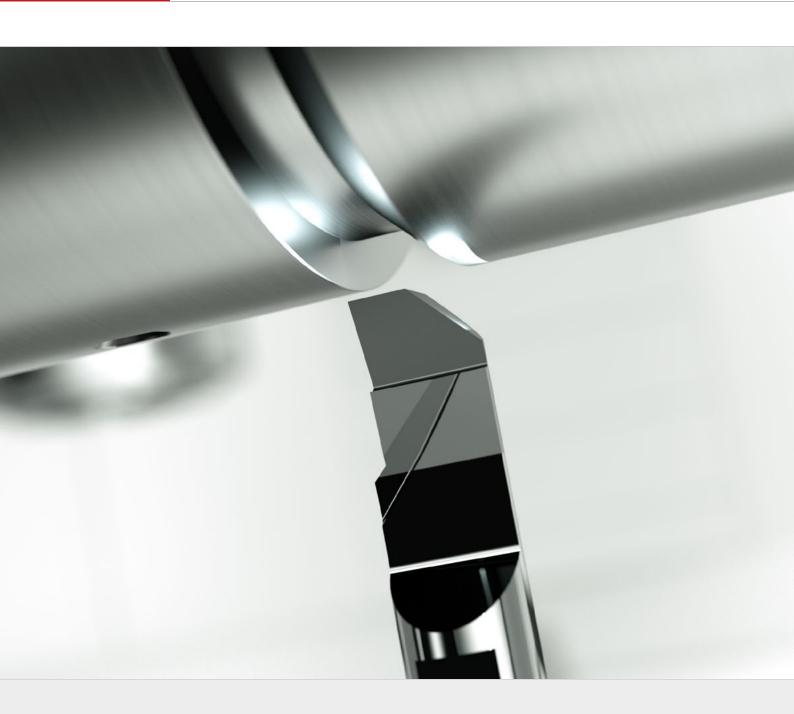
# **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten

# crazy about turning



 $\equiv$ 


DREHEN

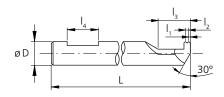
09

| CUNDENSPEZIFISCHE<br>FORMDREHWERKZEUGE     | 584 |
|--------------------------------------------|-----|
| (UNDENSPEZIFISCHE<br>EINSTECHDREHWERKZEUGE | 586 |

09

# Kundenspezifische Formdrehwerkzeuge




# Mikron Tool produziert Hartmetall - Formdrehwerkzeuge gemäß Ihren Wünschen und Anforderungen:

### **MERKMALE**

- Für Innen- und Aussenbearbeitungen
- Formtoleranz max.: ± 1 µm
- Schneiden Anzahl: 1 und mehr
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Formdrehwerkzeug: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung

# **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung

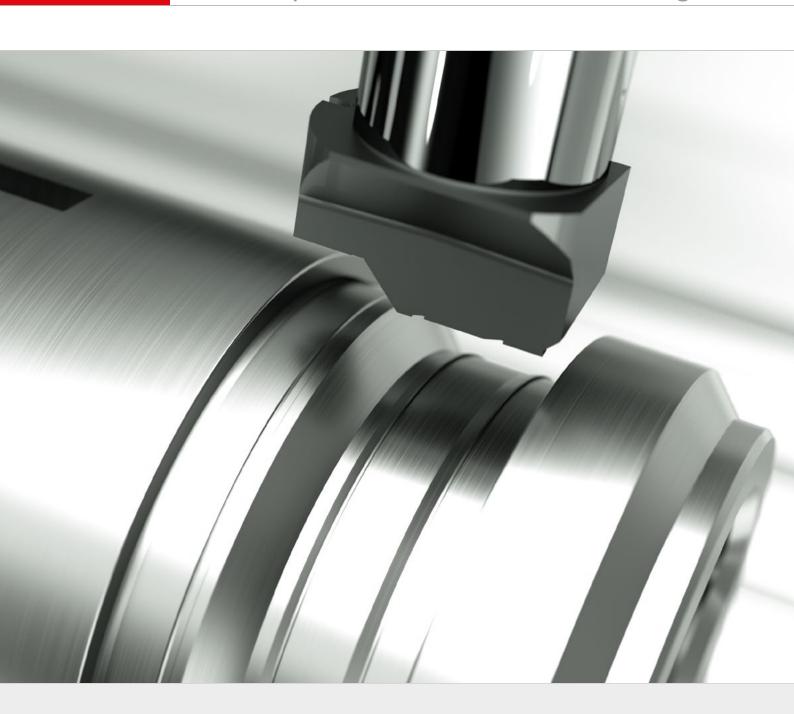


### KÜHLUNG

■ Formdrehwerkzeuge für äussere und integrierte Kühlmittelzufuhr

# **AUFNAHME**

- Spannfläche für Drehwerkzeuge
- Weitere auf Wunsch


# **MATERIAL ANWENDUNG**

Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

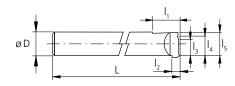
# **BEHANDLUNGEN**

Kantenpräparation

# Kundenspezifische Einstechdrehwerkzeuge



09


# Mikron Tool produziert Hartmetall - Einstechdrehwerkzeuge gemäß Ihren Wünschen und Anforderungen:

### **MERKMALE**

- Für Innen- und Aussenbearbeitungen
- Formtoleranz max.: ± 1 µm
- Schneiden Anzahl: 1 oder mehr
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Einstechdrehwerkzeug: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung

# **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung

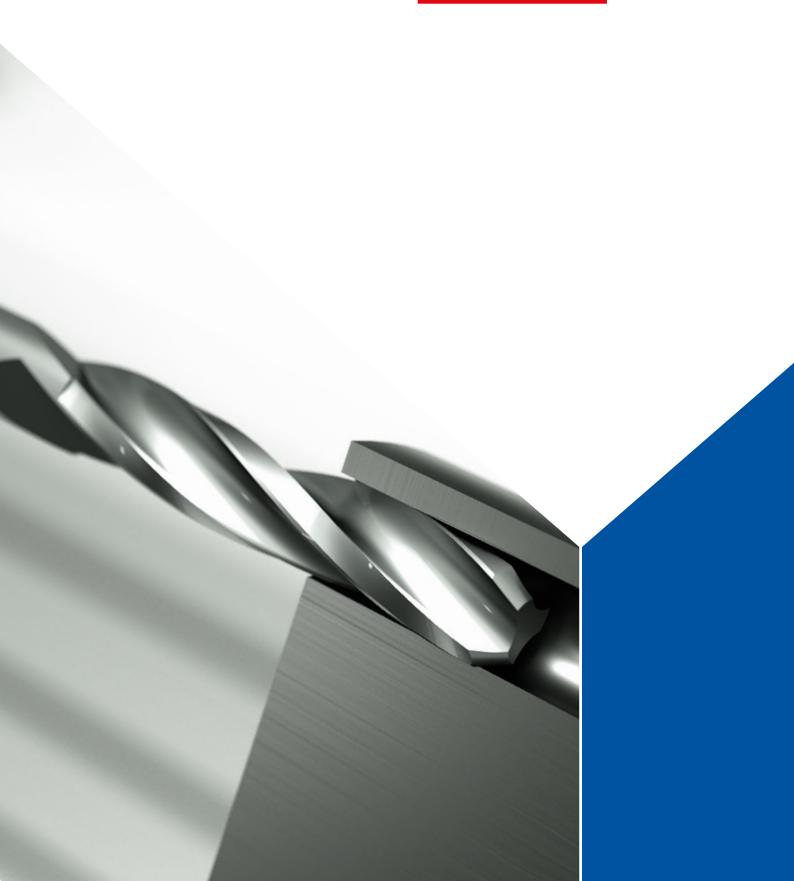


### KÜHLUNG

■ Einstechdrehwerkzeug für äussere oder integrierte Kühlmittelzufuhr

# **AUFNAHME**

- Spannfläche für Drehwerkzeuge
- Weitere auf Wunsch


# **MATERIAL ANWENDUNG**

Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

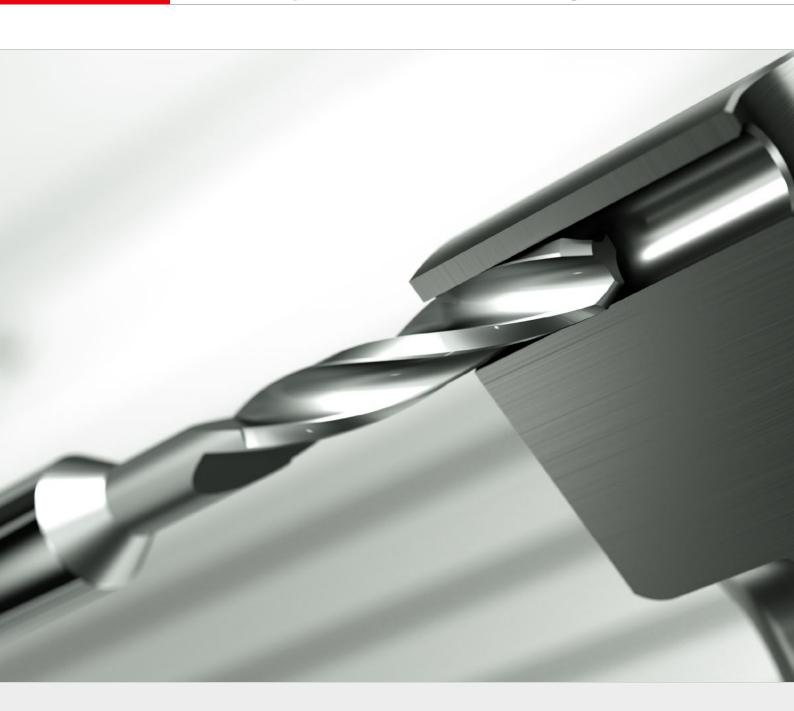
# **BEHANDLUNGEN**

Kantenpräparation

# crazy about reaming



 $\equiv$ 

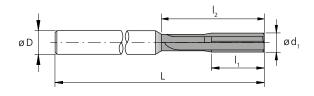

REIBEN 1

KUNDENSPEZIFISCHE REIBWERKZEUGE

590

10

# Kundenspezifsche Reibwerkzeuge




# Mikron Tool produziert Hartmetall - Reibwerkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

- Reibwerkzeug 1-stufig
- Reibwerkzeug mehrstufig
- Oberflächengualität n5 erreichbar aber abhängig von: Schneidöl / Kühlmittel, Maschine (Spindel) und Spannmittel (Rundlauf), Zugabe

### **KENNDATEN**

- Durchmesser min.: 0.4 mm
- Durchmesser max.: 32.0 mm, grösser nach Abklärung
- Maximale Werkzeuglänge: 330 mm
- Werkzeugdurchmesser Toleranz max.: ± 0.5 µm
- Konzentrizität zwischen Schaft und Werkzeugdurchmesser: generell ≤ 2 µm
- Schneiden Anzahl: 1 bis 16
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Nutenform: geradverzahnt, links / rechts gedrallt
- Teilung der Zähne: regelmässig oder unregelmässig
- Anschnittsformen: verschiedene
- Material Reibwerkzeug: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



### **BESCHICHTUNGEN**

Verschiedene, Auswahl erfolgt je Anwendung

### KÜHLUNG

- Reibwerkzeuge mit Innenkühlung gerade im Schaft
- Reibwerkzeuge mit Innenkühlung mit Sonderaustritt (z.B. in Nut)
- Reibwerkzeuge für äussere Kühlmittelzufuhr

# **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch

# **MATERIAL ANWENDUNG**

Reiber für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

### **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten

# crazy about multifuncional



# MULTIFUNKTIONALE WERKZEUGE

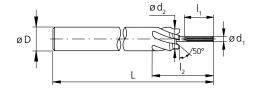
11

KUNDENSPEZIFISCHE MULTIFUNKTIONALE WERKZEUGE

594



# Kundenspezifische multifunktionale Werkzeuge




# Mikron Tool produziert Hartmetall - multifunktionale Werkzeuge gemäß Ihren Wünschen und Anforderungen und innerhalb des folgenden Bereiches:

- Verschiedene Operationen können in einem Werkzeug kombiniert werden:
  - 1. Zentrierwerkzeug + Bohrwerkzeug
  - 2. Zentrierwerkzeug + Bohrwerkzeug + Reibwerkzeug
  - 3. Bohrwerkzeug + Reibwerkzeug
  - 4. Bohrwerkzeug + Formbohrer
  - 5. Fräswerkzeug + Entgraten

# **KENNDATEN**

- Durchmesser min.: 1.0 mm
- Durchmesser max.: 32.0 mm, grösser nach Abklärung
- Maximale Werkzeuglänge: 330 mm
- Werkzeugdurchmesser Toleranz max.: ± 0.5 µm
- Konzentrizität zwischen Schaft und Werkzeugdurchmesser: generell ≤ 2 µm
- Schneiden Anzahl: 2 8
- Schneidenrichtung: rechtsschneidend oder linksschneidend
- Material Werkzeug: Hartmetall, Auswahl der Sorte erfolgt je nach Anwendung



### **BESCHICHTUNGEN**

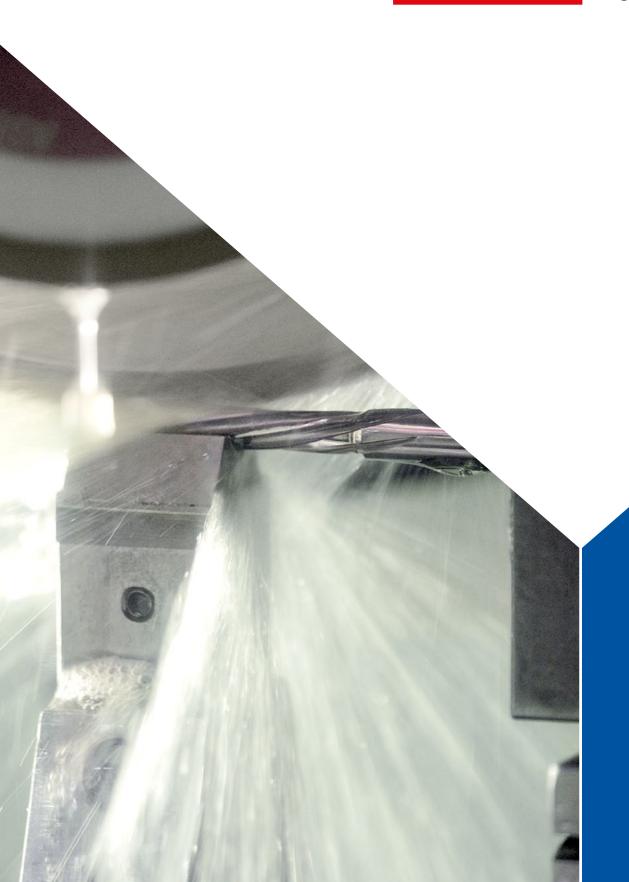
Verschiedene, Auswahl erfolgt je Anwendung

### KÜHLUNG

- Werkzeuge mit Innenkühlung spiralisiert bis an Werkzeugspitze
- Werkzeuge mit Innenkühlung gerade im Schaft
- Werkzeuge für äussere Kühlmittelzufuhr

# **SCHAFTFORMEN**

- Zylindrisch DIN 6535 HA
- Zylindrisch DIN 6535 HE (Whistle Notch)
- Zylindrisch DIN 6535 HB (Weldon)
- Weitere auf Wunsch


# **MATERIAL ANWENDUNG**

Werkzeuge für Stahl, rostfreie Stähle bzw. Edelstahl, Titan rein / Titanlegierungen, Superlegierungen bzw. hitzebeständige Stähle wie Inconel oder Hastelloy, CrCo-Legierungen, gehärteter Stahl bis 55 HRC, Aluminium / Aluminiumlegierungen, Messing, Kupfer, Gusswerkstoffe, usw.

# **BEHANDLUNGEN**

Kantenpräparation, Polieren der Nuten

# crazy about regrinding



# NACHSCHÄRFEN

12

# **RESSOURCEN SCHONEN – KOSTEN SENKEN**

598

Das Nachschärfen der Werkzeuge erhöht die Wirtschaftlichkeit deutlich

# ERSTE QUALITÄT AUCH BEIM ZWEITEN SCHLIFF

600

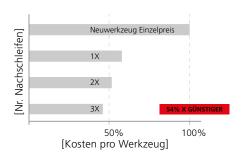
Bei Mikron Tool nachgeschliffene Werkzeuge bringen dieselbe Leistung wie Neuwerkzeuge

12

# Ressourcen schonen – Kosten senken



12


# NACHSCHÄRFEN ERHÖHT DIE WIRTSCHAFTLICHKEIT

Die weltweiten Vorräte an Rohmaterial für Hartmetallwerkzeuge (Kobalt und Wolfram) sind begrenzt und damit kostspielig. Auch das ein Grund, mit diesen Ressourcen respektvoll umzugehen und das Maximum an Effizienz herauszuholen. Nur schon der Umwelt zuliebe.

### Nachschleifen lohnt sich

Wirtschaftlichkeit ist das in der Industrie am meisten verwendete Argument für eine Wiederaufbereitung von abgenützten Werkzeugen. Wo ein Nachschliff möglich ist, sinkt der Preis bei der zweiten und dritten Verwendung deutlich. Kein neues Rohmaterial ist notwendig, die Durchmesser sind bereits vorhanden, nur die Schneiden werden nachgeschärft.

Das Beispiel eines CrazyDrill Cool XL zeigt: Bei mehrmaligem Nachschleifen können die Werkzeugkosten um mehr als die Hälfte gesenkt werden.

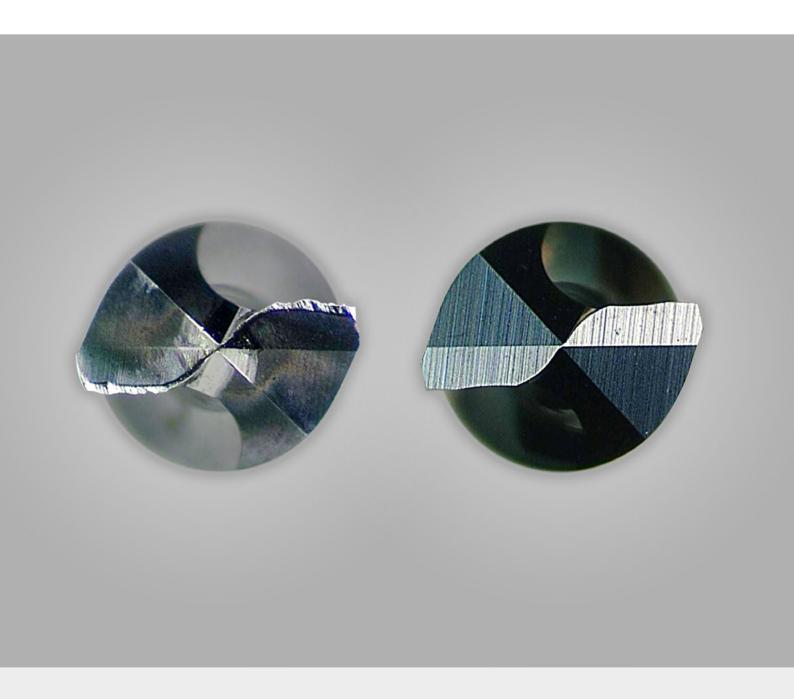


54% Kostenreduktion pro Werkzeug mit Nachschleifen CrazyDrill Cool XL Ø2 mm Bohrtiefe 30 x d / je 25 Stk.

Mehrmaliges Nachschleifen lohnt sich!

# Die Standardwerkzeuge

Die Information, ob ein Standardwerkzeug nachschleifbar oder dazu nicht geeignet ist, finden Sie in diesem Katalog als Vermerk bei jedem Werkzeug unter seiner Produktbeschreibung. Und die Mengenstaffelung für den jeweiligen Nachschliffpreis auf der separaten Preisliste.


### Kundenspezifische Werkzeuge

Klären Sie bereits beim Projektieren und Kauf eines Werkzeuges ab, ob ein Nachschleifen möglich ist. Wenn ja, erlaubt dies eine Kalkulation des Werkzeugpreises, die wesentlich günstiger ausfällt als beim einmaligen Einsatz eines neuen Werkzeuges.

### **Fazit**

Es lohnt sich, bereits bei Kauf von Neuwerkzeugen Informationen über die Möglichkeiten einer Wiederaufbereitung der Werkzeuge einzuholen.

# Erste Qualität auch beim zweiten Schliff



# TOP LEISTUNG AUCH MIT NACHGESCHLIFFENEN WERKZEUGEN

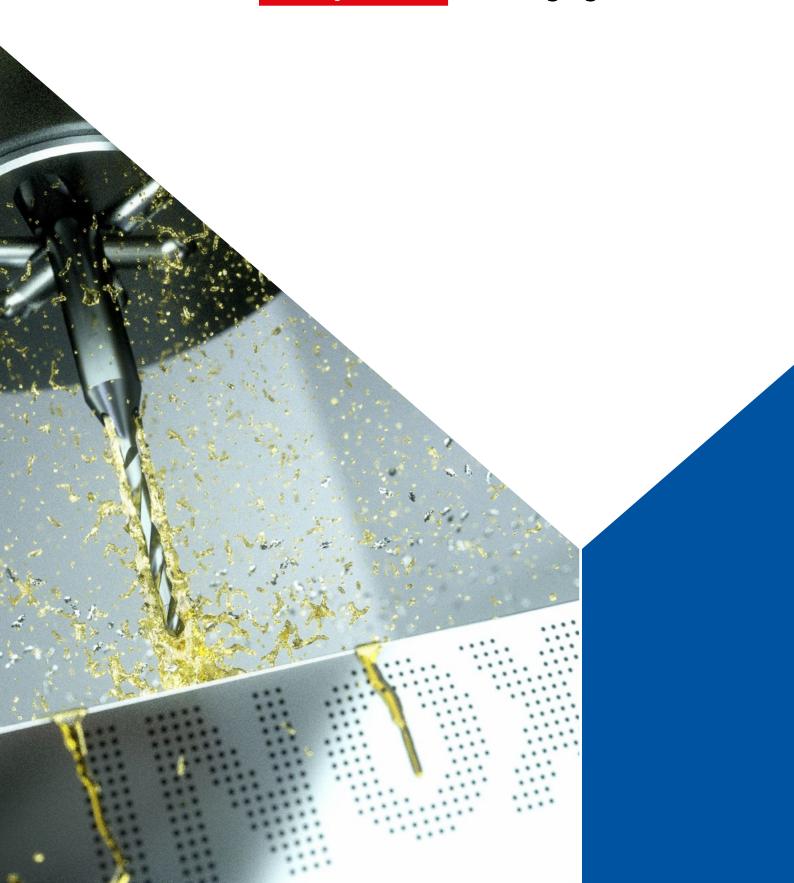
## Erste Qualität auch beim zweiten Schliff

Geht es um die Qualität des Endproduktes, besteht bei Mikron Tool zwischen Neuwerkzeugen und nachgeschliffenen Werkzeugen kein Unterschied. Dies gilt sowohl für standardisierte wie auch für kundenspezifische Werkzeuge.

## Auswahl für den Nachschliff

Nachschärfen beginnt mit einer genauen Kontrolle und Selektion der eingehenden, verbrauchten Werkzeuge. Ob ein Werkzeug nachschleifbar ist oder nicht, hängt weitgehend von seinem Zustand ab. Starker Schneideckenausbruch, allzu sehr abgenützte Schneiden oder bereits mehrmals nachgeschliffene Werkzeuge können ausgesondert werden. Somit wird garantiert, dass die Qualität und Leistung des nachgeschliffenen Werkzeuges einem Neuwerkzeug entspricht.

### Nachschärfen beim Originalhersteller


Weshalb soll der Kunde die Werkzeuge beim Originalhersteller nachschärfen lassen? Nur dieser kennt seine Werkzeuge im Detail. Er garantiert, dass beim Nachschleifen und ggf. Beschichten nichts dem Zufall überlassen wird. Alle Parameter werden vom Herstellungsprozess der Neuwerkzeuge übernommen:

- Gleiche Schleifmaschine
- Gleiche Schleifscheiben
- Gleiche Schleifprogramme
- Gleiche Kantenpräparation

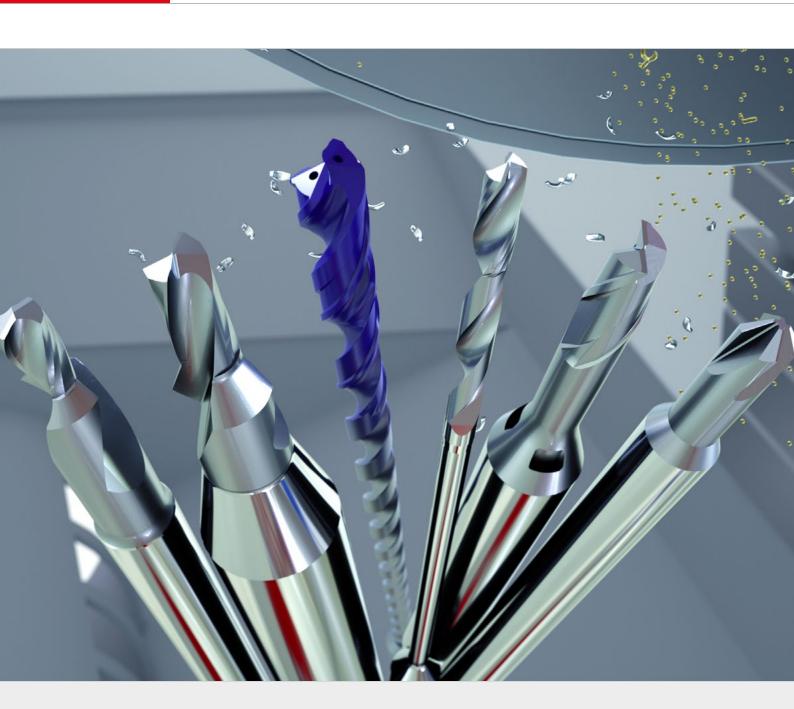
Nach dem Schärfen erhält das Werkzeug eine neue Originalbeschichtung und eine erneute Oberflächenbehandlung. Am Werkzeugschaft wird vermerkt, dass das Werkzeug nachgeschliffen wurde. Eine Qualitätskontrolle schliesst den Prozess ab.

Der Anwender hat die Garantie, dass die Qualität der nachgeschliffenen Werkzeuge identisch ist mit Neuwerkzeugen und er mit denselben Schnittwerten weiterarbeiten kann.

# crazy about challenging materials



 $\equiv$ 


ROSTFREI & CO.

13

| EINLEITUNG                 | 604 |
|----------------------------|-----|
| ROSTFREIE STÄHLE           | 606 |
| TITAN UND TITANLEGIERUNGEN | 612 |
| SUPERLEGIERUNGEN           | 618 |
| CR-CO-LEGIERUNGEN          | 624 |

13

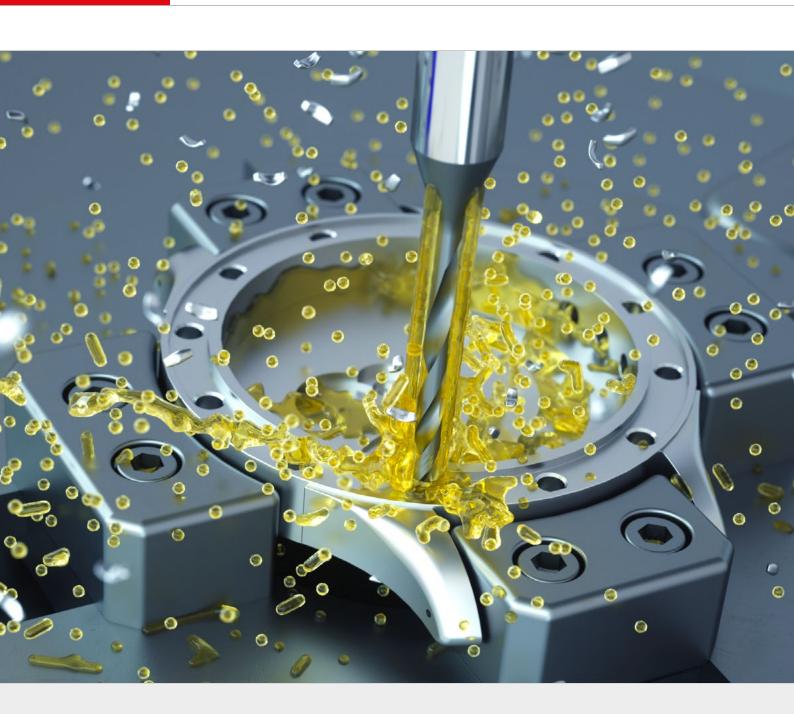
# Einleitung



# ROSTFREIE STÄHLE, TITAN, SUPERLEGIERUNGEN, CR-CO-LEGIERUNGEN

# Die Herausforderung

Schwer zerspanbare Metalle sind ein weites Gebiet und erzeugen je nach Material unterschiedlichste Arten von Schwierigkeiten in der Bearbeitung. Das geht von langen Spänen über zäh-elastisches Verhalten bis zu schlechter Wärmeleitung oder extremer Härte. Eine besondere Herausforderung an den Zerspaner im Allgemeinen, an den Werkzeuglieferanten und an den Maschinenbediener im Speziellen. Trotz (oder gerade wegen) dieser Eigenschaften werden diese Metalle in anspruchsvollen Industrien gerne eingesetzt, überall dort, wo das Material extremen Bedingungen ausgesetzt ist. Es geht dabei um Qualitäten wie Hitzebeständigkeit, Korrosions- und Säureresistenz, Biokompatibilität, geringes Gewicht bei hoher Festigkeit, gute Umformbarkeit oder auch hohe Härte.


# Die Eigenschaften

- Edelstahl (rost- und säurebeständige Stähle): korrosions- und säurebeständig, hohe Zähigkeit, niedrige Wärmeleitfähigkeit (je nach Zusammensetzung), gute Umformbarkeit.
- Titan: hohe Festigkeit bei kleiner Dichte (hart wie Stahl bei ca. halbem Gewicht), korrosions- und temperaturbeständig, biokompatibel, gute Zugfestigkeit, hohe Zähigkeit, niedrige Wärmeleitfähigkeit.
- Superlegierungen (HRSA = Heat Resistant Super Alloys): hohe Festigkeit und Härte auch bei hohen Temperaturen, korrosions-, säure- und hitzebeständig. Geringe Wärmeleitfähigkeit.
- CrCo-Legierungen: biokompatibel, geringe Wärmeausdehnung (wie Keramik), korrosions-, säure- und hitzebeständig, hohe Härte.

# Die Lösung

Um eine Lösung für die Zerspanung in kleinen Durchmessern anbieten zu können, die den Zusatz "bestens geeignet für schwer zerspanbare Materialien" verdient, hat Mikron Tool bei der Werkzeugentwicklung verschiedene Faktoren einbezogen wie Geometrie, Kühlung, Hartmetall, Beschichtung sowie einen klar definierten Bearbeitungsprozess.

# Rostfreie Stähle



# EFFIZIENTE BEARBEITUNG VON ROSTFREIEN STÄHLEN

Rost- und säurebeständige Stähle (R&S) zeichnen sich aus durch eine hohe Beständigkeit gegen Korrosion und Säuren, wobei gilt: je höher der Nickelanteil ist, desto besser die Resistenz. Sie verfügen über eine hohe Zähigkeit und eine niedrige elektrische oder Wärmeleitfähigkeit. Auch wegen ihrer guten Umformbarkeit werden sie immer häufiger im Maschinenbau oder im Haushalt angewendet. Die Korrosionsbeständigkeit macht sie interessant für die Lebensmittel-, Medizin- und die chemische Industrie sowie für den Uhren- und Schmuckbereich.

# Rostfreie Stähle

# EFFIZIENTE BEARBEITUNG VON ROSTFREIEN STÄHLEN

### **DIE EIGENSCHAFTEN**

Generell ist zu unterscheiden zwischen ferritischen, martensitischen und austenitischen Stählen, wobei der Schwierigkeitsgrad in der Bearbeitung ansteigt mit der Komplexität der Legierungen und dem höheren Nickelgehalt.

- Korrosionsschutz: mittel hoch
- Nicht härtbar durch Wärmebehandlung (ausgenommen austenitische Stähle)
- Magnetisch (ausgenommen austenistische Stähle)
- Wärmeleitfähigkeit: niedrig mittel
- Warm- und Kaltumformbarkeit: gut sehr gut
- Wärmeausdehnungskoeffizient: niedrig (ferritische Stähle) bis hoch (austenitische Stähle)
- Zerspanbarkeit: von leicht (ferritisch) bis schwierig (austenitisch)
- Mechanische Eigenschaften: gut (hohe Zugfestigkeit)
- Zähigkeit: hoch, auch bei tiefen Temperaturen
- Materialkosten: mittel hoch

### **DIE HERAUSFORDERUNG**

So sehr die Qualitäten der rostfreien Stähle in der Verwendung geschätzt werden, so anspruchsvoll sind sie in der Bearbeitung, die oft scheitert an der schlechten Wärmeleitfähigkeit (vor allem austenitische Stähle), an der Kaltverfestigung der Oberfläche und am zäh-elastischen Verhalten dieser Materialien. Die Konsequenzen für handelsübliche Werkzeuge sind eine Überhitzung an den Schneiden, die Bildung von Aufbauschneiden, ein hoher Verschleiss und speziell beim Bohren das Verklemmen von langen Spänen in den Spannuten.

Mikron Tool hat unter Berücksichtigung der Herausforderungen spezielle Werkzeuglösungen entwickelt. Diese erlauben ein prozesssicheres und effizientes Zerspanen von rost- und säurebeständigen Stählen.





















## **DIE EINSATZGEBIETE**

Rostfreier Stahl ist gut umformbar, korrosions- und säurebeständig und deshalb sowohl in der Industrie wie auch im alltäglichen Gebrauch immer häufiger verwendet.

### Ferritische Stähle:

- Achsen
- Wellen

### Martensitische Stähle:

- Turbinenbau
- Pumpenteile
- Energietechnik
- Nahrungsmittelindustrie
- Haushaltgeräte
- Medizintechnik

# Austenitische Stähle:

- Turbinenbau
- Luftfahrt
- Energietechnik
- Chemische Industrie
- Präzisionsinstrumente
- Medizintechnik
- Uhren und Schmuck

# Rostfreie Stähle

# EFFIZIENTE BEARBEITUNG VON ROSTFREIEN STÄHLEN

| likron Tool bietet eine Palette an standardisierten Werkzeugen an, die sich speziell für d<br>earbeitung von ferritischen, martensitischen und austenitischen Stählen eignen. | ie  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| CrazyDrill Twicenter: Zentrieren Ø0.3 bis 6.0 mm, Zentrierwerkzeug mit Innenkühlung                                                                                           |     |
|                                                                                                                                                                               |     |
| <b>CrazyDrill Pilot SST-Inox:</b> Pilotbohren Ø0.3 bis 2.0 mm, Bohrtiefe bis 3 x d + 90° Senkung, mit Innenkühlung                                                            |     |
| CrazyDrill Coolpilot: Bohren Ø1.0 bis 6.0 mm, Bohrtiefe bis 3 x d + 90° Senkung, mit Innenküh                                                                                 | lun |
| CrazyDrill SST-Inox: Bohren Ø0.3 bis 2.0 mm, Bohrtiefe bis 12 x d, mit oder ohne Innenkühlur                                                                                  | ng  |
| CrazyDrill Cool SST-Inox: Bohren Ø 1 bis 6 mm, Bohrtiefe bis 10 x d, mit Innenkühlung                                                                                         |     |
| CrazyDrill Flex SST-Inox: Mikrotieflochbohren Ø0.3 bis 1.2 mm, Bohrtiefe bis 50 x d, mit Innenkühlung                                                                         |     |
| <b>CrazyMill Cool:</b> Fräsen Ø0.3 bis 6.0 mm (zylindrisch und torisch), Ø0.3 bis 8.0 mm (Vollradius), Frästiefen bis 5 x d. mit Innenkühlung                                 | ı   |

# Weitere geeignete Werkzeuge zum Bearbeiten von rost- und säurebeständigen Stählen

■ CrazyDrill Pilot: Pilotbohren Ø0.4 bis 6 mm, Bohrtiefe bis 2 x d + 90° Senkung, mit Aussenkühlung



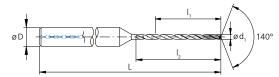
■ CrazyDrill Crosspilot: Pilotbohren in unregelmässigen, schrägen und gekrümmten Oberflächen Ø0.4 bis 6.0 mm, mit Aussenkühlung



■ CrazyDrill Cool: Tieflochbohren Ø0.75 bis 6.0 mm, Bohrtiefe bis 15 x d, mit Innenkühlung

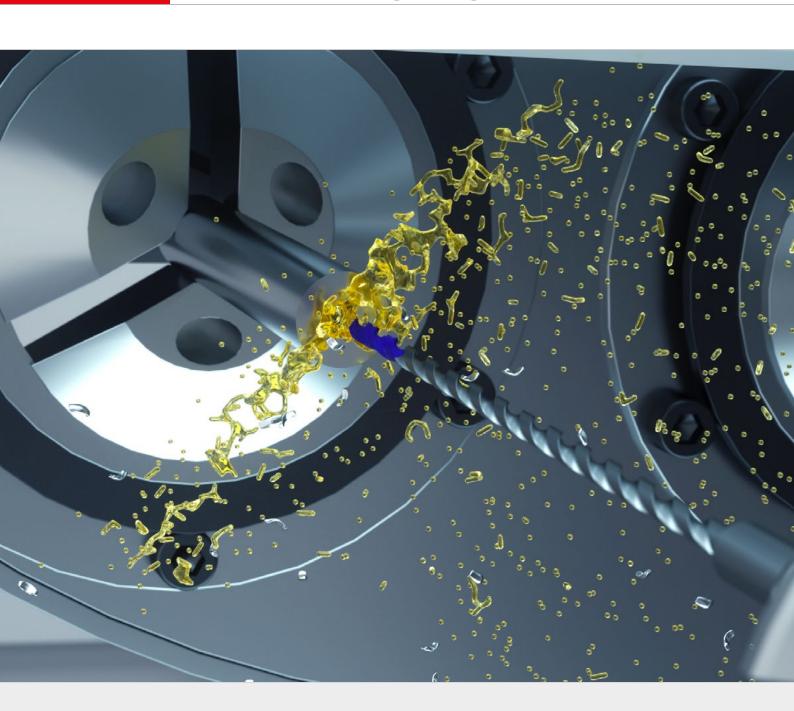


■ CrazyDrill Cool XL: Tieflochbohren Ø1.0 bis 6.0 mm, Bohrtiefe bis 40 x d, mit Innenkühlung




■ CrazyMill Chamfer: Anfasen und Entgraten vorder- und rückseitig, Ø0.4 bis 6.0 mm, mit Aussenkühlung




# Kundenspezifische Werkzeuge zum Bearbeiten von rost- und säurebeständigen Stählen

■ Kundenspezifische Werkzeuge: Vielfältig sind die Möglichkeiten von kundenspezifischen Werkzeugen wie Bohrer, Stufenbohrer, Fräser, Reiber, Entgratwerkzeuge, Drehwerkzeuge, Formwerkzeuge und kombinierte Werkzeuge. Durchmesser von 0.1 bis 32.0 mm.



Mehr Details finden Sie in den einzelnen Kapiteln

# Titan und Titanlegierungen



#### **EFFIZIENTE BEARBEITUNG VON TITAN UND TITANLEGIERUNGEN**

In der Natur relativ häufig vorkommend, aber selten in Reinform, ist die Gewinnung von Titan mit einem komplizierten Herstellungsprozess verbunden. Dies macht aus Titan ein teures und exklusives Produkt. Seine Eigenschaften machen dieses Element dennoch zu einem begehrten Rohstoff. In Reinform gut dehnbar, mit einer hohen Festigkeit bei einer kleinen Dichte (60% im Vergleich zu Stahl) ist Titan gleichzeitig korrosions- und temperaturbeständig. Auch seine Verträglichkeit im Kontakt mit dem menschlichen Körper ist hervorragend.

## Titan und Titanlegierungen

#### EFFIZIENTE BEARBEITUNG VON TITAN UND TITANLEGIERUNGEN

#### **DIE EIGENSCHAFTEN**

Unterschieden werden hauptsächlich zwei Kategorien: Titanlegierungen, wo das Titan in Verbindungen mit anderen Metallen auftritt, und reines Titan, das nur einen kleinen Teil an Verunreinigungen enthält.

- Korrosionsschutz: hoch
- Säurebeständigkeit: gut
- Gute mechanische Eigenschaften (Zugfestigkeit)
- Zähigkeit: hoch auch bei tiefen Temperaturen
- Spezifische Dichte: klein
- Wärmeleitfähigkeit: niedrig
- Nicht magnetisch
- Bioverträglichkeit: sehr gut bis ausgezeichnet
- Zerspanbarkeit: mittel bis schwierig (reines Titan)
- Materialkosten: hoch

#### **DIE HERAUSFORDERUNG**

Bei Titan (rein oder legiert) ist die schlechte Wärmeleitung die zentrale Herausforderung. Die bei der Zerspanung entstehende Wärme bleibt am Werkzeug, die Schneiden erhitzen sich, das Risiko für einen Schneideckenausbruch ist hoch. Darunter leiden die Standzeit des Werkzeuges und die Prozesssicherheit.

Wer gute Zerspanungsraten erreichen will, kommt am Thema "Kühlung" nicht vorbei. Dies auch, weil Titan bei erhöhtem Druck oder Temperaturen über 300° zu brennen beginnt. Die hohe Elastizität ist vor allem bei reinem Titan ein Thema (Grade 1 - 4). Sie erfordert eine hohe Scherkraft und führt zu hoher Schneidenbelastung. Die Späne schiefern sich auf, fliessen nur zäh und verkleben.

Mikron Tool hat unter Berücksichtigung der Herausforderungen spezielle Werkzeuglösungen entwickelt. Diese erlauben ein prozesssicheres und effizientes Zerspanen von Titan und Titanlegierungen.

















#### **DIE EINSATZGEBIETE**

Titan ist ein begehrtes Material in unterschiedlichen Bereichen dank seines niedrigen Gewichts, seiner Korrosions- und Temperaturbeständigkeit sowie seiner guten Verträglichkeit im Kontakt mit dem menschlichen Körper.

#### Titan Grade 5 und höher:

- Uhren und Schmuck
- Medizintechnik
- Luft- und Raumfahrt
- Turbinenbau
- Motorsport
- Chemische Industrie

#### Reines Titan Grad 1 - 4:

- Medizintechnik (Implantate)
- Zahntechnik
- Luft- und Raumfahrt
- Uhren und Schmuck

## Titan und Titanlegierungen

#### **EFFIZIENTE BEARBEITUNG VON TITAN UND TITANLEGIERUNGEN**

Mikron Tool bietet eine Palette an standardisierten Werkzeugen an, die sich speziell für die Bearbeitung von Reintitan und Titanlegierungen eignen.

■ CrazyDrill Twicenter: Zentrieren Ø0.3 bis 6.0 mm, Zentrierwerkzeug mit Innenkühlung



■ CrazyDrill Flexpilot Titanium: Pilotbohren Ø0.1 bis 1.2 mm, Bohrtiefe bis 3 x d, Pilotbohrer mit Aussenkühlung



■ CrazyDrill Flex Titanium: Mikrotieflochbohren Ø0.1 bis 1.2 mm, Bohrtiefe bis 50 x d, Bohrer mit und ohne Innenkühlung



■ **CrazyMill Cool:** Fräsen Ø0.3 bis 6.0 mm (zylindrisch und torisch), Ø0.3 bis 8.0 mm (Vollradius), Frästiefen bis 5 x d, mit Innenkühlung



#### Weitere geeignete Werkzeuge zum Bearbeiten von Titan und Titanlegierungen

■ CrazyDrill Pilot: Pilotbohren Ø0.4 bis 6 mm, Bohrtiefe bis 2 x d + 90° Senkung, mit Aussenkühlung



■ CrazyDrill Crosspilot: Pilotbohren in unregelmässigen, schrägen und gekrümmten Oberflächen Ø0.4 bis 6.0 mm, mit Aussenkühlung



■ CrazyDrill Steel: Bohren Ø0.4 bis 6.0 mm, Bohrtiefe bis 7 x d, mit Aussenkühlung

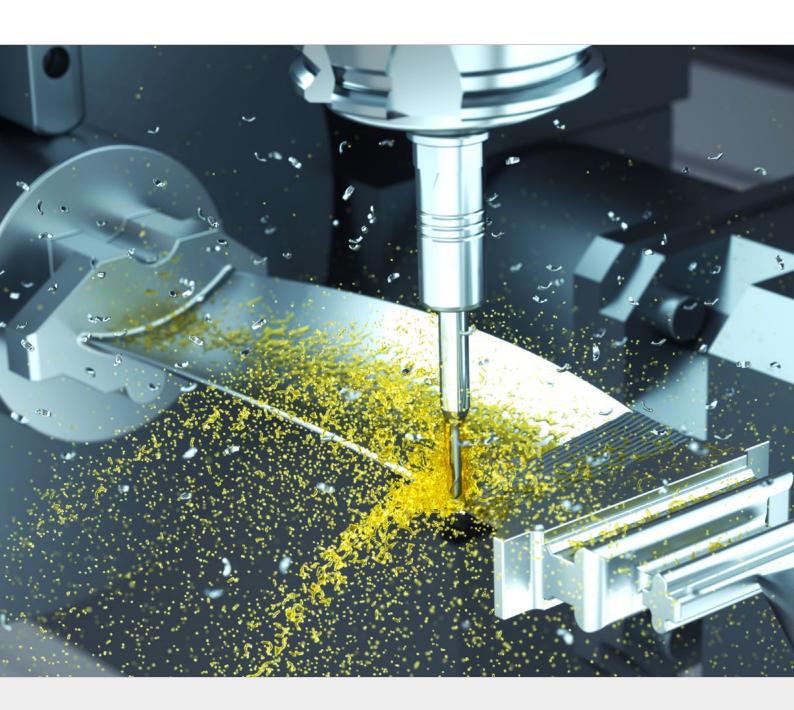


■ CrazyDrill Cool XL: Tieflochbohren Ø1.0 bis 6.0 mm, Bohrtiefe bis 40 x d, mit Innenkühlung



■ CrazyMill Chamfer: Anfasen und Entgraten vorder- und rückseitig, Ø0.4 bis 6.0 mm, mit Aussenkühlung




#### Kundenspezifische Werkzeuge zum Bearbeiten von Titan und Titanlegierungen

■ Kundenspezifische Werkzeuge: Vielfältig sind die Möglichkeiten von kundenspezifischen Werkzeugen wie Bohrer, Stufenbohrer, Fräser, Reiber, Entgratwerkzeuge, Drehwerkzeuge, Formwerkzeuge und kombinierte Werkzeuge. Durchmesser von 0.1 bis 32.0 mm.



Mehr Details finden Sie in den einzelnen Kapiteln

# Superlegierungen



#### **EFFIZIENTE BEARBEITUNG VON SUPERLEGIERUNGEN**

Wo die Ansprüche an die Werkstoffe steigen, wo hohe Einsatztemperaturen vorherrschen, da kommen die Superlegierungen oder HRSA (= Heat Resistant Super Alloys) ins Spiel. Diese Legierungen mit einer komplexen Zusammensetzung sind attraktiv dank ihrer Festigkeit und Härte auch bei hohen Temperaturen und ihrer Resistenz gegen Korrosion.

## Superlegierungen

#### **EFFIZIENTE BEARBEITUNG VON SUPERLEGIERUNGEN**

#### **DIE EIGENSCHAFTEN**

- Korrosionsschutz: sehr hoch
- Säurebeständigkeit: sehr hoch
- Hitzebeständigkeit: Hoch bis sehr hoch
- Härte hoch, auch bei hohen Temperaturen
- Nicht härtbar (niedriger C-Gehalt < 0.07 %)
- Nicht magnetisch
- Wärmeleitfähigkeit: niedrig
- Warm- und Kaltumformbarkeit: sehr gut
- Wärmeausdehnungskoeffizient: hoch
- Beibehaltung von Festigkeit und Härte auch bei hohen Temperaturen
- Mechanische Eigenschaften. Sehr gut (hohe Zugfestigkeit, Bruchdehnung)
- Zähigkeit: hoch auch bei tiefen Temperaturen
- Zerspanbarkeit: sehr anspruchsvoll
- Materialkosten: sehr hoch

#### **DIE HERAUSFORDERUNG**

Die hohe Härte und geringe Wärmeleitfähigkeit erzeugen bei der Zerspanung hohe Temperaturen. Kaltverfestigung und Oberflächenverhärtung erhöhen den Verschleiss an den Werkzeugschneiden. Diese Materialeigenschaften machen Superlegierungen zu einer Herausforderung für den Zerspaner. Dazu kommt eine ausgeprägte Zähigkeit, eine zusätzliche Hürde, wenn es um Spanbildung und Abfuhr der Späne geht. Oft werden deshalb vor allem beim Bohren alternative, verschleissfreie Verfahren bevorzugt (Elektroerosion oder Laser). An die Grenzen kommen diese jedoch, wo strenge Vorschriften bestehen in Bezug auf die Randzonenqualität (z.B. Luft- und Raumfahrt). In dieser Hinsicht ist die Bearbeitung mit Schneidwerkzeugen ein klarer Vorteil.

Mikron Tool hat unter Berücksichtigung der Herausforderungen spezielle Werkzeuglösungen entwickelt. Diese erlauben ein prozesssicheres und effizientes Zerspanen von Superlegierungen.















#### DIE EINSATZGEBIETE

Resistent gegen Korrosion, unveränderte Festigkeit und Härte auch bei hohen Temperaturen, das macht Superlegierungen attraktiv für anspruchsvolle Industrien.

#### Haupteinsatzgebiete:

- Chemische Industrie
- Petrochemische Industrie
- Luftfahrt
- Energieerzeugung
- Medizintechnik
- Automobilindustrie
- Elektronik

## Superlegierungen

#### **EFFIZIENTE BEARBEITUNG VON SUPERLEGIERUNGEN**

| Mikron Tool bietet eine Palette an standardisierten Werkzeugen an, die sich speziell für die  |
|-----------------------------------------------------------------------------------------------|
| Bearbeitung von Superlegierungen, im Besonderen für Superlegierungen auf Nickelbasis, eignen. |

| - | CrazyDrill | iwicenter: Zentrier | en Ø0.3 bis | 5 6.0 mm, | Zentrierwerkzeug | mit innenkuniur | 19 |
|---|------------|---------------------|-------------|-----------|------------------|-----------------|----|
|   |            |                     |             |           |                  |                 |    |





■ CrazyDrill Coolpilot: Bohren Ø1.0 bis 6.0 mm, Bohrtiefe bis 3 x d + 90° Senkung, mit Innenkühlung



■ CrazyDrill SST-Inox: Bohren Ø0.3 bis 2.0 mm, Bohrtiefe bis 12 x d, mit oder ohne Innenkühlung



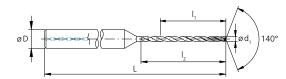
■ CrazyDrill Cool SST-Inox: Bohren Ø 1 bis 6 mm, Bohrtiefe bis 10 x d, mit Innenkühlung



■ CrazyDrill Flex SST-Inox: Mikrotieflochbohren Ø0.3 bis 1.2 mm, Bohrtiefe bis 50 x d, mit Innenkühlung



■ CrazyMill Chamfer: Anfasen und Entgraten vorder- und rückseitig, Ø0.4 bis 6.0 mm, mit Aussenkühlung




■ CrazyMill Cool: Fräsen Ø0.3 bis 6.0 mm (zylindrisch und torisch), Ø0.3 bis 8.0 mm (Vollradius), Frästiefen bis 5 x d, mit Innenkühlung



#### Kundenspezifische Werkzeuge zum Bearbeiten von Superlegierungen

■ Kundenspezifische Werkzeuge: Vielfältig sind die Möglichkeiten von kundenspezifischen Werkzeugen wie Bohrer, Stufenbohrer, Fräser, Reiber, Entgratwerkzeuge, Drehwerkzeuge, Formwerkzeuge und kombinierte Werkzeuge. Durchmesser von 0.1 bis 32.0 mm.



Mehr Details finden Sie in den einzelnen Kapiteln

# CrCo-Legierungen



13

#### **EFFIZIENTE BEARBEITUNG VON CR-CO-LEGIERUNGEN**

Chrom-Kobalt-Legierungen stellen eine spezielle Gruppe unter den Superlegierungen dar. Aufgrund ihres hohen Preises und der schlechten Zerspanbarkeit werden sie nur eingesetzt, wo keine kostengünstigeren Alternativen möglich sind. Heute findet man diese Legierungen vorwiegend in der Medizintechnik aufgrund ihrer hohen Korrosionsresistenz und der Biokompatibilität. Speziell geeignet sind sie auch in der Zahntechnik, wo eine Eigenschaft wie "absolut korrosionsfrei" unabdingbar ist. Da ausserdem der Wärmedehnungskoeffizient demjenigen der Keramikschicht auf dem Zahn entspricht, bilden sich zwischen diesen beiden Materialien keine Risse.

## CrCo-Legierungen

#### **EFFIZIENTE BEARBEITUNG VON CR-CO-LEGIERUNGEN**

#### **DIE EIGENSCHAFTEN**

- Korrosionsschutz: sehr hoch
- Säurebeständigkeit: sehr hoch
- Hitzebeständigkeit: sehr hoch
- Härte hoch, auch bei hohen Temperaturen
- Härtbar
- Nicht magnetisch
- Biokompatibel
- Wärmeleitfähigkeit: niedrig
- Warm- und Kaltumformbarkeit: sehr gut
- Wärmeausdehnungskoeffizient: hoch
- Mechanische Eigenschaften. Gut (hohe Zugfestigkeit, Bruchdehnung)
- Zähigkeit: hoch auch bei tiefen Temperaturen
- Zerspanbarkeit: sehr anspruchsvoll
- Materialkosten: sehr hoch

#### **DIE HERAUSFORDERUNG**

Die hohe Härte und Elastizität und schlechte Wärmeleitfähigkeit stellt an die Zerspanung höchste Anforderungen, die Werkzeuge sind einem hohen Verschleiss ausgesetzt. Die Oberfläche neigt zu Kaltverfestigung. Da der Preis für das Rohmaterial hoch ist, ist die Prozesssicherheit ein wesentlicher Faktor bei der Wahl der Werkzeuge oder der Bearbeitungsstrategie. Es ist durchaus möglich, diese hitzebeständigen Superlegierungen mit Schneidwerkzeugen prozesssicher zu bearbeiten.

Mikron Tool hat unter Berücksichtigung der Herausforderungen spezielle Werkzeuglösungen entwickelt. Diese erlauben ein prozesssicheres und effizientes Zerspanen von CrCo-Legierungen.









#### **DIE EINSATZGEBIETE**

Höchste Korrosionsresistenz und Biokompatibilität macht CrCo-Legierungen trotz ihrer schlechten Zerspanbarkeit interessant in sensiblen Bereichen.

#### Haupteinsatzgebiete:

- Dentaltechnik
- Luft- und Raumfahrt
- Aerospace
- Medizintechnik

## CrCo-Legierungen

#### **EFFIZIENTE BEARBEITUNG VON CR-CO-LEGIERUNGEN**

| Mikron Tool bietet mehrere standardisierte Werkzeugen an, die sich speziell für o | die |
|-----------------------------------------------------------------------------------|-----|
| Bearbeitung von CrCo-Legierungen eignen.                                          |     |

| ■ CrazyDrill Twicenter: Zentrieren Ø0.3 bis 6.0 mm, Zentrierwerkzeug mit Innenkühlun |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|



■ CrazyDrill Pilot SST-Inox: Pilotbohren Ø0.3 bis 2.0 mm, Bohrtiefe bis 3 x d + 90° Senkung, mit Innenkühlung



■ CrazyDrill Coolpilot: Bohren Ø1.0 bis 6.0 mm, Bohrtiefe bis 3 x d + 90° Senkung, mit Innenkühlung



■ CrazyDrill SST-Inox: Bohren Ø0.3 bis 2.0 mm, Bohrtiefe bis 12 x d, mit oder ohne Innenkühlung



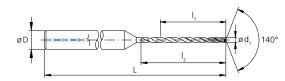
■ CrazyDrill Cool SST-Inox: Bohren Ø 1 bis 6 mm, Bohrtiefe bis 10 x d, mit Innenkühlung



■ CrazyDrill Flex SST-Inox: Mikrotieflochbohren Ø0.3 bis 1.2 mm, Bohrtiefe bis 50 x d, mit Innenkühlung



■ CrazyMill Chamfer: Anfasen und Entgraten vorder- und rückseitig, Ø0.4 bis 6.0 mm, mit Aussenkühlung




■ CrazyMill Cool: Fräsen Ø0.3 bis 6.0 mm (zylindrisch und torisch), Ø0.3 bis 8.0 mm (Vollradius), Frästiefen bis 5 x d, mit Innenkühlung



#### Kundenspezifische Werkzeuge zum Bearbeiten von CrCo-Legierungen

■ Kundenspezifische Werkzeuge: Vielfältig sind die Möglichkeiten von kundenspezifischen Werkzeugen wie Bohrer, Stufenbohrer, Fräser, Reiber, Entgratwerkzeuge, Drehwerkzeuge, Formwerkzeuge und kombinierte Werkzeuge. Durchmesser von 0.1 bis 32.0 mm.



Mehr Details finden Sie in den einzelnen Kapiteln

# crazy about technical perfection



14

TECHNISCHE INFORMATIONEN

| EINLEITUNG                                 | 632 |
|--------------------------------------------|-----|
| DIE MASCHINEN                              | 634 |
| SPANNMITTEL                                | 636 |
| KÜHLMITTEL, KÜHLMITTELDRUCK<br>UND -FILTER | 640 |
| FORMELN, TOLERANZEN UND<br>UMWANDLUNGEN    | 642 |

14

## Einleitung



#### TECHNISCHE INFOS ZUR RICHTIGEN ANWENDUNG VON MIKRON TOOL WERKZEUGEN

Um die heutigen Anforderungen an die Fertigungsgenauigkeit und Prozesssicherheit zu erfüllen, muss das System "Werkzeugmaschine – Spindel – Werkzeug – Werkzeugaufnahme" perfekt abgestimmt sein.

- Die Werkzeugmaschine: Hohe Steifigkeit, Schwingungsisolierung des Fundaments, Leichtbau bewegter Teile, hohe Rundlaufgenauigkeit der Spindel, Einzugskräfte der Maschinenspindel, intelligente und schnelle Steuerung
- Die Werkzeugaufnahme: Hohe Rundlaufgenauigkeit und Wuchtgüte, kraftschlüssiges Spannen des Werkzeuges
- Das Werkzeug: Hohe Rundlaufgenauigkeit, hohe Wuchtgüte (Geometrie, Schaftgestaltung), hohe Standzeit (Schneidstoff, Geometrie, Beschichtung)

## Die Maschinen



#### **VON DER MASCHINE ZUM WERKZEUG: DIE LEISTUNG MUSS STIMMEN**

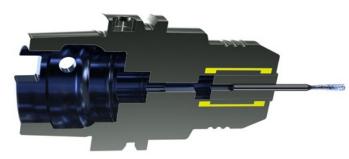
Mikron Tool Werkzeuge können auf CNC-Bearbeitungszentren, Drehautomaten oder Rundtakt- sowie Transfermaschinen eingesetzt werden.

Dabei sind je nach Werkzeug minimale Drehzahlen und ein minimaler Rundlauf der Spindel zu berücksichtigen sowie die Tatsache, ob die Werkzeuge mit innerer Kühlmittelzufuhr verwendet werden.

Details zu den Bedingungen für die unterschiedlichen Werkzeugfamilien finden Sie direkt beim entsprechenden Produkt.

14

# Spannmittel




#### DIE RICHTIGE SPANNUNG FÜR JEDES WERKZEUG (ANWENDUNG)

#### **Spannmittel**

Mikron Tool empfiehlt die Verwendung eines hochpräzisen Spannfutters, das je nach Werkzeug auch über eine innere Kühlmittelzufuhr verfügt.

#### Hydrodehnspannfutter



Gewährleisten eine hohe Rundlaufgenauigkeit beim Bohren.

#### Eigenschaften

- Rundlaufgenauigkeit: 0.003 mm
- Max. Drehzahl: 50'000 U/min. Wuchtklasse (G 2.5 / 25000 min<sup>-1</sup>)
- Exakt zentrische Spannung
- Hohe Drehmomentübertragung
- Wartungsfrei (geschlossenes System)
- Kein Verschleiß im Spanndurchmesser
- Höhere Werkzeugstandzeiten (bis 4-fach)
- Dosierbare Spannkräfte
- Kurze Werkzeugwechselzeit (ohne Zusatzgeräte wie z.B. Schrumpfgerät)

#### Verwendung

- Hochgenaues Spannen von Werkzeugen mit Zylinderschaft
- Universalfutter zum Fräsen (Schruppen und Schlichten) und Bohren
- Bei HSC-Bearbeitung (Fräsen) von Vorteil dank Dämpfungseigenschaften

## Spannmittel

#### DIE RICHTIGE SPANNUNG FÜR JEDES WERKZEUG (ANWENDUNG)

#### Schrumpffutter - Schrumpffutter nach DIN 69871



Gewährleisten höchste Rundlaufgenauigkeit bei sicherer reibschlüssiger Verbindung und sind eine optimale Verbindung zwischen Werkzeug und Aufnahme.

#### Eigenschaften

- Rundlaufgenauigkeit: ≤ 0.003 mm
- Max. Drehzahl: 40'000 U/min
- Absolut sichere reibschlüssige Kraftübertragung
- Geeignet ab Schaftdurchmesser 4 mm (3 mm bedingt möglich).
- Übertragbares Drehmoment 2- bis 4fach höher gegenüber Hydrodehn- und Spannzangenfutter
- Mittlere Werkzeugwechselzeit (Schrumpfgerät notwendig)
- Geeignet für die Bearbeitung bei engen Raumverhältnissen und Störkanten dank geringer Baugrösse bzw. langer Ausführungen

#### Verwendung

- Optimal für HSC-Bearbeitung insbesondere auch für kleine Werkzeugdurchmesser
- Zum Spannen von Fräsern und Bohrern mit Zylinderschaft

#### Spannzangensysteme (ER-Spannzangen) nach DIN 6499-A / optimierte Präzisionsfutter



Gewährleisten höchste Rundlaufgenauigkeit.

#### Eigenschaften

- Rundlaufgenauigkeit: 0.003 mm möglich
- Max. Drehzahl: 40'000 U/min
- Mittlere Werkzeugwechselzeit (ohne Zusatzgeräte wie Schrumpfgerät, aber Drehmomentschlüssel erforderlich)

#### Verwendung

- Spannen von Werkzeugen mit Zylinderschaft in Spannzangen nach DIN 6499
- Universalfutter zum Fräsen (Schruppen und Schlichten) und Bohren

#### Wuchtgüte

Die Wuchtgüte der Spannmittel ist durch die steigenden Drehzahlen bei der Hochgeschwindigkeitsbearbeitung ein wichtiges Kriterium. Die bestmögliche Wuchtqualität garantiert nicht nur reduzierte Vibrationen am Werkzeug und damit hohe Standzeiten, verbunden mit großer Oberflächengenauigkeit, sondern vor allem die Schonung der Spindellagerung.

## Kühlmittel, Kühlmitteldruck und -filter

#### MIT BESTEN BEDINGUNGEN ZU HÖCHSTEN LEISTUNGEN

#### Kühlmittel

Für ein optimales Resultat empfiehlt Mikron Tool, Schneidöl als Kühlschmiermittel zu verwenden. Alternativ kann auch Emulsion mit EP-Zusätzen (Extreme-Pressure-Additives) eingesetzt werden.

#### Kühlmitteldruck und -filter

Der minimal notwendige Druck und die Filterqualität hängen vom Kühlmittelsystem ab.

#### Äussere Kühlmittelzufuhr



Generell bestehen für Kühlmitteldruck und –filter keine besonderen Anforderungen. Es ist darauf zu achten, dass das Kühlmedium direkt an die Bohrerspitze geführt wird für eine gute Kühlung, Schmierung und Späneabfuhr.

#### Integrierte Kühlmittelzufuhr durch den Schaft





Generell erlauben die grossen Kühlkanäle einen Standardfilter mit einer Filterqualität ≤ 0.050 mm. Werkzeuge mit integrierten Kühlkanälen im Schaft benötigen einen minimalen Kühlmitteldruck von mindestens 15 bar, um prozesssicher zu bohren bzw. zu fräsen. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

#### Integrierte, gerade Kühlmittelzufuhr durch das Werkzeug





Generell erlauben die grossen Kühlkanäle einen Standardfilter mit einer Filterqualität ≤ 0.050 mm. Werkzeuge mit integrierten, geraden Kühlkanälen im Werkzeug benötigen einen minimalen Kühlmitteldruck von mindestens 15 bar, um prozesssicher zu bohren. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

#### Spiralisierte Kühlmittelzufuhr bis an die Spitze (runder Querschnitt)





Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen und den Kühlmittelfluss im Werkzeug gefährden. Bei kleinen Durchmessern sind folgende Filterqualitäten einzuhalten:

- Spiralbohrertypen mit Durchmesser < 2 mm Filterqualität ≤ 0.010 mm
- Spiralbohrertypen mit Durchmesser < 3 mm Filterqualität ≤ 0.020 mm
- Spiralbohrertypen mit Durchmesser < 6 mm Filterqualität ≤ 0.050 mm

Für prozesssichers Bohren sind mindestens 30 bar Kühlmitteldruck notwendig bei Bohrerdurchmessern von 4.0 - 6.0 mm. Bei kleineren Bohrerdurchmessern werden höhere Drücke benötigt. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

#### Spiralisierte Kühlmittelzufuhr bis an die Spitze (Tropfenform)





Eine gute Filterqualität ist bei innengekühlten Bohrwerkzeugen wichtig, damit über die Kühlmittelzufuhr keine Schmutzpartikel bzw. Späne in das Werkzeug gelangen und den Kühlmittelfluss im Werkzeug gefährden:

- Spiralbohrertypen mit Durchmesser < 2 mm Filterqualität ≤ 0.010 mm
- Spiralbohrertypen mit Durchmesser < 3 mm Filterqualität ≤ 0.020 mm
- Spiralbohrertypen mit Durchmesser < 6 mm Filterqualität ≤ 0.050 mm

Für prozesssicheres Bohren benötigen Werkzeuge mit spiralisierten Kühlkanälen in Tropfenform einen Kühlmitteldruck von mindestens 25 bar bei Bohrdurchmesser 4.0 – 6.0 mm. Bei kleineren Bohrerdurchmessern werden höhere Drücke benötigt. Ein hoher Druck ist generell besser für den Kühl- und Spüleffekt.

#### Bemerkung:

Detaillierte Angaben zu den jeweiligen Bedingungen finden Sie direkt bei den einzelnen Produktbeschreibungen.

## Formeln, Toleranzen und Umwandlungen

#### FORMELN UND MASSE AUF EINEN BLICK

#### Formeln zum Bohren und Fräsen

#### Formelzeichen

| n:               | Drehzahl                | $\left[\frac{U}{min}\right]$              | f <sub>z</sub> :   | Vorschub pro Zahn und Umdrehung | [mm]          |
|------------------|-------------------------|-------------------------------------------|--------------------|---------------------------------|---------------|
| V <sub>c</sub> : | Schnittgeschwindigkeit  | $\left[\frac{m}{min}\right]$              | a <sub>p</sub> :   | Axiale Zustelltiefe             | [mm]          |
| d₁:              | Schneidendurchmesser    | [mm]                                      | a <sub>e</sub> :   | Radiale Zustelltiefe            | [mm]          |
| V <sub>f</sub> : | Vorschubgeschwindigkeit | [mm]<br>min]                              | Q:                 | Zeitspanvolumen                 | [cm³]<br>min] |
| f:               | Vorschub pro Umdrehung  | $\left[\frac{\text{mm}}{\text{U}}\right]$ | d <sub>eff</sub> : | Effektiver Eingriffsdurchmesser | [mm]          |
| z:               | Anzahl der Schneiden    | [Zähne]                                   | β:                 | Anstellwinkel                   | [°]           |

#### Schnittgeschwindigkeit

$$v_c = \frac{d_1 \cdot n \cdot \pi}{1000} \quad \left[ \frac{m}{min} \right]$$

Drehzahl

$$n = \frac{1000 \cdot v_c}{\pi \cdot d_1} \quad \left[ \frac{U}{min} \right]$$

Vorschub pro Umdrehung

$$f = f_z \cdot z \quad \left[ \frac{mm}{U} \right]$$

Vorschubgeschwindigkeit

$$v_f = f \cdot z = f_z \cdot z \cdot n \quad \left[\frac{mm}{min}\right]$$

Vorschub pro Zahn

$$f_z = \frac{v_f}{z \cdot n} \quad [mm]$$

#### Zeitspanvolumen

$$Q = \frac{a_p \cdot a_e \cdot V_f}{1000} \ \left[ \frac{cm^3}{min} \right]$$

#### **Effektiver Eingriffsdurchmesser**

Für Vollradiusfräser bei Anstellwinkel  $\beta=0^\circ$ 



$$d_{eff} = 2 \cdot \sqrt{d_1 \cdot a_p - a_p^2} \quad [mm]$$

#### **Effektiver Eingriffsdurchmesser**

Für Vollradiusfräser bei Anstellwinkel 0°<  $\beta > 15$ °



$$d_{eff} = d_1 \cdot sin \left[ \beta + cos^{-1} \left( \frac{(d_1 - 2 \cdot a_p)}{d_1} \right) \right] \quad [mm]$$

#### **ISO-Toleranzen**

|              | 21.2            |                   |                    |
|--------------|-----------------|-------------------|--------------------|
| Toleranz Typ | Ø d ≤ 3 mm      | 3 mm < Ø d ≤ 6 mm | 6 mm < Ø d ≤ 10 mm |
| h5           | 0 / -0.004      | 0 / -0.005        | 0 / -0.006         |
| h6           | 0 / -0.006      | 0 / -0.008        | 0 / -0.009         |
| k4           | +0.003 / 0      | +0.005 / +0.001   | +0.005 / +0.001    |
| k5           | +0.004 / 0      | +0.006 / +0.001   | +0.007 / +0.001    |
| k6           | +0.006 / 0      | +0.009 / +0.001   | +0.010 / +0.001    |
| m5           | +0.005 / +0.002 | +0.009 / +0.004   | +0.012 / +0.006    |

#### **Umbauten zwischen Systemen**

$$1[mm] = .0394[inch]$$

$$1\left[\frac{m}{min}\right] = 3.28 [SFM]$$

# crazy about first quality worldwide



### $\equiv$

15

ALLGEMEINE INFORMATIONEN

| GLOBALE PRÄSENZ       | 646 |
|-----------------------|-----|
| IKONEN                | 648 |
| AGB'S UND ZERTIFIKATE | 650 |

15

## Globale Präsenz

#### **NAHE BEIM KUNDEN**

Weltweit sind wir an vier verschiedenen Standorten mit eigener Niederlassung präsent:

#### Agno – Schweiz



Mit 110 Mitarbeitern ist hier das Zentrum unserer Aktivitäten: Produktion, Forschung & Entwicklung, Administration, Verkauf und technische Betreuung, Lager.

#### Rottweil - Deutschland



In Süddeutschland ist unser zweites Standbein: Produktion, Nachschliff, Verkauf und technische Betreuung, Projektmanagement, Lager. Zusätzlich werden die europäischen Kunden von hier aus mittels dem "Eurolager" mit standardisierten Mikron Tool Produkten schnell und effizient beliefert.

#### Monroe - USA



Für Nord- und Südamerika steht ein Verkaufsteam zur Verfügung: Verkauf und technische Betreuung, Lager. Zusätzlich vertritt Mikron Tool zwei weitere Produktlinien in den USA: Gewindewerkzeuge von DC Swiss (Schweiz) und Fräswerkzeuge von NS Tool (Japan).

#### Shanghai - China



In Asien betreut ein Verkaufsteam von Shanghai aus die Kunden: Verkauf und technische Betreuung.

#### Vertreternetz

Mikron Tool arbeitet weltweit mit verschiedenen Partnerfirmen zusammen. Neben den firmeneigenen Standorten garantiert so ein Vertreternetz die effiziente und kundennahe Betreuung rund um den Globus.

### Ikonen

#### **IKONEN AUF EINEN BLICK**



Werkzeugmaterial



Gerade Innenkühlung



Fase 60°



Im Schaft integrierte Kühlung



Pilotbohren mit 90° Fase



Spiralisierte Innenkühlung



Werkzeug ohne Beschichtung



Spitzenwinkel 140°



Beschichtung eXedur RIP



Zähnezahl



Maximale Bohrtiefe 2 x d schräge Oberfläche



Maximale Bearbeitungstiefe 3 x d



Maximale Bohrtiefe 12 x d



Fräser mit integrierter Kühlung im Schaft



Aussenkühlung



Zylindrischer Fräser



Torischer Fräser



Vollradiusfräser



 $a_p$  = Zustellung in Tiefe,  $a_e$  = seitliche Zustellung



Nut- und Umfangfräsen



Nutfräsen



Umfangfräsen



Überfräsen



Kopierfräsen



Drallwinkel 30°



Mögliche Bearbeitung



Perfekte Oberflächengüte in Schleifqualität



CrazyMill Frontchamfer



CrazyMill Backchamfer



CrazyMill Doublechamfer



CrazyMill Radiuschamfer

### $\equiv$

## AGB's und Zertifikate

#### **VERKAUF UND QUALITÄT**

#### AGB's

Die detaillierten Verkaufsbedingungen für Mikron Tool Produkte finden Sie unter:

www.mikrontool.com/de/Download/Verkaufsbedingungen

#### Zertifiziert



Eine Zertifizierung nach ISO Normen ist für Mikron Tool selbstverständlich. Wir arbeiten kontinuierlich an der Qualität unserer Prozesse, der Sicherheit und der Umweltverträglichkeit. Heute sind wir im Besitz aller wichtigen Zertifikate unseres Industriebereiches: ISO 9001, ISO 14001 und OHS 18001.

Möchten Sie eine Kopie der Zertifizierung runterladen? Sie finden diese unter: www.mikrontool.com/de/Download/Zertifikate